sensor.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. */
  10. #include "sensor.h"
  11. #define DBG_TAG "sensor"
  12. #define DBG_LVL DBG_INFO
  13. #include <rtdbg.h>
  14. #include <string.h>
  15. static char *const sensor_name_str[] =
  16. {
  17. "none",
  18. "acce_", /* Accelerometer */
  19. "gyro_", /* Gyroscope */
  20. "mag_", /* Magnetometer */
  21. "temp_", /* Temperature */
  22. "humi_", /* Relative Humidity */
  23. "baro_", /* Barometer */
  24. "li_", /* Ambient light */
  25. "pr_", /* Proximity */
  26. "hr_", /* Heart Rate */
  27. "tvoc_", /* TVOC Level */
  28. "noi_", /* Noise Loudness */
  29. "step_", /* Step sensor */
  30. "forc_" /* Force sensor */
  31. };
  32. /* Sensor interrupt correlation function */
  33. /*
  34. * Sensor interrupt handler function
  35. */
  36. void rt_sensor_cb(rt_sensor_t sen)
  37. {
  38. if (sen->parent.rx_indicate == RT_NULL)
  39. {
  40. return;
  41. }
  42. if (sen->irq_handle != RT_NULL)
  43. {
  44. sen->irq_handle(sen);
  45. }
  46. /* The buffer is not empty. Read the data in the buffer first */
  47. if (sen->data_len > 0)
  48. {
  49. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  50. }
  51. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  52. {
  53. /* The interrupt mode only produces one data at a time */
  54. sen->parent.rx_indicate(&sen->parent, 1);
  55. }
  56. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  57. {
  58. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  59. }
  60. }
  61. /* ISR for sensor interrupt */
  62. static void irq_callback(void *args)
  63. {
  64. rt_sensor_t sensor = args;
  65. rt_uint8_t i;
  66. if (sensor->module)
  67. {
  68. /* Invoke a callback for all sensors in the module */
  69. for (i = 0; i < sensor->module->sen_num; i++)
  70. {
  71. rt_sensor_cb(sensor->module->sen[i]);
  72. }
  73. }
  74. else
  75. {
  76. rt_sensor_cb(sensor);
  77. }
  78. }
  79. /* Sensor interrupt initialization function */
  80. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  81. {
  82. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  83. {
  84. return -RT_EINVAL;
  85. }
  86. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  87. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  88. {
  89. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  90. }
  91. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  92. {
  93. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  94. }
  95. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  96. {
  97. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  98. }
  99. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  100. LOG_I("interrupt init success");
  101. return 0;
  102. }
  103. /* Sensor interrupt enable */
  104. static void rt_sensor_irq_enable(rt_sensor_t sensor)
  105. {
  106. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  107. {
  108. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  109. }
  110. }
  111. /* Sensor interrupt disable */
  112. static void rt_sensor_irq_disable(rt_sensor_t sensor)
  113. {
  114. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  115. {
  116. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  117. }
  118. }
  119. /* RT-Thread Device Interface */
  120. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  121. {
  122. rt_sensor_t sensor = (rt_sensor_t)dev;
  123. RT_ASSERT(dev != RT_NULL);
  124. if (sensor->module)
  125. {
  126. /* take the module mutex */
  127. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  128. }
  129. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  130. {
  131. /* Allocate memory for the sensor buffer */
  132. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  133. if (sensor->data_buf == RT_NULL)
  134. {
  135. return -RT_ENOMEM;
  136. }
  137. }
  138. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  139. {
  140. /* If polling mode is supported, configure it to polling mode */
  141. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING) == RT_EOK)
