drv_enet.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2011-11-30 aozima the first version.
  9. * 2011-12-10 aozima support dual ethernet.
  10. * 2011-12-21 aozima cleanup code.
  11. * 2012-07-13 aozima mask all GMAC MMC Interrupt.
  12. * 2012-07-20 aozima fixed mask all GMAC MMC Interrupt,and read clear.
  13. * 2012-07-20 aozima use memcpy replace byte copy.
  14. */
  15. #include <rtthread.h>
  16. #include <rthw.h>
  17. #include "lwipopts.h"
  18. #include <netif/ethernetif.h>
  19. #include <netif/etharp.h>
  20. #include <lwip/icmp.h>
  21. #include "gd32f4xx.h"
  22. #include "synopsys_emac.h"
  23. #define ETHERNET_MAC0 ((struct rt_synopsys_eth *)(0x40020000U + 0x00008000U))
  24. //#define EMAC_DEBUG
  25. //#define EMAC_RX_DUMP
  26. //#define EMAC_TX_DUMP
  27. #ifdef EMAC_DEBUG
  28. #define EMAC_TRACE rt_kprintf
  29. #else
  30. #define EMAC_TRACE(...)
  31. #endif
  32. #define EMAC_RXBUFNB 4
  33. #define EMAC_TXBUFNB 2
  34. #define EMAC_PHY_AUTO 0
  35. #define EMAC_PHY_10MBIT 1
  36. #define EMAC_PHY_100MBIT 2
  37. #define MAX_ADDR_LEN 6
  38. struct gd32_emac
  39. {
  40. /* inherit from Ethernet device */
  41. struct eth_device parent;
  42. rt_uint8_t phy_mode;
  43. /* interface address info. */
  44. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  45. struct rt_synopsys_eth * ETHERNET_MAC;
  46. IRQn_Type ETHER_MAC_IRQ;
  47. EMAC_DMADESCTypeDef *DMATxDescToSet;
  48. EMAC_DMADESCTypeDef *DMARxDescToGet;
  49. #pragma pack(4)
  50. EMAC_DMADESCTypeDef DMARxDscrTab[EMAC_RXBUFNB];
  51. #pragma pack(4)
  52. EMAC_DMADESCTypeDef DMATxDscrTab[EMAC_TXBUFNB];
  53. #pragma pack(4)
  54. rt_uint8_t Rx_Buff[EMAC_RXBUFNB][EMAC_MAX_PACKET_SIZE];
  55. #pragma pack(4)
  56. rt_uint8_t Tx_Buff[EMAC_TXBUFNB][EMAC_MAX_PACKET_SIZE];
  57. struct rt_semaphore tx_buf_free;
  58. };
  59. static struct gd32_emac gd32_emac_device0;
  60. /**
  61. * Initializes the DMA Tx descriptors in chain mode.
  62. */
  63. static void EMAC_DMA_tx_desc_init(EMAC_DMADESCTypeDef *DMATxDescTab, uint8_t* TxBuff, uint32_t TxBuffCount)
  64. {
  65. uint32_t i = 0;
  66. EMAC_DMADESCTypeDef *DMATxDesc;
  67. /* Fill each DMATxDesc descriptor with the right values */
  68. for(i=0; i < TxBuffCount; i++)
  69. {
  70. /* Get the pointer on the ith member of the Tx Desc list */
  71. DMATxDesc = DMATxDescTab + i;
  72. /* Set Second Address Chained bit */
  73. DMATxDesc->Status = EMAC_DMATxDesc_TCH;
  74. /* Set Buffer1 address pointer */
  75. DMATxDesc->Buffer1Addr = (uint32_t)(&TxBuff[i*EMAC_MAX_PACKET_SIZE]);
  76. /* Initialize the next descriptor with the Next Descriptor Polling Enable */
  77. if(i < (TxBuffCount-1))
  78. {
  79. /* Set next descriptor address register with next descriptor base address */
  80. DMATxDesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1);
  81. }
  82. else
  83. {
  84. /* For last descriptor, set next descriptor address register equal to the first descriptor base address */
  85. DMATxDesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab;
  86. }
  87. }
  88. }
  89. /**
  90. * Initializes the DMA Rx descriptors in chain mode.
