btreeInt.h 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668
  1. /*
  2. ** 2004 April 6
  3. **
  4. ** The author disclaims copyright to this source code. In place of
  5. ** a legal notice, here is a blessing:
  6. **
  7. ** May you do good and not evil.
  8. ** May you find forgiveness for yourself and forgive others.
  9. ** May you share freely, never taking more than you give.
  10. **
  11. *************************************************************************
  12. ** This file implements a external (disk-based) database using BTrees.
  13. ** For a detailed discussion of BTrees, refer to
  14. **
  15. ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
  16. ** "Sorting And Searching", pages 473-480. Addison-Wesley
  17. ** Publishing Company, Reading, Massachusetts.
  18. **
  19. ** The basic idea is that each page of the file contains N database
  20. ** entries and N+1 pointers to subpages.
  21. **
  22. ** ----------------------------------------------------------------
  23. ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
  24. ** ----------------------------------------------------------------
  25. **
  26. ** All of the keys on the page that Ptr(0) points to have values less
  27. ** than Key(0). All of the keys on page Ptr(1) and its subpages have
  28. ** values greater than Key(0) and less than Key(1). All of the keys
  29. ** on Ptr(N) and its subpages have values greater than Key(N-1). And
  30. ** so forth.
  31. **
  32. ** Finding a particular key requires reading O(log(M)) pages from the
  33. ** disk where M is the number of entries in the tree.
  34. **
  35. ** In this implementation, a single file can hold one or more separate
  36. ** BTrees. Each BTree is identified by the index of its root page. The
  37. ** key and data for any entry are combined to form the "payload". A
  38. ** fixed amount of payload can be carried directly on the database
  39. ** page. If the payload is larger than the preset amount then surplus
  40. ** bytes are stored on overflow pages. The payload for an entry
  41. ** and the preceding pointer are combined to form a "Cell". Each
  42. ** page has a small header which contains the Ptr(N) pointer and other
  43. ** information such as the size of key and data.
  44. **
  45. ** FORMAT DETAILS
  46. **
  47. ** The file is divided into pages. The first page is called page 1,
  48. ** the second is page 2, and so forth. A page number of zero indicates
  49. ** "no such page". The page size can be any power of 2 between 512 and 65536.
  50. ** Each page can be either a btree page, a freelist page, an overflow
  51. ** page, or a pointer-map page.
  52. **
  53. ** The first page is always a btree page. The first 100 bytes of the first
  54. ** page contain a special header (the "file header") that describes the file.
  55. ** The format of the file header is as follows:
  56. **
  57. ** OFFSET SIZE DESCRIPTION
  58. ** 0 16 Header string: "SQLite format 3\000"
  59. ** 16 2 Page size in bytes. (1 means 65536)
  60. ** 18 1 File format write version
  61. ** 19 1 File format read version
  62. ** 20 1 Bytes of unused space at the end of each page
  63. ** 21 1 Max embedded payload fraction (must be 64)
  64. ** 22 1 Min embedded payload fraction (must be 32)
  65. ** 23 1 Min leaf payload fraction (must be 32)
  66. ** 24 4 File change counter
  67. ** 28 4 Reserved for future use
  68. ** 32 4 First freelist page
  69. ** 36 4 Number of freelist pages in the file
  70. ** 40 60 15 4-byte meta values passed to higher layers
  71. **
  72. ** 40 4 Schema cookie
  73. ** 44 4 File format of schema layer
  74. ** 48 4 Size of page cache
  75. ** 52 4 Largest root-page (auto/incr_vacuum)
  76. ** 56 4 1=UTF-8 2=UTF16le 3=UTF16be
  77. ** 60 4 User version
  78. ** 64 4 Incremental vacuum mode
  79. ** 68 4 Application-ID
  80. ** 72 20 unused
  81. ** 92 4 The version-valid-for number
  82. ** 96 4 SQLITE_VERSION_NUMBER
  83. **
  84. ** All of the integer values are big-endian (most significant byte first).
  85. **
  86. ** The file change counter is incremented when the database is changed
  87. ** This counter allows other processes to know when the file has changed
  88. ** and thus when they need to flush their cache.
