memheap.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. /*
  2. * File : memheap.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2012-04-10 Bernard first implementation
  13. * 2012-10-16 Bernard add the mutex lock for heap object.
  14. * 2012-12-29 Bernard memheap can be used as system heap.
  15. * change mutex lock to semaphore lock.
  16. */
  17. #include <rthw.h>
  18. #include <rtthread.h>
  19. #ifdef RT_USING_MEMHEAP
  20. /* dynamic pool magic and mask */
  21. #define RT_MEMHEAP_MAGIC 0x1ea01ea0
  22. #define RT_MEMHEAP_MASK 0xfffffffe
  23. #define RT_MEMHEAP_USED 0x01
  24. #define RT_MEMHEAP_FREED 0x00
  25. #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
  26. #define RT_MEMHEAP_MINIALLOC 12
  27. #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
  28. #define MEMITEM_SIZE(item) ((rt_uint32_t)item->next - (rt_uint32_t)item - RT_MEMHEAP_SIZE)
  29. /*
  30. * The initialized memory pool will be:
  31. * +-----------------------------------+--------------------------+
  32. * | whole freed memory block | Used Memory Block Tailer |
  33. * +-----------------------------------+--------------------------+
  34. *
  35. * block_list --> whole freed memory block
  36. *
  37. * The length of Used Memory Block Tailer is 0,
  38. * which is prevents block merging across list
  39. */
  40. rt_err_t rt_memheap_init(struct rt_memheap *memheap,
  41. const char *name,
  42. void *start_addr,
  43. rt_uint32_t size)
  44. {
  45. struct rt_memheap_item *item;
  46. RT_ASSERT(memheap != RT_NULL);
  47. /* initialize pool object */
  48. rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
  49. memheap->start_addr = start_addr;
  50. memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
  51. memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
  52. memheap->max_used_size = memheap->pool_size - memheap->available_size;
  53. /* initialize the free list header */
  54. item = &(memheap->free_header);
  55. item->magic = RT_MEMHEAP_MAGIC;
  56. item->pool_ptr = memheap;
  57. item->next = RT_NULL;
  58. item->prev = RT_NULL;
  59. item->next_free = item;
  60. item->prev_free = item;
  61. /* set the free list to free list header */
  62. memheap->free_list = item;
  63. /* initialize the first big memory block */
  64. item = (struct rt_memheap_item *)start_addr;
  65. item->magic = RT_MEMHEAP_MAGIC;
  66. item->pool_ptr = memheap;
  67. item->next = RT_NULL;
  68. item->prev = RT_NULL;
  69. item->next_free = item;
  70. item->prev_free = item;
  71. item->next = (struct rt_memheap_item *)
  72. ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
  73. item->prev = item->next;
  74. /* block list header */
  75. memheap->block_list = item;
  76. /* place the big memory block to free list */
  77. item->next_free = memheap->free_list->next_free;
  78. item->prev_free = memheap->free_list;
  79. memheap->free_list->next_free->prev_free = item;
  80. memheap->free_list->next_free = item;
  81. /* move to the end of memory pool to build a small tailer block,
  82. * which prevents block merging
  83. */
  84. item = item->next;
  85. /* it's a used memory block */
  86. item->magic = RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED;
  87. item->pool_ptr = memheap;
  88. item->next = (struct rt_memheap_item *)start_addr;
  89. item->prev = (struct rt_memheap_item *)start_addr;
  90. /* not in free list */
  91. item->next_free = item->prev_free = RT_NULL;
  92. /* initialize semaphore lock */
  93. rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_FIFO);
  94. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  95. ("memory heap: start addr 0x%08x, size %d, free list header 0x%08x",
  96. start_addr, size, &(memheap->free_header)));