  91. */
  92. static void EMAC_DMA_rx_desc_init(EMAC_DMADESCTypeDef *DMARxDescTab, uint8_t *RxBuff, uint32_t RxBuffCount)
  93. {
  94. uint32_t i = 0;
  95. EMAC_DMADESCTypeDef *DMARxDesc;
  96. /* Fill each DMARxDesc descriptor with the right values */
  97. for(i=0; i < RxBuffCount; i++)
  98. {
  99. /* Get the pointer on the ith member of the Rx Desc list */
  100. DMARxDesc = DMARxDescTab+i;
  101. /* Set Own bit of the Rx descriptor Status */
  102. DMARxDesc->Status = EMAC_DMARxDesc_OWN;
  103. /* Set Buffer1 size and Second Address Chained bit */
  104. DMARxDesc->ControlBufferSize = EMAC_DMARxDesc_RCH | (uint32_t)EMAC_MAX_PACKET_SIZE;
  105. /* Set Buffer1 address pointer */
  106. DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*EMAC_MAX_PACKET_SIZE]);
  107. /* Initialize the next descriptor with the Next Descriptor Polling Enable */
  108. if(i < (RxBuffCount-1))
  109. {
  110. /* Set next descriptor address register with next descriptor base address */
  111. DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1);
  112. }
  113. else
  114. {
  115. /* For last descriptor, set next descriptor address register equal to the first descriptor base address */
  116. DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab);
  117. }
  118. }
  119. }
  120. static rt_err_t gd32_emac_init(rt_device_t dev)
  121. {
  122. struct gd32_emac * gd32_emac_device;
  123. struct rt_synopsys_eth * ETHERNET_MAC;
  124. gd32_emac_device = (struct gd32_emac *)dev;
  125. ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
  126. /* Software reset */
  127. ETHERNET_MAC->BMR |= (1<<0); /* [bit0]SWR (Software Reset) */
  128. /* Wait for software reset */
  129. while(ETHERNET_MAC->BMR & (1<<0));
  130. /* Configure ETHERNET */
  131. EMAC_init(ETHERNET_MAC, SystemCoreClock);
  132. /* mask all GMAC MMC Interrupt.*/
  133. ETHERNET_MAC->mmc_cntl = (1<<3) | (1<<0); /* MMC Counter Freeze and reset. */
  134. ETHERNET_MAC->mmc_intr_mask_rx = 0xFFFFFFFF;
  135. ETHERNET_MAC->mmc_intr_mask_tx = 0xFFFFFFFF;
  136. ETHERNET_MAC->mmc_ipc_intr_mask_rx = 0xFFFFFFFF;
  137. /* Enable DMA Receive interrupt (need to enable in this case Normal interrupt) */
  138. EMAC_INT_config(ETHERNET_MAC, EMAC_DMA_INT_NIS | EMAC_DMA_INT_R | EMAC_DMA_INT_T , ENABLE);
  139. /* Initialize Tx Descriptors list: Chain Mode */
  140. EMAC_DMA_tx_desc_init(gd32_emac_device->DMATxDscrTab, &gd32_emac_device->Tx_Buff[0][0], EMAC_TXBUFNB);
  141. gd32_emac_device->DMATxDescToSet = gd32_emac_device->DMATxDscrTab;
  142. /* Set Transmit Descriptor List Address Register */
  143. ETHERNET_MAC->TDLAR = (uint32_t) gd32_emac_device->DMATxDescToSet;
  144. /* Initialize Rx Descriptors list: Chain Mode */
  145. EMAC_DMA_rx_desc_init(gd32_emac_device->DMARxDscrTab, &gd32_emac_device->Rx_Buff[0][0], EMAC_RXBUFNB);
  146. gd32_emac_device->DMARxDescToGet = gd32_emac_device->DMARxDscrTab;
  147. /* Set Receive Descriptor List Address Register */
  148. ETHERNET_MAC->RDLAR = (uint32_t) gd32_emac_device->DMARxDescToGet;
  149. /* MAC address configuration */
  150. EMAC_MAC_Addr_config(ETHERNET_MAC, EMAC_MAC_Address0, (uint8_t*)&gd32_emac_device->dev_addr[0]);
  151. NVIC_EnableIRQ( gd32_emac_device->ETHER_MAC_IRQ );
  152. /* Enable MAC and DMA transmission and reception */
  153. EMAC_start(ETHERNET_MAC);
  154. return RT_EOK;
  155. }
  156. static rt_err_t gd32_emac_open(rt_device_t dev, rt_uint16_t oflag)
  157. {