  89. **
  90. ** The max embedded payload fraction is the amount of the total usable
  91. ** space in a page that can be consumed by a single cell for standard
  92. ** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
  93. ** is to limit the maximum cell size so that at least 4 cells will fit
  94. ** on one page. Thus the default max embedded payload fraction is 64.
  95. **
  96. ** If the payload for a cell is larger than the max payload, then extra
  97. ** payload is spilled to overflow pages. Once an overflow page is allocated,
  98. ** as many bytes as possible are moved into the overflow pages without letting
  99. ** the cell size drop below the min embedded payload fraction.
  100. **
  101. ** The min leaf payload fraction is like the min embedded payload fraction
  102. ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
  103. ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
  104. ** not specified in the header.
  105. **
  106. ** Each btree pages is divided into three sections: The header, the
  107. ** cell pointer array, and the cell content area. Page 1 also has a 100-byte
  108. ** file header that occurs before the page header.
  109. **
  110. ** |----------------|
  111. ** | file header | 100 bytes. Page 1 only.
  112. ** |----------------|
  113. ** | page header | 8 bytes for leaves. 12 bytes for interior nodes
  114. ** |----------------|
  115. ** | cell pointer | | 2 bytes per cell. Sorted order.
  116. ** | array | | Grows downward
  117. ** | | v
  118. ** |----------------|
  119. ** | unallocated |
  120. ** | space |
  121. ** |----------------| ^ Grows upwards
  122. ** | cell content | | Arbitrary order interspersed with freeblocks.
  123. ** | area | | and free space fragments.
  124. ** |----------------|
  125. **
  126. ** The page headers looks like this:
  127. **
  128. ** OFFSET SIZE DESCRIPTION
  129. ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
  130. ** 1 2 byte offset to the first freeblock
  131. ** 3 2 number of cells on this page
  132. ** 5 2 first byte of the cell content area
  133. ** 7 1 number of fragmented free bytes
  134. ** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
  135. **
  136. ** The flags define the format of this btree page. The leaf flag means that
  137. ** this page has no children. The zerodata flag means that this page carries
  138. ** only keys and no data. The intkey flag means that the key is a integer
  139. ** which is stored in the key size entry of the cell header rather than in
  140. ** the payload area.
  141. **
  142. ** The cell pointer array begins on the first byte after the page header.
  143. ** The cell pointer array contains zero or more 2-byte numbers which are
  144. ** offsets from the beginning of the page to the cell content in the cell
  145. ** content area. The cell pointers occur in sorted order. The system strives
  146. ** to keep free space after the last cell pointer so that new cells can
  147. ** be easily added without having to defragment the page.
  148. **
  149. ** Cell content is stored at the very end of the page and grows toward the
  150. ** beginning of the page.
  151. **
  152. ** Unused space within the cell content area is collected into a linked list of
  153. ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
  154. ** to the first freeblock is given in the header. Freeblocks occur in
  155. ** increasing order. Because a freeblock must be at least 4 bytes in size,
  156. ** any group of 3 or fewer unused bytes in the cell content area cannot
  157. ** exist on the freeblock chain. A group of 3 or fewer free bytes is called
  158. ** a fragment. The total number of bytes in all fragments is recorded.
  159. ** in the page header at offset 7.
  160. **
  161. ** SIZE DESCRIPTION
  162. ** 2 Byte offset of the next freeblock
  163. ** 2 Bytes in this freeblock
  164. **
  165. ** Cells are of variable length. Cells are stored in the cell content area at
  166. ** the end of the page. Pointers to the cells are in the cell pointer array
  167. ** that immediately follows the page header. Cells is not necessarily
  168. ** contiguous or in order, but cell pointers are contiguous and in order.
  169. **
  170. ** Cell content makes use of variable length integers. A variable
  171. ** length integer is 1 to 9 bytes where the lower 7 bits of each
  172. ** byte are used. The integer consists of all bytes that have bit 8 set and
  173. ** the first byte with bit 8 clear. The most significant byte of the integer
  174. ** appears first. A variable-length integer may not be more than 9 bytes long.
  175. ** As a special case, all 8 bytes of the 9th byte are used as data. This
  176. ** allows a 64-bit integer to be encoded in 9 bytes.