  97. return RT_EOK;
  98. }
  99. RTM_EXPORT(rt_memheap_init);
  100. rt_err_t rt_memheap_detach(struct rt_memheap *heap)
  101. {
  102. RT_ASSERT(heap);
  103. rt_object_detach(&(heap->lock.parent.parent));
  104. rt_object_detach(&(heap->parent));
  105. /* Return a successful completion. */
  106. return RT_EOK;
  107. }
  108. RTM_EXPORT(rt_memheap_detach);
  109. void *rt_memheap_alloc(struct rt_memheap *heap, rt_uint32_t size)
  110. {
  111. rt_err_t result;
  112. rt_uint32_t free_size;
  113. struct rt_memheap_item *header_ptr;
  114. RT_ASSERT(heap != RT_NULL);
  115. /* align allocated size */
  116. size = RT_ALIGN(size, RT_ALIGN_SIZE);
  117. if (size < RT_MEMHEAP_MINIALLOC)
  118. size = RT_MEMHEAP_MINIALLOC;
  119. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d on heap:%8.*s",
  120. size, RT_NAME_MAX, heap->parent.name));
  121. if (size < heap->available_size)
  122. {
  123. /* search on free list */
  124. free_size = 0;
  125. /* lock memheap */
  126. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  127. if (result != RT_EOK)
  128. {
  129. rt_set_errno(result);
  130. return RT_NULL;
  131. }
  132. /* get the first free memory block */
  133. header_ptr = heap->free_list->next_free;
  134. while (header_ptr != heap->free_list && free_size < size)
  135. {
  136. /* get current freed memory block size */
  137. free_size = (rt_uint32_t)(header_ptr->next) -
  138. (rt_uint32_t)header_ptr -
  139. RT_MEMHEAP_SIZE;
  140. if (free_size < size)
  141. {
  142. /* move to next free memory block */
  143. header_ptr = header_ptr->next_free;
  144. }
  145. }
  146. /* determine if the memory is available. */
  147. if (free_size >= size)
  148. {
  149. /* a block that satisfies the request has been found. */
  150. /* determine if the block needs to be split. */
  151. if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
  152. {
  153. struct rt_memheap_item *new_ptr;
  154. /* split the block. */
  155. new_ptr = (struct rt_memheap_item *)
  156. (((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
  157. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  158. ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
  159. header_ptr,
  160. header_ptr->next,
  161. header_ptr->prev,
  162. new_ptr));
  163. /* mark the new block as a memory block and freed. */
  164. new_ptr->magic = RT_MEMHEAP_MAGIC;
  165. /* put the pool pointer into the new block. */
  166. new_ptr->pool_ptr = heap;
  167. /* break down the block list */
  168. new_ptr->prev = header_ptr;
  169. new_ptr->next = header_ptr->next;
  170. header_ptr->next->prev = new_ptr;
  171. header_ptr->next = new_ptr;
  172. /* remove header ptr from free list */
  173. header_ptr->next_free->prev_free = header_ptr->prev_free;
  174. header_ptr->prev_free->next_free = header_ptr->next_free;
  175. header_ptr->next_free = RT_NULL;
  176. header_ptr->prev_free = RT_NULL;
  177. /* insert new_ptr to free list */
  178. new_ptr->next_free = heap->free_list->next_free;
  179. new_ptr->prev_free = heap->free_list;
  180. heap->free_list->next_free->prev_free = new_ptr;
  181. heap->free_list->next_free = new_ptr;
  182. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x",
  183. new_ptr->next_free,
  184. new_ptr->prev_free));
  185. /* decrement the available byte count. */
  186. heap->available_size = heap->available_size -
  187. size -
  188. RT_MEMHEAP_SIZE;
  189. if (heap->pool_size - heap->available_size > heap->max_used_size)
  190. heap->max_used_size = heap->pool_size - heap->available_size;
  191. }
  192. else
  193. {
  194. /* decrement the entire free size from the available bytes count. */
  195. heap->available_size = heap->available_size - free_size;
