memheap.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. * File : memheap.c
  8. *
  9. * Change Logs:
  10. * Date Author Notes
  11. * 2012-04-10 Bernard first implementation
  12. * 2012-10-16 Bernard add the mutex lock for heap object.
  13. * 2012-12-29 Bernard memheap can be used as system heap.
  14. * change mutex lock to semaphore lock.
  15. * 2013-04-10 Bernard add rt_memheap_realloc function.
  16. * 2013-05-24 Bernard fix the rt_memheap_realloc issue.
  17. * 2013-07-11 Grissiom fix the memory block splitting issue.
  18. * 2013-07-15 Grissiom optimize rt_memheap_realloc
  19. */
  20. #include <rthw.h>
  21. #include <rtthread.h>
  22. #ifdef RT_USING_MEMHEAP
  23. /* dynamic pool magic and mask */
  24. #define RT_MEMHEAP_MAGIC 0x1ea01ea0
  25. #define RT_MEMHEAP_MASK 0xfffffffe
  26. #define RT_MEMHEAP_USED 0x01
  27. #define RT_MEMHEAP_FREED 0x00
  28. #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
  29. #define RT_MEMHEAP_MINIALLOC 12
  30. #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
  31. #define MEMITEM_SIZE(item) ((rt_ubase_t)item->next - (rt_ubase_t)item - RT_MEMHEAP_SIZE)
  32. /*
  33. * The initialized memory pool will be:
  34. * +-----------------------------------+--------------------------+
  35. * | whole freed memory block | Used Memory Block Tailer |
  36. * +-----------------------------------+--------------------------+
  37. *
  38. * block_list --> whole freed memory block
  39. *
  40. * The length of Used Memory Block Tailer is 0,
  41. * which is prevents block merging across list
  42. */
  43. rt_err_t rt_memheap_init(struct rt_memheap *memheap,
  44. const char *name,
  45. void *start_addr,
  46. rt_size_t size)
  47. {
  48. struct rt_memheap_item *item;
  49. RT_ASSERT(memheap != RT_NULL);
  50. /* initialize pool object */
  51. rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
  52. memheap->start_addr = start_addr;
  53. memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
  54. memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
  55. memheap->max_used_size = memheap->pool_size - memheap->available_size;
  56. /* initialize the free list header */
  57. item = &(memheap->free_header);
  58. item->magic = RT_MEMHEAP_MAGIC;
  59. item->pool_ptr = memheap;
  60. item->next = RT_NULL;
  61. item->prev = RT_NULL;
  62. item->next_free = item;
  63. item->prev_free = item;
  64. /* set the free list to free list header */
  65. memheap->free_list = item;
  66. /* initialize the first big memory block */
  67. item = (struct rt_memheap_item *)start_addr;
  68. item->magic = RT_MEMHEAP_MAGIC;
  69. item->pool_ptr = memheap;
  70. item->next = RT_NULL;
  71. item->prev = RT_NULL;
  72. item->next_free = item;
  73. item->prev_free = item;
  74. item->next = (struct rt_memheap_item *)
  75. ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
  76. item->prev = item->next;
  77. /* block list header */
  78. memheap->block_list = item;
  79. /* place the big memory block to free list */
  80. item->next_free = memheap->free_list->next_free;
  81. item->prev_free = memheap->free_list;
  82. memheap->free_list->next_free->prev_free = item;
  83. memheap->free_list->next_free = item;
  84. /* move to the end of memory pool to build a small tailer block,
  85. * which prevents block merging
  86. */
  87. item = item->next;
  88. /* it's a used memory block */
  89. item->magic = RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED;
  90. item->pool_ptr = memheap;
  91. item->next = (struct rt_memheap_item *)start_addr;
  92. item->prev = (struct rt_memheap_item *)start_addr;
  93. /* not in free list */
  94. item->next_free = item->prev_free = RT_NULL;
  95. /* initialize semaphore lock */