  177. **
  178. ** 0x00 becomes 0x00000000
  179. ** 0x7f becomes 0x0000007f
  180. ** 0x81 0x00 becomes 0x00000080
  181. ** 0x82 0x00 becomes 0x00000100
  182. ** 0x80 0x7f becomes 0x0000007f
  183. ** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
  184. ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
  185. **
  186. ** Variable length integers are used for rowids and to hold the number of
  187. ** bytes of key and data in a btree cell.
  188. **
  189. ** The content of a cell looks like this:
  190. **
  191. ** SIZE DESCRIPTION
  192. ** 4 Page number of the left child. Omitted if leaf flag is set.
  193. ** var Number of bytes of data. Omitted if the zerodata flag is set.
  194. ** var Number of bytes of key. Or the key itself if intkey flag is set.
  195. ** * Payload
  196. ** 4 First page of the overflow chain. Omitted if no overflow
  197. **
  198. ** Overflow pages form a linked list. Each page except the last is completely
  199. ** filled with data (pagesize - 4 bytes). The last page can have as little
  200. ** as 1 byte of data.
  201. **
  202. ** SIZE DESCRIPTION
  203. ** 4 Page number of next overflow page
  204. ** * Data
  205. **
  206. ** Freelist pages come in two subtypes: trunk pages and leaf pages. The
  207. ** file header points to the first in a linked list of trunk page. Each trunk
  208. ** page points to multiple leaf pages. The content of a leaf page is
  209. ** unspecified. A trunk page looks like this:
  210. **
  211. ** SIZE DESCRIPTION
  212. ** 4 Page number of next trunk page
  213. ** 4 Number of leaf pointers on this page
  214. ** * zero or more pages numbers of leaves
  215. */
  216. #include "sqliteInt.h"
  217. /* The following value is the maximum cell size assuming a maximum page
  218. ** size give above.
  219. */
  220. #define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8))
  221. /* The maximum number of cells on a single page of the database. This
  222. ** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
  223. ** plus 2 bytes for the index to the cell in the page header). Such
  224. ** small cells will be rare, but they are possible.
  225. */
  226. #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
  227. /* Forward declarations */
  228. typedef struct MemPage MemPage;
  229. typedef struct BtLock BtLock;
  230. /*
  231. ** This is a magic string that appears at the beginning of every
  232. ** SQLite database in order to identify the file as a real database.
  233. **
  234. ** You can change this value at compile-time by specifying a
  235. ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
  236. ** header must be exactly 16 bytes including the zero-terminator so
  237. ** the string itself should be 15 characters long. If you change
  238. ** the header, then your custom library will not be able to read
  239. ** databases generated by the standard tools and the standard tools
  240. ** will not be able to read databases created by your custom library.
  241. */
  242. #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
  243. # define SQLITE_FILE_HEADER "SQLite format 3"
  244. #endif
  245. /*
  246. ** Page type flags. An ORed combination of these flags appear as the
  247. ** first byte of on-disk image of every BTree page.
  248. */
  249. #define PTF_INTKEY 0x01
  250. #define PTF_ZERODATA 0x02
  251. #define PTF_LEAFDATA 0x04
  252. #define PTF_LEAF 0x08
  253. /*
  254. ** As each page of the file is loaded into memory, an instance of the following
  255. ** structure is appended and initialized to zero. This structure stores
  256. ** information about the page that is decoded from the raw file page.
  257. **
  258. ** The pParent field points back to the parent page. This allows us to
  259. ** walk up the BTree from any leaf to the root. Care must be taken to
  260. ** unref() the parent page pointer when this page is no longer referenced.
  261. ** The pageDestructor() routine handles that chore.
  262. **
  263. ** Access to all fields of this structure is controlled by the mutex
  264. ** stored in MemPage.pBt->mutex.
