dfs_elm.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2008-02-22 QiuYi The first version.
  9. * 2011-10-08 Bernard fixed the block size in statfs.
  10. * 2011-11-23 Bernard fixed the rename issue.
  11. * 2012-07-26 aozima implement ff_memalloc and ff_memfree.
  12. * 2012-12-19 Bernard fixed the O_APPEND and lseek issue.
  13. * 2013-03-01 aozima fixed the stat(st_mtime) issue.
  14. * 2014-01-26 Bernard Check the sector size before mount.
  15. * 2017-02-13 Hichard Update Fatfs version to 0.12b, support exFAT.
  16. * 2017-04-11 Bernard fix the st_blksize issue.
  17. * 2017-05-26 Urey fix f_mount error when mount more fats
  18. */
  19. #include <rtthread.h>
  20. #include "ffconf.h"
  21. #include "ff.h"
  22. #include <string.h>
  23. #include <sys/time.h>
  24. /* ELM FatFs provide a DIR struct */
  25. #define HAVE_DIR_STRUCTURE
  26. #include <dfs_fs.h>
  27. #include <dfs_file.h>
  28. static rt_device_t disk[FF_VOLUMES] = {0};
  29. static int elm_result_to_dfs(FRESULT result)
  30. {
  31. int status = RT_EOK;
  32. switch (result)
  33. {
  34. case FR_OK:
  35. break;
  36. case FR_NO_FILE:
  37. case FR_NO_PATH:
  38. case FR_NO_FILESYSTEM:
  39. status = -ENOENT;
  40. break;
  41. case FR_INVALID_NAME:
  42. status = -EINVAL;
  43. break;
  44. case FR_EXIST:
  45. case FR_INVALID_OBJECT:
  46. status = -EEXIST;
  47. break;
  48. case FR_DISK_ERR:
  49. case FR_NOT_READY:
  50. case FR_INT_ERR:
  51. status = -EIO;
  52. break;
  53. case FR_WRITE_PROTECTED:
  54. case FR_DENIED:
  55. status = -EROFS;
  56. break;
  57. case FR_MKFS_ABORTED:
  58. status = -EINVAL;
  59. break;
  60. default:
  61. status = -1;
  62. break;
  63. }
  64. return status;
  65. }
  66. /* results:
  67. * -1, no space to install fatfs driver
  68. * >= 0, there is an space to install fatfs driver
  69. */
  70. static int get_disk(rt_device_t id)
  71. {
  72. int index;
  73. for (index = 0; index < FF_VOLUMES; index ++)
  74. {
  75. if (disk[index] == id)
  76. return index;
  77. }
  78. return -1;
  79. }
  80. int dfs_elm_mount(struct dfs_filesystem *fs, unsigned long rwflag, const void *data)
  81. {
  82. FATFS *fat;
  83. FRESULT result;
  84. int index;
  85. struct rt_device_blk_geometry geometry;
  86. char logic_nbr[3] = {'0',':', 0};
  87. /* get an empty position */
  88. index = get_disk(RT_NULL);
  89. if (index == -1)
  90. return -ENOENT;
  91. logic_nbr[0] = '0' + index;
  92. /* save device */
  93. disk[index] = fs->dev_id;
  94. /* check sector size */
  95. if (rt_device_control(fs->dev_id, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry) == RT_EOK)
  96. {
  97. if (geometry.bytes_per_sector > FF_MAX_SS)
  98. {
  99. rt_kprintf("The sector size of device is greater than the sector size of FAT.\n");
  100. return -EINVAL;
  101. }
  102. }
  103. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  104. if (fat == RT_NULL)
  105. {
  106. disk[index] = RT_NULL;
  107. return -ENOMEM;
  108. }
  109. /* mount fatfs, always 0 logic driver */
  110. result = f_mount(fat, (const TCHAR *)logic_nbr, 1);
  111. if (result == FR_OK)
  112. {
  113. char drive[8];
  114. DIR *dir;
  115. rt_snprintf(drive, sizeof(drive), "%d:/", index);
  116. dir = (DIR *)rt_malloc(sizeof(DIR));
  117. if (dir == RT_NULL)
  118. {
  119. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  120. disk[index] = RT_NULL;
  121. rt_free(fat);
  122. return -ENOMEM;
  123. }
  124. /* open the root directory to test whether the fatfs is valid */