  96. rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_FIFO);
  97. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  98. ("memory heap: start addr 0x%08x, size %d, free list header 0x%08x\n",
  99. start_addr, size, &(memheap->free_header)));
  100. return RT_EOK;
  101. }
  102. RTM_EXPORT(rt_memheap_init);
  103. rt_err_t rt_memheap_detach(struct rt_memheap *heap)
  104. {
  105. RT_ASSERT(heap);
  106. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  107. RT_ASSERT(rt_object_is_systemobject(&heap->parent));
  108. rt_object_detach(&(heap->lock.parent.parent));
  109. rt_object_detach(&(heap->parent));
  110. /* Return a successful completion. */
  111. return RT_EOK;
  112. }
  113. RTM_EXPORT(rt_memheap_detach);
  114. void *rt_memheap_alloc(struct rt_memheap *heap, rt_size_t size)
  115. {
  116. rt_err_t result;
  117. rt_uint32_t free_size;
  118. struct rt_memheap_item *header_ptr;
  119. RT_ASSERT(heap != RT_NULL);
  120. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  121. /* align allocated size */
  122. size = RT_ALIGN(size, RT_ALIGN_SIZE);
  123. if (size < RT_MEMHEAP_MINIALLOC)
  124. size = RT_MEMHEAP_MINIALLOC;
  125. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d on heap:%8.*s",
  126. size, RT_NAME_MAX, heap->parent.name));
  127. if (size < heap->available_size)
  128. {
  129. /* search on free list */
  130. free_size = 0;
  131. /* lock memheap */
  132. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  133. if (result != RT_EOK)
  134. {
  135. rt_set_errno(result);
  136. return RT_NULL;
  137. }
  138. /* get the first free memory block */
  139. header_ptr = heap->free_list->next_free;
  140. while (header_ptr != heap->free_list && free_size < size)
  141. {
  142. /* get current freed memory block size */
  143. free_size = MEMITEM_SIZE(header_ptr);
  144. if (free_size < size)
  145. {
  146. /* move to next free memory block */
  147. header_ptr = header_ptr->next_free;
  148. }
  149. }
  150. /* determine if the memory is available. */
  151. if (free_size >= size)
  152. {
  153. /* a block that satisfies the request has been found. */
  154. /* determine if the block needs to be split. */
  155. if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
  156. {
  157. struct rt_memheap_item *new_ptr;
  158. /* split the block. */
  159. new_ptr = (struct rt_memheap_item *)
  160. (((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
  161. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  162. ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n",
  163. header_ptr,
  164. header_ptr->next,
  165. header_ptr->prev,
  166. new_ptr));
  167. /* mark the new block as a memory block and freed. */
  168. new_ptr->magic = RT_MEMHEAP_MAGIC;
  169. /* put the pool pointer into the new block. */
  170. new_ptr->pool_ptr = heap;
  171. /* break down the block list */
  172. new_ptr->prev = header_ptr;
  173. new_ptr->next = header_ptr->next;
  174. header_ptr->next->prev = new_ptr;
  175. header_ptr->next = new_ptr;
  176. /* remove header ptr from free list */
  177. header_ptr->next_free->prev_free = header_ptr->prev_free;
  178. header_ptr->prev_free->next_free = header_ptr->next_free;
  179. header_ptr->next_free = RT_NULL;
  180. header_ptr->prev_free = RT_NULL;
  181. /* insert new_ptr to free list */
  182. new_ptr->next_free = heap->free_list->next_free;
  183. new_ptr->prev_free = heap->free_list;
  184. heap->free_list->next_free->prev_free = new_ptr;
  185. heap->free_list->next_free = new_ptr;
  186. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x\n",
  187. new_ptr->next_free,
  188. new_ptr->prev_free));
  189. /* decrement the available byte count. */
  190. heap->available_size = heap->available_size -