  196. if (heap->pool_size - heap->available_size > heap->max_used_size)
  197. heap->max_used_size = heap->pool_size - heap->available_size;
  198. /* remove header_ptr from free list */
  199. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  200. ("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
  201. header_ptr,
  202. header_ptr->next_free,
  203. header_ptr->prev_free));
  204. header_ptr->next_free->prev_free = header_ptr->prev_free;
  205. header_ptr->prev_free->next_free = header_ptr->next_free;
  206. header_ptr->next_free = RT_NULL;
  207. header_ptr->prev_free = RT_NULL;
  208. }
  209. /* Mark the allocated block as not available. */
  210. header_ptr->magic |= RT_MEMHEAP_USED;
  211. /* release lock */
  212. rt_sem_release(&(heap->lock));
  213. /* Return a memory address to the caller. */
  214. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  215. ("alloc mem: memory[0x%08x], heap[0x%08x], size: %d",
  216. (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE),
  217. header_ptr,
  218. size);
  219. return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE));
  220. }
  221. /* release lock */
  222. rt_sem_release(&(heap->lock));
  223. }
  224. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n"));
  225. /* Return the completion status. */
  226. return RT_NULL;
  227. }
  228. RTM_EXPORT(rt_memheap_alloc);
  229. void rt_memheap_free(void *ptr)
  230. {
  231. rt_err_t result;
  232. struct rt_memheap *heap;
  233. struct rt_memheap_item *header_ptr, *new_ptr;
  234. rt_uint32_t insert_header;
  235. /* set initial status as OK */
  236. insert_header = 1;
  237. new_ptr = RT_NULL;
  238. header_ptr = (struct rt_memheap_item *)((rt_uint8_t *)ptr -
  239. RT_MEMHEAP_SIZE);
  240. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: memory[0x%08x], block[0x%08x]",
  241. ptr, header_ptr));
  242. /* check magic */
  243. RT_ASSERT((header_ptr->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  244. /* get pool ptr */
  245. heap = header_ptr->pool_ptr;
  246. /* lock memheap */
  247. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  248. if (result != RT_EOK)
  249. {
  250. rt_set_errno(result);
  251. return ;
  252. }
  253. /* Mark the memory as available. */
  254. header_ptr->magic &= ~RT_MEMHEAP_USED;
  255. /* Adjust the available number of bytes. */
  256. heap->available_size = heap->available_size + MEMITEM_SIZE(header_ptr);
  257. /* Determine if the block can be merged with the previous neighbor. */
  258. if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
  259. {
  260. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x",
  261. header_ptr->prev));
  262. /* adjust the available number of bytes. */
  263. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  264. /* yes, merge block with previous neighbor. */
  265. (header_ptr->prev)->next = header_ptr->next;
  266. (header_ptr->next)->prev = header_ptr->prev;
  267. /* move header pointer to previous. */
  268. header_ptr = header_ptr->prev;
  269. /* don't insert header to free list */
  270. insert_header = 0;
  271. }
  272. /* determine if the block can be merged with the next neighbor. */
  273. if (!RT_MEMHEAP_IS_USED(header_ptr->next))
  274. {
  275. /* adjust the available number of bytes. */
  276. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  277. /* merge block with next neighbor. */
  278. new_ptr = header_ptr->next;
  279. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  280. ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
  281. new_ptr, new_ptr->next_free, new_ptr->prev_free));
  282. new_ptr->next->prev = header_ptr;
  283. header_ptr->next = new_ptr->next;