  158. return RT_EOK;
  159. }
  160. static rt_err_t gd32_emac_close(rt_device_t dev)
  161. {
  162. return RT_EOK;
  163. }
  164. static rt_ssize_t gd32_emac_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  165. {
  166. return -RT_ENOSYS;
  167. }
  168. static rt_ssize_t gd32_emac_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  169. {
  170. return -RT_ENOSYS;
  171. }
  172. static rt_err_t gd32_emac_control(rt_device_t dev, int cmd, void *args)
  173. {
  174. struct gd32_emac * gd32_emac_device = (struct gd32_emac *)dev;
  175. switch (cmd)
  176. {
  177. case NIOCTL_GADDR:
  178. /* get mac address */
  179. if (args) memcpy(args, &gd32_emac_device->dev_addr[0], MAX_ADDR_LEN);
  180. else return -RT_ERROR;
  181. break;
  182. default :
  183. break;
  184. }
  185. return RT_EOK;
  186. }
  187. static void EMAC_IRQHandler(struct gd32_emac * gd32_emac_device)
  188. {
  189. rt_uint32_t status, ier;
  190. struct rt_synopsys_eth * ETHERNET_MAC;
  191. ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
  192. /* get DMA IT status */
  193. status = ETHERNET_MAC->SR;
  194. ier = ETHERNET_MAC->IER;
  195. /* GMAC MMC Interrupt. */
  196. if(status & EMAC_DMA_INT_GMI)
  197. {
  198. volatile rt_uint32_t dummy;
  199. volatile rt_uint32_t * reg;
  200. EMAC_TRACE("EMAC_DMA_INT_GMI\r\n");
  201. /* read clear all MMC interrupt. */
  202. reg = &ETHERNET_MAC->mmc_cntl;
  203. while((uint32_t)reg < (uint32_t)&ETHERNET_MAC->rxicmp_err_octets)
  204. {
  205. dummy = *reg++;
  206. }
  207. }
  208. /* Normal interrupt summary. */
  209. if(status & EMAC_DMA_INT_NIS)
  210. {
  211. rt_uint32_t nis_clear = EMAC_DMA_INT_NIS;
  212. /* [0]:Transmit Interrupt. */
  213. if((status & ier) & EMAC_DMA_INT_T) /* packet transmission */
  214. {
  215. rt_sem_release(&gd32_emac_device->tx_buf_free);
  216. nis_clear |= EMAC_DMA_INT_T;
  217. }
  218. /* [2]:Transmit Buffer Unavailable. */
  219. /* [6]:Receive Interrupt. */
  220. if((status & ier) & EMAC_DMA_INT_R) /* packet reception */
  221. {
  222. /* a frame has been received */
  223. eth_device_ready(&(gd32_emac_device->parent));
  224. nis_clear |= EMAC_DMA_INT_R;
  225. }
  226. /* [14]:Early Receive Interrupt. */
  227. EMAC_clear_pending(ETHERNET_MAC, nis_clear);
  228. }
  229. /* Abnormal interrupt summary. */
  230. if( status & EMAC_DMA_INT_AIS)
  231. {
  232. rt_uint32_t ais_clear = EMAC_DMA_INT_AIS;
  233. /* [1]:Transmit Process Stopped. */
  234. /* [3]:Transmit Jabber Timeout. */
  235. /* [4]: Receive FIFO Overflow. */
  236. /* [5]: Transmit Underflow. */
  237. /* [7]: Receive Buffer Unavailable. */
  238. /* [8]: Receive Process Stopped. */
  239. /* [9]: Receive Watchdog Timeout. */
  240. /* [10]: Early Transmit Interrupt. */
  241. /* [13]: Fatal Bus Error. */
  242. EMAC_clear_pending(ETHERNET_MAC, ais_clear);
  243. }
  244. }
  245. void ENET_IRQHandler(void)
  246. {
  247. /* enter interrupt */
  248. rt_interrupt_enter();
  249. EMAC_IRQHandler(&gd32_emac_device0);
  250. /* leave interrupt */
  251. rt_interrupt_leave();
  252. }
  253. /* EtherNet Device Interface */
  254. rt_err_t gd32_emac_tx( rt_device_t dev, struct pbuf* p)
  255. {
  256. struct pbuf* q;
  257. char * to;
  258. struct gd32_emac * gd32_emac_device;
  259. struct rt_synopsys_eth * ETHERNET_MAC;
  260. gd32_emac_device = (struct gd32_emac *)dev;
  261. ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