  191. size -
  192. RT_MEMHEAP_SIZE;
  193. if (heap->pool_size - heap->available_size > heap->max_used_size)
  194. heap->max_used_size = heap->pool_size - heap->available_size;
  195. }
  196. else
  197. {
  198. /* decrement the entire free size from the available bytes count. */
  199. heap->available_size = heap->available_size - free_size;
  200. if (heap->pool_size - heap->available_size > heap->max_used_size)
  201. heap->max_used_size = heap->pool_size - heap->available_size;
  202. /* remove header_ptr from free list */
  203. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  204. ("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x\n",
  205. header_ptr,
  206. header_ptr->next_free,
  207. header_ptr->prev_free));
  208. header_ptr->next_free->prev_free = header_ptr->prev_free;
  209. header_ptr->prev_free->next_free = header_ptr->next_free;
  210. header_ptr->next_free = RT_NULL;
  211. header_ptr->prev_free = RT_NULL;
  212. }
  213. /* Mark the allocated block as not available. */
  214. header_ptr->magic |= RT_MEMHEAP_USED;
  215. /* release lock */
  216. rt_sem_release(&(heap->lock));
  217. /* Return a memory address to the caller. */
  218. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  219. ("alloc mem: memory[0x%08x], heap[0x%08x], size: %d\n",
  220. (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE),
  221. header_ptr,
  222. size));
  223. return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE);
  224. }
  225. /* release lock */
  226. rt_sem_release(&(heap->lock));
  227. }
  228. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n"));
  229. /* Return the completion status. */
  230. return RT_NULL;
  231. }
  232. RTM_EXPORT(rt_memheap_alloc);
  233. void *rt_memheap_realloc(struct rt_memheap *heap, void *ptr, rt_size_t newsize)
  234. {
  235. rt_err_t result;
  236. rt_size_t oldsize;
  237. struct rt_memheap_item *header_ptr;
  238. struct rt_memheap_item *new_ptr;
  239. RT_ASSERT(heap);
  240. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  241. if (newsize == 0)
  242. {
  243. rt_memheap_free(ptr);
  244. return RT_NULL;
  245. }
  246. /* align allocated size */
  247. newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
  248. if (newsize < RT_MEMHEAP_MINIALLOC)
  249. newsize = RT_MEMHEAP_MINIALLOC;
  250. if (ptr == RT_NULL)
  251. {
  252. return rt_memheap_alloc(heap, newsize);
  253. }
  254. /* get memory block header and get the size of memory block */
  255. header_ptr = (struct rt_memheap_item *)
  256. ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
  257. oldsize = MEMITEM_SIZE(header_ptr);
  258. /* re-allocate memory */
  259. if (newsize > oldsize)
  260. {
  261. void *new_ptr;
  262. struct rt_memheap_item *next_ptr;
  263. /* lock memheap */
  264. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  265. if (result != RT_EOK)
  266. {
  267. rt_set_errno(result);
  268. return RT_NULL;
  269. }
  270. next_ptr = header_ptr->next;
  271. /* header_ptr should not be the tail */
  272. RT_ASSERT(next_ptr > header_ptr);
  273. /* check whether the following free space is enough to expand */
  274. if (!RT_MEMHEAP_IS_USED(next_ptr))
  275. {
  276. rt_int32_t nextsize;
  277. nextsize = MEMITEM_SIZE(next_ptr);
  278. RT_ASSERT(next_ptr > 0);
  279. /* Here is the ASCII art of the situation that we can make use of
  280. * the next free node without alloc/memcpy, |*| is the control
  281. * block:
  282. *
  283. * oldsize free node
  284. * |*|-----------|*|----------------------|*|
  285. * newsize >= minialloc
  286. * |*|----------------|*|-----------------|*|
  287. */
  288. if (nextsize + oldsize > newsize + RT_MEMHEAP_MINIALLOC)
  289. {