  142. {
  143. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  144. }
  145. }
  146. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  147. {
  148. /* If interrupt mode is supported, configure it to interrupt mode */
  149. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  150. {
  151. sensor->config.mode = RT_SENSOR_MODE_INT;
  152. /* Initialization sensor interrupt */
  153. rt_sensor_irq_init(sensor);
  154. }
  155. }
  156. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  157. {
  158. /* If fifo mode is supported, configure it to fifo mode */
  159. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  160. {
  161. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  162. /* Initialization sensor interrupt */
  163. rt_sensor_irq_init(sensor);
  164. }
  165. }
  166. else
  167. {
  168. if (sensor->module)
  169. {
  170. /* release the module mutex */
  171. rt_mutex_release(sensor->module->lock);
  172. }
  173. return -RT_EINVAL;
  174. }
  175. /* Configure power mode to normal mode */
  176. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  177. {
  178. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  179. }
  180. if (sensor->module)
  181. {
  182. /* release the module mutex */
  183. rt_mutex_release(sensor->module->lock);
  184. }
  185. return RT_EOK;
  186. }
  187. static rt_err_t rt_sensor_close(rt_device_t dev)
  188. {
  189. rt_sensor_t sensor = (rt_sensor_t)dev;
  190. int i;
  191. RT_ASSERT(dev != RT_NULL);
  192. if (sensor->module)
  193. {
  194. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  195. }
  196. /* Configure power mode to power down mode */
  197. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  198. {
  199. sensor->config.power = RT_SENSOR_POWER_DOWN;
  200. }
  201. /* Sensor disable interrupt */
  202. rt_sensor_irq_disable(sensor);
  203. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
  204. {
  205. for (i = 0; i < sensor->module->sen_num; i ++)
  206. {
  207. if (sensor->module->sen[i]->parent.ref_count > 0)
  208. goto __exit;
  209. }
  210. /* Free memory for the sensor buffer */
  211. for (i = 0; i < sensor->module->sen_num; i ++)
  212. {
  213. if (sensor->module->sen[i]->data_buf != RT_NULL)
  214. {
  215. rt_free(sensor->module->sen[i]->data_buf);
  216. sensor->module->sen[i]->data_buf = RT_NULL;
  217. }
  218. }
  219. }
  220. __exit:
  221. if (sensor->module)
  222. {
  223. rt_mutex_release(sensor->module->lock);
  224. }
  225. return RT_EOK;
  226. }
  227. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  228. {
  229. rt_sensor_t sensor = (rt_sensor_t)dev;
  230. rt_size_t result = 0;
  231. RT_ASSERT(dev != RT_NULL);
  232. if (buf == NULL || len == 0)
  233. {
  234. return 0;
  235. }
  236. if (sensor->module)
  237. {
  238. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  239. }
  240. /* The buffer is not empty. Read the data in the buffer first */
  241. if (sensor->data_len > 0)
  242. {
  243. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  244. {
  245. len = sensor->data_len / sizeof(struct rt_sensor_data);
  246. }
  247. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  248. /* Clear the buffer */
  249. sensor->data_len = 0;
  250. result = len;
  251. }
  252. else
  253. {
  254. /* If the buffer is empty read the data */
  255. result = sensor->ops->fetch_data(sensor, buf, len);
  256. }
  257. if (sensor->module)
  258. {
  259. rt_mutex_release(sensor->module->lock);
  260. }
  261. return result;
  262. }
  263. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  264. {
  265. rt_sensor_t sensor = (rt_sensor_t)dev;
  266. rt_err_t result = RT_EOK;
  267. RT_ASSERT(dev != RT_NULL);
  268. if (sensor->module)
  269. {
  270. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  271. }
  272. switch (cmd)
  273. {
  274. case RT_SENSOR_CTRL_GET_ID:
  275. if (args)
  276. {
  277. sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
  278. }
  279. break;
