dm9000.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. #include <rtthread.h>
  2. #include "dm9000.h"
  3. #include <netif/ethernetif.h>
  4. #include "lwipopts.h"
  5. /*
  6. * DM9000 interrupt line is connected to PF7
  7. */
  8. //--------------------------------------------------------
  9. #define MAX_ADDR_LEN 6
  10. enum DM9000_PHY_mode
  11. {
  12. DM9000_10MHD = 0, DM9000_100MHD = 1,
  13. DM9000_10MFD = 4, DM9000_100MFD = 5,
  14. DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
  15. };
  16. enum DM9000_TYPE
  17. {
  18. TYPE_DM9000E,
  19. TYPE_DM9000A,
  20. TYPE_DM9000B
  21. };
  22. struct dm9000_rxhdr
  23. {
  24. rt_uint8_t RxPktReady;
  25. rt_uint8_t RxStatus;
  26. rt_uint16_t RxLen;
  27. } __attribute__((__packed__));
  28. struct rt_dm9000_eth
  29. {
  30. /* inherit from ethernet device */
  31. struct eth_device parent;
  32. enum DM9000_TYPE type;
  33. rt_uint8_t imr_all;
  34. /* interface address info. */
  35. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  36. };
  37. static struct rt_dm9000_eth dm9000_device;
  38. void delay_ms(rt_uint32_t dt)
  39. {
  40. }
  41. /* Read a byte from I/O port */
  42. rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
  43. {
  44. ETH_ADDR = reg;
  45. return (rt_uint8_t) ETH_DATA;
  46. }
  47. /* Write a byte to I/O port */
  48. rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
  49. {
  50. ETH_ADDR = reg;
  51. ETH_DATA = data;
  52. }
  53. /* Read a word from phyxcer */
  54. rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
  55. {
  56. rt_uint16_t val;
  57. /* Fill the phyxcer register into REG_0C */
  58. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  59. dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
  60. delay_ms(100); /* Wait read complete */
  61. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  62. val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
  63. return val;
  64. }
  65. /* Write a word to phyxcer */
  66. rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
  67. {
  68. /* Fill the phyxcer register into REG_0C */
  69. dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
  70. /* Fill the written data into REG_0D & REG_0E */
  71. dm9000_io_write(DM9000_EPDRL, (value & 0xff));
  72. dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
  73. dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
  74. delay_ms(500); /* Wait write complete */
  75. dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  76. }
  77. /* Set PHY operationg mode */
  78. rt_inline void phy_mode_set(rt_uint32_t media_mode)
  79. {
  80. rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
  81. if (!(media_mode & DM9000_AUTO))
  82. {
  83. switch (media_mode)
  84. {
  85. case DM9000_10MHD:
  86. phy_reg4 = 0x21;
  87. phy_reg0 = 0x0000;
  88. break;
  89. case DM9000_10MFD:
  90. phy_reg4 = 0x41;
  91. phy_reg0 = 0x1100;
  92. break;
  93. case DM9000_100MHD:
  94. phy_reg4 = 0x81;
  95. phy_reg0 = 0x2000;
  96. break;
  97. case DM9000_100MFD:
  98. phy_reg4 = 0x101;
  99. phy_reg0 = 0x3100;
  100. break;
  101. }
  102. phy_write(4, phy_reg4); /* Set PHY media mode */
  103. phy_write(0, phy_reg0); /* Tmp */
  104. }
  105. dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
  106. dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
  107. }
  108. /* interrupt service routine */
  109. void rt_dm9000_isr(int irqno)
  110. {
  111. rt_uint32_t int_status;
  112. /* Disable all interrupts */
  113. dm9000_io_write(DM9000_IMR, IMR_PAR);
  114. /* Got DM9000 interrupt status */
  115. int_status = ior(DM9000_ISR); /* Got ISR */
  116. dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
  117. /* Received the coming packet */
  118. if (int_status & ISR_PRS)
  119. {
  120. rt_err_t result;
  121. /* a frame has been received */
  122. result = eth_device_ready(&(dm9000_device.parent));
  123. RT_ASSERT(result == RT_EOK);
  124. }
  125. /* Transmit Interrupt check */
  126. if (int_status & ISR_PTS)
  127. {
  128. /* transmit done */
  129. int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
  130. if (tx_status & (NSR_TX2END | NSR_TX1END))
  131. {
  132. /* One packet sent complete */
  133. }
  134. }
  135. /* Re-enable interrupt mask */
  136. dm9000_io_write(DM9000_IMR, db->imr_all);
  137. }
  138. /* RT-Thread Device Interface */
  139. /* initialize the interface */
  140. static rt_err_t rt_dm9000_init(rt_device_t dev)
  141. {
  142. int i, oft, lnk;
  143. rt_uint32_t value;
  144. /* RESET device */
  145. dm9000_io_write(DM9000_NCR, NCR_RST);