  265. */
  266. struct MemPage {
  267. u8 isInit; /* True if previously initialized. MUST BE FIRST! */
  268. u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
  269. u8 intKey; /* True if intkey flag is set */
  270. u8 leaf; /* True if leaf flag is set */
  271. u8 hasData; /* True if this page stores data */
  272. u8 hdrOffset; /* 100 for page 1. 0 otherwise */
  273. u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
  274. u8 max1bytePayload; /* min(maxLocal,127) */
  275. u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  276. u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
  277. u16 cellOffset; /* Index in aData of first cell pointer */
  278. u16 nFree; /* Number of free bytes on the page */
  279. u16 nCell; /* Number of cells on this page, local and ovfl */
  280. u16 maskPage; /* Mask for page offset */
  281. u16 aiOvfl[5]; /* Insert the i-th overflow cell before the aiOvfl-th
  282. ** non-overflow cell */
  283. u8 *apOvfl[5]; /* Pointers to the body of overflow cells */
  284. BtShared *pBt; /* Pointer to BtShared that this page is part of */
  285. u8 *aData; /* Pointer to disk image of the page data */
  286. u8 *aDataEnd; /* One byte past the end of usable data */
  287. u8 *aCellIdx; /* The cell index area */
  288. DbPage *pDbPage; /* Pager page handle */
  289. Pgno pgno; /* Page number for this page */
  290. };
  291. /*
  292. ** The in-memory image of a disk page has the auxiliary information appended
  293. ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
  294. ** that extra information.
  295. */
  296. #define EXTRA_SIZE sizeof(MemPage)
  297. /*
  298. ** A linked list of the following structures is stored at BtShared.pLock.
  299. ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
  300. ** is opened on the table with root page BtShared.iTable. Locks are removed
  301. ** from this list when a transaction is committed or rolled back, or when
  302. ** a btree handle is closed.
  303. */
  304. struct BtLock {
  305. Btree *pBtree; /* Btree handle holding this lock */
  306. Pgno iTable; /* Root page of table */
  307. u8 eLock; /* READ_LOCK or WRITE_LOCK */
  308. BtLock *pNext; /* Next in BtShared.pLock list */
  309. };
  310. /* Candidate values for BtLock.eLock */
  311. #define READ_LOCK 1
  312. #define WRITE_LOCK 2
  313. /* A Btree handle
  314. **
  315. ** A database connection contains a pointer to an instance of
  316. ** this object for every database file that it has open. This structure
  317. ** is opaque to the database connection. The database connection cannot
  318. ** see the internals of this structure and only deals with pointers to
  319. ** this structure.
  320. **
  321. ** For some database files, the same underlying database cache might be
  322. ** shared between multiple connections. In that case, each connection
  323. ** has it own instance of this object. But each instance of this object
  324. ** points to the same BtShared object. The database cache and the
  325. ** schema associated with the database file are all contained within
  326. ** the BtShared object.
  327. **
  328. ** All fields in this structure are accessed under sqlite3.mutex.
  329. ** The pBt pointer itself may not be changed while there exists cursors
  330. ** in the referenced BtShared that point back to this Btree since those
  331. ** cursors have to go through this Btree to find their BtShared and
  332. ** they often do so without holding sqlite3.mutex.
  333. */
  334. struct Btree {
  335. sqlite3 *db; /* The database connection holding this btree */
  336. BtShared *pBt; /* Sharable content of this btree */
  337. u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
  338. u8 sharable; /* True if we can share pBt with another db */
  339. u8 locked; /* True if db currently has pBt locked */
  340. int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
  341. int nBackup; /* Number of backup operations reading this btree */
  342. Btree *pNext; /* List of other sharable Btrees from the same db */
  343. Btree *pPrev; /* Back pointer of the same list */
  344. #ifndef SQLITE_OMIT_SHARED_CACHE
  345. BtLock lock; /* Object used to lock page 1 */
  346. #endif
  347. };
  348. /*
  349. ** Btree.inTrans may take one of the following values.
  350. **
  351. ** If the shared-data extension is enabled, there may be multiple users
  352. ** of the Btree structure. At most one of these may open a write transaction,
  353. ** but any number may have active read transactions.
  354. */
  355. #define TRANS_NONE 0
  356. #define TRANS_READ 1
  357. #define TRANS_WRITE 2
  358. /*
  359. ** An instance of this object represents a single database file.