  280. case RT_SENSOR_CTRL_GET_INFO:
  281. if (args)
  282. {
  283. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  284. }
  285. break;
  286. case RT_SENSOR_CTRL_SET_RANGE:
  287. /* Configuration measurement range */
  288. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  289. if (result == RT_EOK)
  290. {
  291. sensor->config.range = (rt_int32_t)args;
  292. LOG_D("set range %d", sensor->config.range);
  293. }
  294. break;
  295. case RT_SENSOR_CTRL_SET_ODR:
  296. /* Configuration data output rate */
  297. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  298. if (result == RT_EOK)
  299. {
  300. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  301. LOG_D("set odr %d", sensor->config.odr);
  302. }
  303. break;
  304. case RT_SENSOR_CTRL_SET_MODE:
  305. /* Configuration sensor work mode */
  306. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, args);
  307. if (result == RT_EOK)
  308. {
  309. sensor->config.mode = (rt_uint32_t)args & 0xFF;
  310. LOG_D("set work mode code:", sensor->config.mode);
  311. if (sensor->config.mode == RT_SENSOR_MODE_POLLING)
  312. {
  313. rt_sensor_irq_disable(sensor);
  314. }
  315. else if (sensor->config.mode == RT_SENSOR_MODE_INT || sensor->config.mode == RT_SENSOR_MODE_FIFO)
  316. {
  317. rt_sensor_irq_enable(sensor);
  318. }
  319. }
  320. break;
  321. case RT_SENSOR_CTRL_SET_POWER:
  322. /* Configuration sensor power mode */
  323. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  324. if (result == RT_EOK)
  325. {
  326. sensor->config.power = (rt_uint32_t)args & 0xFF;
  327. LOG_D("set power mode code:", sensor->config.power);
  328. }
  329. break;
  330. case RT_SENSOR_CTRL_SELF_TEST:
  331. /* Device self-test */
  332. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  333. break;
  334. default:
  335. return -RT_ERROR;
  336. }
  337. if (sensor->module)
  338. {
  339. rt_mutex_release(sensor->module->lock);
  340. }
  341. return result;
  342. }
  343. #ifdef RT_USING_DEVICE_OPS
  344. const static struct rt_device_ops rt_sensor_ops =
  345. {
  346. RT_NULL,
  347. rt_sensor_open,
  348. rt_sensor_close,
  349. rt_sensor_read,
  350. RT_NULL,
  351. rt_sensor_control
  352. };
  353. #endif
  354. /*
  355. * sensor register
  356. */
  357. int rt_hw_sensor_register(rt_sensor_t sensor,
  358. const char *name,
  359. rt_uint32_t flag,
  360. void *data)
  361. {
  362. rt_int8_t result;
  363. rt_device_t device;
  364. RT_ASSERT(sensor != RT_NULL);
  365. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  366. /* Add a type name for the sensor device */
  367. sensor_name = sensor_name_str[sensor->info.type];
  368. device_name = rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  369. if (device_name == RT_NULL)
  370. {
  371. LOG_E("device_name calloc failed!");
  372. return -RT_ERROR;
  373. }
  374. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  375. strcat(device_name, name);
  376. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  377. {
  378. /* Create a mutex lock for the module */
  379. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  380. if (sensor->module->lock == RT_NULL)
  381. {
  382. rt_free(device_name);
  383. return -RT_ERROR;
  384. }
  385. }
  386. device = &sensor->parent;
  387. #ifdef RT_USING_DEVICE_OPS
  388. device->ops = &rt_sensor_ops;
  389. #else
  390. device->init = RT_NULL;
  391. device->open = rt_sensor_open;
  392. device->close = rt_sensor_close;
  393. device->read = rt_sensor_read;
  394. device->write = RT_NULL;
  395. device->control = rt_sensor_control;
  396. #endif
  397. device->type = RT_Device_Class_Sensor;
  398. device->rx_indicate = RT_NULL;
  399. device->tx_complete = RT_NULL;
  400. device->user_data = data;
  401. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  402. if (result != RT_EOK)
  403. {
  404. LOG_E("rt_sensor register err code: %d", result);
  405. return result;
  406. }
  407. LOG_I("rt_sensor init success");
  408. return RT_EOK;
  409. }