  290. /* decrement the entire free size from the available bytes count. */
  291. heap->available_size = heap->available_size - (newsize - oldsize);
  292. if (heap->pool_size - heap->available_size > heap->max_used_size)
  293. heap->max_used_size = heap->pool_size - heap->available_size;
  294. /* remove next_ptr from free list */
  295. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  296. ("remove block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
  297. next_ptr,
  298. next_ptr->next_free,
  299. next_ptr->prev_free));
  300. next_ptr->next_free->prev_free = next_ptr->prev_free;
  301. next_ptr->prev_free->next_free = next_ptr->next_free;
  302. next_ptr->next->prev = next_ptr->prev;
  303. next_ptr->prev->next = next_ptr->next;
  304. /* build a new one on the right place */
  305. next_ptr = (struct rt_memheap_item *)((char *)ptr + newsize);
  306. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  307. ("new free block: block[0x%08x] nextm[0x%08x] prevm[0x%08x]",
  308. next_ptr,
  309. next_ptr->next,
  310. next_ptr->prev));
  311. /* mark the new block as a memory block and freed. */
  312. next_ptr->magic = RT_MEMHEAP_MAGIC;
  313. /* put the pool pointer into the new block. */
  314. next_ptr->pool_ptr = heap;
  315. next_ptr->prev = header_ptr;
  316. next_ptr->next = header_ptr->next;
  317. header_ptr->next->prev = next_ptr;
  318. header_ptr->next = next_ptr;
  319. /* insert next_ptr to free list */
  320. next_ptr->next_free = heap->free_list->next_free;
  321. next_ptr->prev_free = heap->free_list;
  322. heap->free_list->next_free->prev_free = next_ptr;
  323. heap->free_list->next_free = next_ptr;
  324. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x",
  325. next_ptr->next_free,
  326. next_ptr->prev_free));
  327. /* release lock */
  328. rt_sem_release(&(heap->lock));
  329. return ptr;
  330. }
  331. }
  332. /* release lock */
  333. rt_sem_release(&(heap->lock));
  334. /* re-allocate a memory block */
  335. new_ptr = (void *)rt_memheap_alloc(heap, newsize);
  336. if (new_ptr != RT_NULL)
  337. {
  338. rt_memcpy(new_ptr, ptr, oldsize < newsize ? oldsize : newsize);
  339. rt_memheap_free(ptr);
  340. }
  341. return new_ptr;
  342. }
  343. /* don't split when there is less than one node space left */
  344. if (newsize + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC >= oldsize)
  345. return ptr;
  346. /* lock memheap */
  347. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  348. if (result != RT_EOK)
  349. {
  350. rt_set_errno(result);
  351. return RT_NULL;
  352. }
  353. /* split the block. */
  354. new_ptr = (struct rt_memheap_item *)
  355. (((rt_uint8_t *)header_ptr) + newsize + RT_MEMHEAP_SIZE);
  356. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  357. ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n",
  358. header_ptr,
  359. header_ptr->next,
  360. header_ptr->prev,
  361. new_ptr));
  362. /* mark the new block as a memory block and freed. */
  363. new_ptr->magic = RT_MEMHEAP_MAGIC;
  364. /* put the pool pointer into the new block. */
  365. new_ptr->pool_ptr = heap;
  366. /* break down the block list */
  367. new_ptr->prev = header_ptr;
  368. new_ptr->next = header_ptr->next;
  369. header_ptr->next->prev = new_ptr;
  370. header_ptr->next = new_ptr;
  371. /* determine if the block can be merged with the next neighbor. */
  372. if (!RT_MEMHEAP_IS_USED(new_ptr->next))
  373. {
  374. struct rt_memheap_item *free_ptr;
  375. /* merge block with next neighbor. */
  376. free_ptr = new_ptr->next;
  377. heap->available_size = heap->available_size - MEMITEM_SIZE(free_ptr);
  378. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  379. ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n",