  360. **
  361. ** A single database file can be in use at the same time by two
  362. ** or more database connections. When two or more connections are
  363. ** sharing the same database file, each connection has it own
  364. ** private Btree object for the file and each of those Btrees points
  365. ** to this one BtShared object. BtShared.nRef is the number of
  366. ** connections currently sharing this database file.
  367. **
  368. ** Fields in this structure are accessed under the BtShared.mutex
  369. ** mutex, except for nRef and pNext which are accessed under the
  370. ** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
  371. ** may not be modified once it is initially set as long as nRef>0.
  372. ** The pSchema field may be set once under BtShared.mutex and
  373. ** thereafter is unchanged as long as nRef>0.
  374. **
  375. ** isPending:
  376. **
  377. ** If a BtShared client fails to obtain a write-lock on a database
  378. ** table (because there exists one or more read-locks on the table),
  379. ** the shared-cache enters 'pending-lock' state and isPending is
  380. ** set to true.
  381. **
  382. ** The shared-cache leaves the 'pending lock' state when either of
  383. ** the following occur:
  384. **
  385. ** 1) The current writer (BtShared.pWriter) concludes its transaction, OR
  386. ** 2) The number of locks held by other connections drops to zero.
  387. **
  388. ** while in the 'pending-lock' state, no connection may start a new
  389. ** transaction.
  390. **
  391. ** This feature is included to help prevent writer-starvation.
  392. */
  393. struct BtShared {
  394. Pager *pPager; /* The page cache */
  395. sqlite3 *db; /* Database connection currently using this Btree */
  396. BtCursor *pCursor; /* A list of all open cursors */
  397. MemPage *pPage1; /* First page of the database */
  398. u8 openFlags; /* Flags to sqlite3BtreeOpen() */
  399. #ifndef SQLITE_OMIT_AUTOVACUUM
  400. u8 autoVacuum; /* True if auto-vacuum is enabled */
  401. u8 incrVacuum; /* True if incr-vacuum is enabled */
  402. u8 bDoTruncate; /* True to truncate db on commit */
  403. #endif
  404. u8 inTransaction; /* Transaction state */
  405. u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */
  406. u16 btsFlags; /* Boolean parameters. See BTS_* macros below */
  407. u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
  408. u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
  409. u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
  410. u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
  411. u32 pageSize; /* Total number of bytes on a page */
  412. u32 usableSize; /* Number of usable bytes on each page */
  413. int nTransaction; /* Number of open transactions (read + write) */
  414. u32 nPage; /* Number of pages in the database */
  415. void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
  416. void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
  417. sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
  418. Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
  419. #ifndef SQLITE_OMIT_SHARED_CACHE
  420. int nRef; /* Number of references to this structure */
  421. BtShared *pNext; /* Next on a list of sharable BtShared structs */
  422. BtLock *pLock; /* List of locks held on this shared-btree struct */
  423. Btree *pWriter; /* Btree with currently open write transaction */
  424. #endif
  425. u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
  426. };
  427. /*
  428. ** Allowed values for BtShared.btsFlags
  429. */
  430. #define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */
  431. #define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */
  432. #define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */
  433. #define BTS_INITIALLY_EMPTY 0x0008 /* Database was empty at trans start */
  434. #define BTS_NO_WAL 0x0010 /* Do not open write-ahead-log files */
  435. #define BTS_EXCLUSIVE 0x0020 /* pWriter has an exclusive lock */
  436. #define BTS_PENDING 0x0040 /* Waiting for read-locks to clear */
  437. /*
  438. ** An instance of the following structure is used to hold information
  439. ** about a cell. The parseCellPtr() function fills in this structure
  440. ** based on information extract from the raw disk page.
  441. */
  442. typedef struct CellInfo CellInfo;
  443. struct CellInfo {
  444. i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
  445. u8 *pCell; /* Pointer to the start of cell content */
  446. u32 nData; /* Number of bytes of data */
  447. u32 nPayload; /* Total amount of payload */
  448. u16 nHeader; /* Size of the cell content header in bytes */
  449. u16 nLocal; /* Amount of payload held locally */
  450. u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
  451. u16 nSize; /* Size of the cell content on the main b-tree page */
  452. };
  453. /*
  454. ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
  455. ** this will be declared corrupt. This value is calculated based on a
  456. ** maximum database size of 2^31 pages a minimum fanout of 2 for a
  457. ** root-node and 3 for all other internal nodes.