  146. delay_ms(1000); /* delay 1ms */
  147. /* identfy DM9000 */
  148. value = dm9000_io_read(DM9000_VIDL);
  149. value |= dm9000_io_read(DM9000_VIDH) << 8;
  150. value |= dm9000_io_read(DM9000_PIDL) << 16;
  151. value |= dm9000_io_read(DM9000_PIDH) << 24;
  152. if (value == DM9000_ID)
  153. {
  154. rt_kprintf("dm9000 id: 0x%x\n", value);
  155. }
  156. else
  157. {
  158. return -RT_ERROR;
  159. }
  160. /* GPIO0 on pre-activate PHY */
  161. dm9000_io_write(DM9000_GPR, 0x00); /*REG_1F bit0 activate phyxcer */
  162. dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  163. dm9000_io_write(DM9000_GPR, 0); /* Enable PHY */
  164. /* Set PHY */
  165. phy_mode_set(DM9000_AUTO);
  166. /* Program operating register */
  167. dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
  168. dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
  169. dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  170. dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
  171. dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
  172. dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
  173. dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
  174. dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
  175. /* set mac address */
  176. for (i = 0, oft = 0x10; i < 6; i++, oft++)
  177. dm9000_io_write(oft, dm9000_device->dev_addr[i]);
  178. for (i = 0, oft = 0x16; i < 8; i++, oft++)
  179. dm9000_io_write(oft, 0xff);
  180. /* Activate DM9000 */
  181. dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
  182. i = 0;
  183. while (!(phy_read(1) & 0x20))
  184. {
  185. /* autonegation complete bit */
  186. delay_ms(1000);
  187. i++;
  188. if (i == 10000)
  189. {
  190. rt_kprintf("could not establish link\n");
  191. return 0;
  192. }
  193. }
  194. /* see what we've got */
  195. lnk = phy_read(17) >> 12;
  196. rt_kprintf("operating at ");
  197. switch (lnk) {
  198. case 1:
  199. rt_kprintf("10M half duplex ");
  200. break;
  201. case 2:
  202. rt_kprintf("10M full duplex ");
  203. break;
  204. case 4:
  205. rt_kprintf("100M half duplex ");
  206. break;
  207. case 8:
  208. rt_kprintf("100M full duplex ");
  209. break;
  210. default:
  211. rt_kprintf("unknown: %d ", lnk);
  212. break;
  213. }
  214. rt_kprintf("mode\n");
  215. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
  216. return RT_EOK;
  217. }
  218. static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
  219. {
  220. return RT_EOK;
  221. }
  222. static rt_err_t rt_dm9000_close(rt_device_t dev)
  223. {
  224. /* RESET devie */
  225. phy_write(0, 0x8000); /* PHY RESET */
  226. dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
  227. dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
  228. dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
  229. return RT_EOK;
  230. }
  231. static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  232. {
  233. rt_set_errno(-RT_ENOSYS);
  234. return 0;
  235. }
  236. static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  237. {
  238. rt_set_errno(-RT_ENOSYS);
  239. return 0;
  240. }
  241. static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  242. {
  243. switch(cmd)
  244. {
  245. case NIOCTL_GADDR:
  246. /* get mac address */
  247. if(args) rt_memcpy(args, dm9000_device.dev_addr, 6);
  248. else return -RT_ERROR;
  249. break;
  250. default :
  251. break;
  252. }
  253. return RT_EOK;
  254. }
  255. /* ethernet device interface */
  256. /* transmit packet. */
  257. rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
  258. {
  259. struct pbuf* q;
  260. rt_uint32_t len;
  261. rt_uint16_t* ptr;
  262. /* Move data to DM9000 TX RAM */
  263. dm9000_io_write(DM9000_MWCMD, DM9000_IO);
  264. for (q = p; q != NULL; q = q->next)
  265. {
  266. len = q->len;
  267. ptr = q->payload;
  268. /* use 16bit mode to write data to DM9000 RAM */
  269. while (len)
  270. {
  271. dm9000_io_write(*ptr, DM9000_DATA);
  272. ptr ++; len -= 2;
  273. }
  274. }
  275. if (p->tot_len < 64) /* add pading */
  276. {
  277. }
  278. /* Set TX length to DM9000 */
  279. dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
  280. dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
  281. return RT_EOK;
  282. }
  283. /* reception packet. */
  284. struct pbuf *rt_dm9000_rx(rt_device_t dev)
  285. {
  286. struct pbuf* p;
  287. rt_uint32_t len;
  288. /* init p pointer */
  289. p = RT_NULL;
  290. /* Check packet ready or not */
  291. dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
  292. len = dm9000_io_read(DM9000_DATA); /* Got most updated data */