  380. header_ptr, header_ptr->next_free, header_ptr->prev_free));
  381. free_ptr->next->prev = new_ptr;
  382. new_ptr->next = free_ptr->next;
  383. /* remove free ptr from free list */
  384. free_ptr->next_free->prev_free = free_ptr->prev_free;
  385. free_ptr->prev_free->next_free = free_ptr->next_free;
  386. }
  387. /* insert the split block to free list */
  388. new_ptr->next_free = heap->free_list->next_free;
  389. new_ptr->prev_free = heap->free_list;
  390. heap->free_list->next_free->prev_free = new_ptr;
  391. heap->free_list->next_free = new_ptr;
  392. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new free ptr: next_free 0x%08x, prev_free 0x%08x\n",
  393. new_ptr->next_free,
  394. new_ptr->prev_free));
  395. /* increment the available byte count. */
  396. heap->available_size = heap->available_size + MEMITEM_SIZE(new_ptr);
  397. /* release lock */
  398. rt_sem_release(&(heap->lock));
  399. /* return the old memory block */
  400. return ptr;
  401. }
  402. RTM_EXPORT(rt_memheap_realloc);
  403. void rt_memheap_free(void *ptr)
  404. {
  405. rt_err_t result;
  406. struct rt_memheap *heap;
  407. struct rt_memheap_item *header_ptr, *new_ptr;
  408. rt_uint32_t insert_header;
  409. /* NULL check */
  410. if (ptr == RT_NULL) return;
  411. /* set initial status as OK */
  412. insert_header = 1;
  413. new_ptr = RT_NULL;
  414. header_ptr = (struct rt_memheap_item *)
  415. ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
  416. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: memory[0x%08x], block[0x%08x]\n",
  417. ptr, header_ptr));
  418. /* check magic */
  419. RT_ASSERT((header_ptr->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  420. RT_ASSERT(header_ptr->magic & RT_MEMHEAP_USED);
  421. /* check whether this block of memory has been over-written. */
  422. RT_ASSERT((header_ptr->next->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  423. /* get pool ptr */
  424. heap = header_ptr->pool_ptr;
  425. RT_ASSERT(heap);
  426. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  427. /* lock memheap */
  428. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  429. if (result != RT_EOK)
  430. {
  431. rt_set_errno(result);
  432. return ;
  433. }
  434. /* Mark the memory as available. */
  435. header_ptr->magic &= ~RT_MEMHEAP_USED;
  436. /* Adjust the available number of bytes. */
  437. heap->available_size = heap->available_size + MEMITEM_SIZE(header_ptr);
  438. /* Determine if the block can be merged with the previous neighbor. */
  439. if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
  440. {
  441. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x\n",
  442. header_ptr->prev));
  443. /* adjust the available number of bytes. */
  444. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  445. /* yes, merge block with previous neighbor. */
  446. (header_ptr->prev)->next = header_ptr->next;
  447. (header_ptr->next)->prev = header_ptr->prev;
  448. /* move header pointer to previous. */
  449. header_ptr = header_ptr->prev;
  450. /* don't insert header to free list */
  451. insert_header = 0;
  452. }
  453. /* determine if the block can be merged with the next neighbor. */
  454. if (!RT_MEMHEAP_IS_USED(header_ptr->next))
  455. {
  456. /* adjust the available number of bytes. */
  457. heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
  458. /* merge block with next neighbor. */
  459. new_ptr = header_ptr->next;
  460. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  461. ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n",
  462. new_ptr, new_ptr->next_free, new_ptr->prev_free));
  463. new_ptr->next->prev = header_ptr;
  464. header_ptr->next = new_ptr->next;