  458. **
  459. ** If a tree that appears to be taller than this is encountered, it is
  460. ** assumed that the database is corrupt.
  461. */
  462. #define BTCURSOR_MAX_DEPTH 20
  463. /*
  464. ** A cursor is a pointer to a particular entry within a particular
  465. ** b-tree within a database file.
  466. **
  467. ** The entry is identified by its MemPage and the index in
  468. ** MemPage.aCell[] of the entry.
  469. **
  470. ** A single database file can be shared by two more database connections,
  471. ** but cursors cannot be shared. Each cursor is associated with a
  472. ** particular database connection identified BtCursor.pBtree.db.
  473. **
  474. ** Fields in this structure are accessed under the BtShared.mutex
  475. ** found at self->pBt->mutex.
  476. */
  477. struct BtCursor {
  478. Btree *pBtree; /* The Btree to which this cursor belongs */
  479. BtShared *pBt; /* The BtShared this cursor points to */
  480. BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
  481. struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
  482. #ifndef SQLITE_OMIT_INCRBLOB
  483. Pgno *aOverflow; /* Cache of overflow page locations */
  484. #endif
  485. Pgno pgnoRoot; /* The root page of this tree */
  486. sqlite3_int64 cachedRowid; /* Next rowid cache. 0 means not valid */
  487. CellInfo info; /* A parse of the cell we are pointing at */
  488. i64 nKey; /* Size of pKey, or last integer key */
  489. void *pKey; /* Saved key that was cursor's last known position */
  490. int skipNext; /* Prev() is noop if negative. Next() is noop if positive */
  491. u8 wrFlag; /* True if writable */
  492. u8 atLast; /* Cursor pointing to the last entry */
  493. u8 validNKey; /* True if info.nKey is valid */
  494. u8 eState; /* One of the CURSOR_XXX constants (see below) */
  495. #ifndef SQLITE_OMIT_INCRBLOB
  496. u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */
  497. #endif
  498. u8 hints; /* As configured by CursorSetHints() */
  499. i16 iPage; /* Index of current page in apPage */
  500. u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */
  501. MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */
  502. };
  503. /*
  504. ** Potential values for BtCursor.eState.
  505. **
  506. ** CURSOR_INVALID:
  507. ** Cursor does not point to a valid entry. This can happen (for example)
  508. ** because the table is empty or because BtreeCursorFirst() has not been
  509. ** called.
  510. **
  511. ** CURSOR_VALID:
  512. ** Cursor points to a valid entry. getPayload() etc. may be called.
  513. **
  514. ** CURSOR_SKIPNEXT:
  515. ** Cursor is valid except that the Cursor.skipNext field is non-zero
  516. ** indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious()
  517. ** operation should be a no-op.
  518. **
  519. ** CURSOR_REQUIRESEEK:
  520. ** The table that this cursor was opened on still exists, but has been
  521. ** modified since the cursor was last used. The cursor position is saved
  522. ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
  523. ** this state, restoreCursorPosition() can be called to attempt to
  524. ** seek the cursor to the saved position.
  525. **
  526. ** CURSOR_FAULT:
  527. ** A unrecoverable error (an I/O error or a malloc failure) has occurred
  528. ** on a different connection that shares the BtShared cache with this
  529. ** cursor. The error has left the cache in an inconsistent state.
  530. ** Do nothing else with this cursor. Any attempt to use the cursor
  531. ** should return the error code stored in BtCursor.skip
  532. */
  533. #define CURSOR_INVALID 0
  534. #define CURSOR_VALID 1
  535. #define CURSOR_SKIPNEXT 2
  536. #define CURSOR_REQUIRESEEK 3
  537. #define CURSOR_FAULT 4
  538. /*
  539. ** The database page the PENDING_BYTE occupies. This page is never used.
  540. */
  541. # define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
  542. /*
  543. ** These macros define the location of the pointer-map entry for a
  544. ** database page. The first argument to each is the number of usable
  545. ** bytes on each page of the database (often 1024). The second is the
  546. ** page number to look up in the pointer map.