  262. /* get free tx buffer */
  263. {
  264. rt_err_t result;
  265. result = rt_sem_take(&gd32_emac_device->tx_buf_free, RT_TICK_PER_SECOND/10);
  266. if (result != RT_EOK) return -RT_ERROR;
  267. }
  268. to = (char *)gd32_emac_device->DMATxDescToSet->Buffer1Addr;
  269. for (q = p; q != NULL; q = q->next)
  270. {
  271. /* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
  272. memcpy(to, q->payload, q->len);
  273. to += q->len;
  274. }
  275. #ifdef EMAC_TX_DUMP
  276. {
  277. rt_uint32_t i;
  278. rt_uint8_t *ptr = (rt_uint8_t*)(gd32_emac_device->DMATxDescToSet->Buffer1Addr);
  279. EMAC_TRACE("\r\n%c%c tx_dump:", gd32_emac_device->parent.netif->name[0], gd32_emac_device->parent.netif->name[1]);
  280. for(i=0; i<p->tot_len; i++)
  281. {
  282. if( (i%8) == 0 )
  283. {
  284. EMAC_TRACE(" ");
  285. }
  286. if( (i%16) == 0 )
  287. {
  288. EMAC_TRACE("\r\n");
  289. }
  290. EMAC_TRACE("%02x ",*ptr);
  291. ptr++;
  292. }
  293. EMAC_TRACE("\r\ndump done!\r\n");
  294. }
  295. #endif
  296. /* Setting the Frame Length: bits[12:0] */
  297. gd32_emac_device->DMATxDescToSet->ControlBufferSize = (p->tot_len & EMAC_DMATxDesc_TBS1);
  298. /* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
  299. gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_LS | EMAC_DMATxDesc_FS;
  300. /* Enable TX Completion Interrupt */
  301. gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_IC;
  302. #ifdef CHECKSUM_BY_HARDWARE
  303. gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_ChecksumTCPUDPICMPFull;
  304. /* clean ICMP checksum */
  305. {
  306. struct eth_hdr *ethhdr = (struct eth_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr);
  307. /* is IP ? */
  308. if( ethhdr->type == htons(ETHTYPE_IP) )
  309. {
  310. struct ip_hdr *iphdr = (struct ip_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR);
  311. /* is ICMP ? */
  312. if( IPH_PROTO(iphdr) == IP_PROTO_ICMP )
  313. {
  314. struct icmp_echo_hdr *iecho = (struct icmp_echo_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR + sizeof(struct ip_hdr) );
  315. iecho->chksum = 0;
  316. }
  317. }
  318. }
  319. #endif
  320. /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
  321. gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_OWN;
  322. /* When Tx Buffer unavailable flag is set: clear it and resume transmission */
  323. if ((ETHERNET_MAC->SR & EMAC_DMASR_TBUS) != (uint32_t)RESET)
  324. {
  325. /* Clear TBUS ETHERNET DMA flag */
  326. ETHERNET_MAC->SR = EMAC_DMASR_TBUS;
  327. /* Transmit Poll Demand to resume DMA transmission*/
  328. ETHERNET_MAC->TPDR = 0;
  329. }
  330. /* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */
  331. /* Chained Mode */
  332. /* Selects the next DMA Tx descriptor list for next buffer to send */
  333. gd32_emac_device->DMATxDescToSet = (EMAC_DMADESCTypeDef*) (gd32_emac_device->DMATxDescToSet->Buffer2NextDescAddr);
  334. /* Return SUCCESS */
  335. return RT_EOK;
  336. }
  337. /* reception a Ethernet packet. */
  338. struct pbuf * gd32_emac_rx(rt_device_t dev)
  339. {
  340. struct pbuf* p;
  341. rt_uint32_t framelength = 0;
  342. struct gd32_emac * gd32_emac_device;
  343. struct rt_synopsys_eth * ETHERNET_MAC;
  344. gd32_emac_device = (struct gd32_emac *)dev;
  345. ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC;
  346. /* init p pointer */
  347. p = RT_NULL;
  348. /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