  465. /* remove new ptr from free list */
  466. new_ptr->next_free->prev_free = new_ptr->prev_free;
  467. new_ptr->prev_free->next_free = new_ptr->next_free;
  468. }
  469. if (insert_header)
  470. {
  471. /* no left merge, insert to free list */
  472. header_ptr->next_free = heap->free_list->next_free;
  473. header_ptr->prev_free = heap->free_list;
  474. heap->free_list->next_free->prev_free = header_ptr;
  475. heap->free_list->next_free = header_ptr;
  476. RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
  477. ("insert to free list: next_free 0x%08x, prev_free 0x%08x\n",
  478. header_ptr->next_free, header_ptr->prev_free));
  479. }
  480. /* release lock */
  481. rt_sem_release(&(heap->lock));
  482. }
  483. RTM_EXPORT(rt_memheap_free);
  484. #ifdef RT_USING_MEMHEAP_AS_HEAP
  485. static struct rt_memheap _heap;
  486. void rt_system_heap_init(void *begin_addr, void *end_addr)
  487. {
  488. /* initialize a default heap in the system */
  489. rt_memheap_init(&_heap,
  490. "heap",
  491. begin_addr,
  492. (rt_uint32_t)end_addr - (rt_uint32_t)begin_addr);
  493. }
  494. void *rt_malloc(rt_size_t size)
  495. {
  496. void *ptr;
  497. /* try to allocate in system heap */
  498. ptr = rt_memheap_alloc(&_heap, size);
  499. if (ptr == RT_NULL)
  500. {
  501. struct rt_object *object;
  502. struct rt_list_node *node;
  503. struct rt_memheap *heap;
  504. struct rt_object_information *information;
  505. /* try to allocate on other memory heap */
  506. information = rt_object_get_information(RT_Object_Class_MemHeap);
  507. RT_ASSERT(information != RT_NULL);
  508. for (node = information->object_list.next;
  509. node != &(information->object_list);
  510. node = node->next)
  511. {
  512. object = rt_list_entry(node, struct rt_object, list);
  513. heap = (struct rt_memheap *)object;
  514. RT_ASSERT(heap);
  515. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  516. /* not allocate in the default system heap */
  517. if (heap == &_heap)
  518. continue;
  519. ptr = rt_memheap_alloc(heap, size);
  520. if (ptr != RT_NULL)
  521. break;
  522. }
  523. }
  524. return ptr;
  525. }
  526. RTM_EXPORT(rt_malloc);
  527. void rt_free(void *rmem)
  528. {
  529. rt_memheap_free(rmem);
  530. }
  531. RTM_EXPORT(rt_free);
  532. void *rt_realloc(void *rmem, rt_size_t newsize)
  533. {
  534. void *new_ptr;
  535. struct rt_memheap_item *header_ptr;
  536. if (rmem == RT_NULL)
  537. return rt_malloc(newsize);
  538. if (newsize == 0)
  539. {
  540. rt_free(rmem);
  541. return RT_NULL;
  542. }
  543. /* get old memory item */
  544. header_ptr = (struct rt_memheap_item *)
  545. ((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE);
  546. new_ptr = rt_memheap_realloc(header_ptr->pool_ptr, rmem, newsize);
  547. if (new_ptr == RT_NULL && newsize != 0)
  548. {
  549. /* allocate memory block from other memheap */
  550. new_ptr = rt_malloc(newsize);
  551. if (new_ptr != RT_NULL && rmem != RT_NULL)
  552. {
  553. rt_size_t oldsize;
  554. /* get the size of old memory block */
  555. oldsize = MEMITEM_SIZE(header_ptr);
  556. if (newsize > oldsize)
  557. rt_memcpy(new_ptr, rmem, oldsize);
  558. else
  559. rt_memcpy(new_ptr, rmem, newsize);
  560. rt_free(rmem);
  561. }
  562. }
  563. return new_ptr;
  564. }
  565. RTM_EXPORT(rt_realloc);
  566. void *rt_calloc(rt_size_t count, rt_size_t size)
  567. {
  568. void *ptr;
  569. rt_size_t total_size;
  570. total_size = count * size;
  571. ptr = rt_malloc(total_size);
  572. if (ptr != RT_NULL)
  573. {
  574. /* clean memory */
  575. rt_memset(ptr, 0, total_size);
  576. }
  577. return ptr;
  578. }
  579. RTM_EXPORT(rt_calloc);
  580. #endif
  581. #endif