  547. **
  548. ** PTRMAP_PAGENO returns the database page number of the pointer-map
  549. ** page that stores the required pointer. PTRMAP_PTROFFSET returns
  550. ** the offset of the requested map entry.
  551. **
  552. ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
  553. ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
  554. ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
  555. ** this test.
  556. */
  557. #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
  558. #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
  559. #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
  560. /*
  561. ** The pointer map is a lookup table that identifies the parent page for
  562. ** each child page in the database file. The parent page is the page that
  563. ** contains a pointer to the child. Every page in the database contains
  564. ** 0 or 1 parent pages. (In this context 'database page' refers
  565. ** to any page that is not part of the pointer map itself.) Each pointer map
  566. ** entry consists of a single byte 'type' and a 4 byte parent page number.
  567. ** The PTRMAP_XXX identifiers below are the valid types.
  568. **
  569. ** The purpose of the pointer map is to facility moving pages from one
  570. ** position in the file to another as part of autovacuum. When a page
  571. ** is moved, the pointer in its parent must be updated to point to the
  572. ** new location. The pointer map is used to locate the parent page quickly.
  573. **
  574. ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
  575. ** used in this case.
  576. **
  577. ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
  578. ** is not used in this case.
  579. **
  580. ** PTRMAP_OVERFLOW1: The database page is the first page in a list of
  581. ** overflow pages. The page number identifies the page that
  582. ** contains the cell with a pointer to this overflow page.
  583. **
  584. ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
  585. ** overflow pages. The page-number identifies the previous
  586. ** page in the overflow page list.
  587. **
  588. ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
  589. ** identifies the parent page in the btree.
  590. */
  591. #define PTRMAP_ROOTPAGE 1
  592. #define PTRMAP_FREEPAGE 2
  593. #define PTRMAP_OVERFLOW1 3
  594. #define PTRMAP_OVERFLOW2 4
  595. #define PTRMAP_BTREE 5
  596. /* A bunch of assert() statements to check the transaction state variables
  597. ** of handle p (type Btree*) are internally consistent.
  598. */
  599. #define btreeIntegrity(p) \
  600. assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
  601. assert( p->pBt->inTransaction>=p->inTrans );
  602. /*
  603. ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
  604. ** if the database supports auto-vacuum or not. Because it is used
  605. ** within an expression that is an argument to another macro
  606. ** (sqliteMallocRaw), it is not possible to use conditional compilation.
  607. ** So, this macro is defined instead.
  608. */
  609. #ifndef SQLITE_OMIT_AUTOVACUUM
  610. #define ISAUTOVACUUM (pBt->autoVacuum)
  611. #else
  612. #define ISAUTOVACUUM 0
  613. #endif
  614. /*
  615. ** This structure is passed around through all the sanity checking routines
  616. ** in order to keep track of some global state information.
  617. **
  618. ** The aRef[] array is allocated so that there is 1 bit for each page in
  619. ** the database. As the integrity-check proceeds, for each page used in
  620. ** the database the corresponding bit is set. This allows integrity-check to
  621. ** detect pages that are used twice and orphaned pages (both of which
  622. ** indicate corruption).
  623. */
  624. typedef struct IntegrityCk IntegrityCk;
  625. struct IntegrityCk {
  626. BtShared *pBt; /* The tree being checked out */
  627. Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
  628. u8 *aPgRef; /* 1 bit per page in the db (see above) */
  629. Pgno nPage; /* Number of pages in the database */
  630. int mxErr; /* Stop accumulating errors when this reaches zero */
  631. int nErr; /* Number of messages written to zErrMsg so far */
  632. int mallocFailed; /* A memory allocation error has occurred */
  633. StrAccum errMsg; /* Accumulate the error message text here */
  634. };
  635. /*
  636. ** Routines to read or write a two- and four-byte big-endian integer values.
  637. */
  638. #define get2byte(x) ((x)[0]<<8 | (x)[1])
  639. #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
  640. #define get4byte sqlite3Get4byte
  641. #define put4byte sqlite3Put4byte