  284. /* remove new ptr from free list */
  285. new_ptr->next_free->prev_free = new_ptr->prev_free;
  286. new_ptr->prev_free->next_free = new_ptr->next_free;
  287. }
  288. if (insert_header)
  289. {
  290. /* no left merge, insert to free list */
  291. header_ptr->next_free = heap->free_list->next_free;
  292. header_ptr->prev_free = heap->free_list;
  293. heap->free_list->next_free->prev_free = header_ptr;
  294. heap->free_list->next_free = header_ptr;
  295. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  296. ("insert to free list: next_free 0x%08x, prev_free 0x%08x",
  297. header_ptr->next_free, header_ptr->prev_free));
  298. }
  299. /* release lock */
  300. rt_sem_release(&(heap->lock));
  301. }
  302. RTM_EXPORT(rt_memheap_free);
  303. #ifdef RT_USING_MEMHEAP_AS_HEAP
  304. static struct rt_memheap _heap;
  305. void rt_system_heap_init(void *begin_addr, void *end_addr)
  306. {
  307. /* initialize a default heap in the system */
  308. rt_memheap_init(&_heap,
  309. "heap",
  310. begin_addr,
  311. (rt_uint32_t)end_addr - (rt_uint32_t)begin_addr);
  312. }
  313. void *rt_malloc(rt_size_t size)
  314. {
  315. void* ptr;
  316. /* try to allocate in system heap */
  317. ptr = rt_memheap_alloc(&_heap, size);
  318. if (ptr == RT_NULL)
  319. {
  320. struct rt_object *object;
  321. struct rt_list_node *node;
  322. struct rt_memheap *heap;
  323. struct rt_object_information *information;
  324. extern struct rt_object_information rt_object_container[];
  325. /* try to allocate on other memory heap */
  326. information = &rt_object_container[RT_Object_Class_MemHeap];
  327. for (node = information->object_list.next;
  328. node != &(information->object_list);
  329. node = node->next)
  330. {
  331. object = rt_list_entry(node, struct rt_object, list);
  332. heap = (struct rt_memheap *)object;
  333. /* not allocate in the default system heap */
  334. if (heap == &_heap)
  335. continue;
  336. ptr = rt_memheap_alloc(heap, size);
  337. if (ptr != RT_NULL)
  338. break;
  339. }
  340. }
  341. return ptr;
  342. }
  343. RTM_EXPORT(rt_malloc);
  344. void rt_free(void *rmem)
  345. {
  346. rt_memheap_free(rmem);
  347. }
  348. RTM_EXPORT(rt_free);
  349. void *rt_realloc(void *rmem, rt_size_t newsize)
  350. {
  351. rt_size_t size;
  352. void *nmem = RT_NULL;
  353. struct rt_memheap_item *header_ptr;
  354. RT_DEBUG_NOT_IN_INTERRUPT;
  355. /* alignment size */
  356. newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
  357. /* allocate a memory */
  358. if (rmem == RT_NULL)
  359. {
  360. return rt_malloc(newsize);
  361. }
  362. /* release memory */
  363. if (newsize == 0)
  364. {
  365. rt_free(rmem);
  366. return RT_NULL;
  367. }
  368. /* get old memory item */
  369. header_ptr = (struct rt_memheap_item *)((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE);
  370. size = MEMITEM_SIZE(header_ptr);
  371. /* re-allocate memory */
  372. if (newsize > size || newsize < size - RT_MEMHEAP_SIZE)
  373. {
  374. /* re-allocate a memory block */
  375. nmem = (void*)rt_malloc(newsize);
  376. if (nmem != RT_NULL)
  377. {
  378. rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
  379. rt_free(rmem);
  380. }
  381. return nmem;
  382. }
  383. /* use the old memory block */
  384. return rmem;
  385. }
  386. RTM_EXPORT(rt_realloc);
  387. void *rt_calloc(rt_size_t count, rt_size_t size)
  388. {
  389. void *ptr;
  390. rt_size_t total_size;
  391. total_size = count * size;
  392. ptr = rt_malloc(total_size);
  393. if (ptr != RT_NULL)
  394. {
  395. /* clean memory */
  396. rt_memset(ptr, 0, total_size);
  397. }
  398. return ptr;
  399. }
  400. RTM_EXPORT(rt_calloc);
  401. #endif
  402. #endif