  349. if(((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_OWN) != (uint32_t)RESET))
  350. {
  351. return p;
  352. }
  353. if (((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_ES) == (uint32_t)RESET) &&
  354. ((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_LS) != (uint32_t)RESET) &&
  355. ((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_FS) != (uint32_t)RESET))
  356. {
  357. /* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
  358. framelength = ((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_FL)
  359. >> EMAC_DMARXDESC_FRAME_LENGTHSHIFT) - 4;
  360. /* allocate buffer */
  361. p = pbuf_alloc(PBUF_LINK, framelength, PBUF_RAM);
  362. if (p != RT_NULL)
  363. {
  364. const char * from;
  365. struct pbuf* q;
  366. from = (const char *)gd32_emac_device->DMARxDescToGet->Buffer1Addr;
  367. for (q = p; q != RT_NULL; q= q->next)
  368. {
  369. /* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
  370. memcpy(q->payload, from, q->len);
  371. from += q->len;
  372. }
  373. #ifdef EMAC_RX_DUMP
  374. {
  375. rt_uint32_t i;
  376. rt_uint8_t *ptr = (rt_uint8_t*)(gd32_emac_device->DMARxDescToGet->Buffer1Addr);
  377. EMAC_TRACE("\r\n%c%c rx_dump:", gd32_emac_device->parent.netif->name[0], gd32_emac_device->parent.netif->name[1]);
  378. for(i=0; i<p->tot_len; i++)
  379. {
  380. if( (i%8) == 0 )
  381. {
  382. EMAC_TRACE(" ");
  383. }
  384. if( (i%16) == 0 )
  385. {
  386. EMAC_TRACE("\r\n");
  387. }
  388. EMAC_TRACE("%02x ",*ptr);
  389. ptr++;
  390. }
  391. EMAC_TRACE("\r\ndump done!\r\n");
  392. }
  393. #endif
  394. }
  395. }
  396. /* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
  397. gd32_emac_device->DMARxDescToGet->Status = EMAC_DMARxDesc_OWN;
  398. /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  399. if ((ETHERNET_MAC->SR & EMAC_DMASR_RBUS) != (uint32_t)RESET)
  400. {
  401. /* Clear RBUS ETHERNET DMA flag */
  402. ETHERNET_MAC->SR = EMAC_DMASR_RBUS;
  403. /* Resume DMA reception */
  404. ETHERNET_MAC->RPDR = 0;
  405. }
  406. /* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
  407. /* Chained Mode */
  408. if((gd32_emac_device->DMARxDescToGet->ControlBufferSize & EMAC_DMARxDesc_RCH) != (uint32_t)RESET)
  409. {
  410. /* Selects the next DMA Rx descriptor list for next buffer to read */
  411. gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) (gd32_emac_device->DMARxDescToGet->Buffer2NextDescAddr);
  412. }
  413. else /* Ring Mode */
  414. {
  415. if((gd32_emac_device->DMARxDescToGet->ControlBufferSize & EMAC_DMARxDesc_RER) != (uint32_t)RESET)
  416. {
  417. /* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
  418. gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) (ETHERNET_MAC->RDLAR);
  419. }
  420. else
  421. {
  422. /* Selects the next DMA Rx descriptor list for next buffer to read */
  423. gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) ((uint32_t)gd32_emac_device->DMARxDescToGet + 0x10 + ((ETHERNET_MAC->BMR & EMAC_DMABMR_DSL) >> 2));
  424. }
  425. }
  426. return p;
  427. }
  428. /*!
  429. \brief configures the nested vectored interrupt controller
  430. \param[in] none
  431. \param[out] none
  432. \retval none
  433. */
  434. static void nvic_configuration(void)
  435. {
  436. nvic_vector_table_set(NVIC_VECTTAB_FLASH, 0x0);
  437. nvic_priority_group_set(NVIC_PRIGROUP_PRE2_SUB2);
  438. nvic_irq_enable(ENET_IRQn, 0, 0);
  439. }
  440. /*!