  293. if (len)
  294. {
  295. rt_uint16_t rx_status, rx_len;
  296. rt_uint16_t* data;
  297. dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
  298. dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
  299. /* A packet ready now & Get status/length */
  300. DM9000_outb(DM9000_MRCMD, DM9000_IO);
  301. rx_status = dm9000_io_write(DM9000_DATA);
  302. rx_len = dm9000_io_write(DM9000_DATA);
  303. /* allocate buffer */
  304. p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
  305. if (p != RT_NULL)
  306. {
  307. struct pbuf* q;
  308. for (q = p; q != RT_NULL; q= q->next)
  309. {
  310. data = (rt_uint16_t*)q->payload;
  311. len = q->len;
  312. while (len)
  313. {
  314. *data = dm9000_io_write(DM9000_DATA);
  315. data ++; len -= 2;
  316. }
  317. }
  318. }
  319. else
  320. {
  321. rt_uint16_t dummy;
  322. /* no pbuf, discard data from DM9000 */
  323. data = &dummy;
  324. while (rx_len)
  325. {
  326. *data = dm9000_io_write(DM9000_DATA);
  327. rx_len -= 2;
  328. }
  329. }
  330. if ((rx_status & 0xbf00) || (rx_len < 0x40)
  331. || (rx_len > DM9000_PKT_MAX))
  332. {
  333. if (rx_status & 0x100)
  334. {
  335. rt_printf("rx fifo error\n");
  336. }
  337. if (rx_status & 0x200) {
  338. rt_printf("rx crc error\n");
  339. }
  340. if (rx_status & 0x8000)
  341. {
  342. rt_printf("rx length error\n");
  343. }
  344. if (rx_len > DM9000_PKT_MAX)
  345. {
  346. rt_printf("rx length too big\n");
  347. dm9000_reset();
  348. }
  349. /* it issues an error, release pbuf */
  350. pbuf_free(p);
  351. p = RT_NULL;
  352. }
  353. }
  354. else
  355. {
  356. /* restore interrupt */
  357. dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
  358. }
  359. return p;
  360. }
  361. {
  362. u8 rxbyte, *rdptr = (u8 *) NetRxPackets[0];
  363. u16 RxStatus, RxLen = 0;
  364. u32 tmplen, i;
  365. /* Status check: this byte must be 0 or 1 */
  366. if (rxbyte > 1) {
  367. DM9000_iow(DM9000_RCR, 0x00); /* Stop Device */
  368. DM9000_iow(DM9000_ISR, 0x80); /* Stop INT request */
  369. DM9000_DBG("rx status check: %d\n", rxbyte);
  370. }
  371. /* A packet ready now & Get status/length */
  372. DM9000_outb(DM9000_MRCMD, DM9000_IO);
  373. RxStatus = DM9000_inw(DM9000_DATA);
  374. RxLen = DM9000_inw(DM9000_DATA);
  375. /* Read received packet from RX SRAM */
  376. tmplen = (RxLen + 1) / 2;
  377. for (i = 0; i < tmplen; i++)
  378. ((u16 *) rdptr)[i] = DM9000_inw(DM9000_DATA);
  379. if ((RxStatus & 0xbf00) || (RxLen < 0x40)
  380. || (RxLen > DM9000_PKT_MAX))
  381. {
  382. if (RxStatus & 0x100)
  383. {
  384. rt_printf("rx fifo error\n");
  385. }
  386. if (RxStatus & 0x200) {
  387. rt_printf("rx crc error\n");
  388. }
  389. if (RxStatus & 0x8000)
  390. {
  391. rt_printf("rx length error\n");
  392. }
  393. if (RxLen > DM9000_PKT_MAX)
  394. {
  395. rt_printf("rx length too big\n");
  396. dm9000_reset();
  397. }
  398. }
  399. else
  400. {
  401. /* Pass to upper layer */
  402. DM9000_DBG("passing packet to upper layer\n");
  403. NetReceive(NetRxPackets[0], RxLen);
  404. return RxLen;
  405. }
  406. }
  407. void rt_hw_dm9000_init()
  408. {
  409. dm9000_device.type = TYPE_DM9000A;
  410. dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
  411. dm9000_device.parent.parent.init = rt_dm9000_init;
  412. dm9000_device.parent.parent.open = rt_dm9000_open;
  413. dm9000_device.parent.parent.close = rt_dm9000_close;
  414. dm9000_device.parent.parent.read = rt_dm9000_read;
  415. dm9000_device.parent.parent.write = rt_dm9000_write;
  416. dm9000_device.parent.parent.control = rt_dm9000_control;
  417. dm9000_device.parent.parent.private = RT_NULL;
  418. dm9000_device.parent.eth_rx = rt_dm9000_rx;
  419. dm9000_device.parent.eth_tx = rt_dm9000_tx;
  420. rt_device_register((rt_device_t)&dm9000_device,
  421. "E0", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX);
  422. }
  423. #ifdef RT_USING_FINSH
  424. #include <finsh.h>
  425. void dm9000(void)
  426. {
  427. rt_kprintf("\n");
  428. rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(0));
  429. rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(1));
  430. rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(2));
  431. rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(3));
  432. rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(4));
  433. rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(5));
  434. rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(6));
  435. rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(ISR));
  436. rt_kprintf("\n");
  437. }
  438. #endif