  441. \brief configures the different GPIO ports
  442. \param[in] none
  443. \param[out] none
  444. \retval none
  445. */
  446. static void enet_gpio_config(void)
  447. {
  448. rcu_periph_clock_enable(RCU_GPIOA);
  449. rcu_periph_clock_enable(RCU_GPIOB);
  450. rcu_periph_clock_enable(RCU_GPIOC);
  451. rcu_periph_clock_enable(RCU_GPIOD);
  452. rcu_periph_clock_enable(RCU_GPIOG);
  453. rcu_periph_clock_enable(RCU_GPIOH);
  454. rcu_periph_clock_enable(RCU_GPIOI);
  455. gpio_af_set(GPIOA, GPIO_AF_0, GPIO_PIN_8);
  456. gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_8);
  457. gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_8);
  458. /* enable SYSCFG clock */
  459. rcu_periph_clock_enable(RCU_SYSCFG);
  460. /* choose DIV2 to get 50MHz from 200MHz on CKOUT0 pin (PA8) to clock the PHY */
  461. rcu_ckout0_config(RCU_CKOUT0SRC_PLLP, RCU_CKOUT0_DIV4);
  462. syscfg_enet_phy_interface_config(SYSCFG_ENET_PHY_RMII);
  463. /* PA1: ETH_RMII_REF_CLK */
  464. gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_1);
  465. gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_1);
  466. /* PA2: ETH_MDIO */
  467. gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_2);
  468. gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_2);
  469. /* PA7: ETH_RMII_CRS_DV */
  470. gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_7);
  471. gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_7);
  472. gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_1);
  473. gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_2);
  474. gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_7);
  475. /* PB11: ETH_RMII_TX_EN */
  476. gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_11);
  477. gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_11);
  478. /* PB12: ETH_RMII_TXD0 */
  479. gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_12);
  480. gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_12);
  481. /* PB13: ETH_RMII_TXD1 */
  482. gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_13);
  483. gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_13);
  484. gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_11);
  485. gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_12);
  486. gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_13);
  487. /* PC1: ETH_MDC */
  488. gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_1);
  489. gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_1);
  490. /* PC4: ETH_RMII_RXD0 */
  491. gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_4);
  492. gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_4);
  493. /* PC5: ETH_RMII_RXD1 */
  494. gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_5);
  495. gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_5);
  496. gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_1);
  497. gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_4);
  498. gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_5);
  499. }
  500. int rt_hw_gd32_eth_init(void)
  501. {
  502. rt_kprintf("rt_gd32_eth_init...\n");
  503. /* enable ethernet clock */
  504. rcu_periph_clock_enable(RCU_ENET);
  505. rcu_periph_clock_enable(RCU_ENETTX);
  506. rcu_periph_clock_enable(RCU_ENETRX);
  507. nvic_configuration();
  508. /* configure the GPIO ports for ethernet pins */
  509. enet_gpio_config();
  510. /* set autonegotiation mode */
  511. gd32_emac_device0.phy_mode = EMAC_PHY_AUTO;
  512. gd32_emac_device0.ETHERNET_MAC = ETHERNET_MAC0;
  513. gd32_emac_device0.ETHER_MAC_IRQ = ENET_IRQn;
  514. // OUI 00-00-0E FUJITSU LIMITED
  515. gd32_emac_device0.dev_addr[0] = 0x00;
  516. gd32_emac_device0.dev_addr[1] = 0x00;
  517. gd32_emac_device0.dev_addr[2] = 0x0E;
  518. /* set mac address: (only for test) */
  519. gd32_emac_device0.dev_addr[3] = 0x12;
  520. gd32_emac_device0.dev_addr[4] = 0x34;
  521. gd32_emac_device0.dev_addr[5] = 0x56;
  522. gd32_emac_device0.parent.parent.init = gd32_emac_init;
  523. gd32_emac_device0.parent.parent.open = gd32_emac_open;
  524. gd32_emac_device0.parent.parent.close = gd32_emac_close;
  525. gd32_emac_device0.parent.parent.read = gd32_emac_read;
  526. gd32_emac_device0.parent.parent.write = gd32_emac_write;
  527. gd32_emac_device0.parent.parent.control = gd32_emac_control;
  528. gd32_emac_device0.parent.parent.user_data = RT_NULL;
  529. gd32_emac_device0.parent.eth_rx = gd32_emac_rx;
  530. gd32_emac_device0.parent.eth_tx = gd32_emac_tx;
  531. /* init tx buffer free semaphore */
  532. rt_sem_init(&gd32_emac_device0.tx_buf_free, "tx_buf0", EMAC_TXBUFNB, RT_IPC_FLAG_FIFO);
  533. eth_device_init(&(gd32_emac_device0.parent), "e0");
  534. /* change device link status */
  535. eth_device_linkchange(&(gd32_emac_device0.parent), RT_TRUE);
  536. return 0;
  537. }
  538. INIT_DEVICE_EXPORT(rt_hw_gd32_eth_init);