  125. result = f_opendir(dir, drive);
  126. if (result != FR_OK)
  127. goto __err;
  128. /* mount succeed! */
  129. fs->data = fat;
  130. rt_free(dir);
  131. return 0;
  132. }
  133. __err:
  134. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  135. disk[index] = RT_NULL;
  136. rt_free(fat);
  137. return elm_result_to_dfs(result);
  138. }
  139. int dfs_elm_unmount(struct dfs_filesystem *fs)
  140. {
  141. FATFS *fat;
  142. FRESULT result;
  143. int index;
  144. char logic_nbr[3] = {'0',':', 0};
  145. fat = (FATFS *)fs->data;
  146. RT_ASSERT(fat != RT_NULL);
  147. /* find the device index and then umount it */
  148. index = get_disk(fs->dev_id);
  149. if (index == -1) /* not found */
  150. return -ENOENT;
  151. logic_nbr[0] = '0' + index;
  152. result = f_mount(RT_NULL, logic_nbr, (BYTE)0);
  153. if (result != FR_OK)
  154. return elm_result_to_dfs(result);
  155. fs->data = RT_NULL;
  156. disk[index] = RT_NULL;
  157. rt_free(fat);
  158. return RT_EOK;
  159. }
  160. int dfs_elm_mkfs(rt_device_t dev_id, const char *fs_name)
  161. {
  162. #define FSM_STATUS_INIT 0
  163. #define FSM_STATUS_USE_TEMP_DRIVER 1
  164. FATFS *fat = RT_NULL;
  165. BYTE *work;
  166. int flag;
  167. FRESULT result;
  168. int index;
  169. char logic_nbr[3] = {'0',':', 0};
  170. MKFS_PARM opt;
  171. work = rt_malloc(FF_MAX_SS);
  172. if(RT_NULL == work) {
  173. return -ENOMEM;
  174. }
  175. if (dev_id == RT_NULL)
  176. {
  177. rt_free(work); /* release memory */
  178. return -EINVAL;
  179. }
  180. /* if the device is already mounted, then just do mkfs to the drv,
  181. * while if it is not mounted yet, then find an empty drive to do mkfs
  182. */
  183. flag = FSM_STATUS_INIT;
  184. index = get_disk(dev_id);
  185. if (index == -1)
  186. {
  187. /* not found the device id */
  188. index = get_disk(RT_NULL);
  189. if (index == -1)
  190. {
  191. /* no space to store an temp driver */
  192. rt_kprintf("sorry, there is no space to do mkfs! \n");
  193. rt_free(work); /* release memory */
  194. return -ENOSPC;
  195. }
  196. else
  197. {
  198. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  199. if (fat == RT_NULL)
  200. {
  201. rt_free(work); /* release memory */
  202. return -ENOMEM;
  203. }
  204. flag = FSM_STATUS_USE_TEMP_DRIVER;
  205. disk[index] = dev_id;
  206. /* try to open device */
  207. rt_device_open(dev_id, RT_DEVICE_OFLAG_RDWR);
  208. /* just fill the FatFs[vol] in ff.c, or mkfs will failded!
  209. * consider this condition: you just umount the elm fat,
  210. * then the space in FatFs[index] is released, and now do mkfs
  211. * on the disk, you will get a failure. so we need f_mount here,
  212. * just fill the FatFS[index] in elm fatfs to make mkfs work.
  213. */
  214. logic_nbr[0] = '0' + index;
  215. f_mount(fat, logic_nbr, (BYTE)index);
  216. }
  217. }
  218. else
  219. {
  220. logic_nbr[0] = '0' + index;
  221. }
  222. /* [IN] Logical drive number */
  223. /* [IN] Format options */
  224. /* [-] Working buffer */
  225. /* [IN] Size of working buffer */
  226. rt_memset(&opt, 0, sizeof(opt));
  227. opt.fmt = FM_ANY|FM_SFD;
  228. result = f_mkfs(logic_nbr, &opt, work, FF_MAX_SS);
  229. rt_free(work); work = RT_NULL;
  230. /* check flag status, we need clear the temp driver stored in disk[] */
  231. if (flag == FSM_STATUS_USE_TEMP_DRIVER)
  232. {
  233. rt_free(fat);
  234. f_mount(RT_NULL, logic_nbr, (BYTE)index);
  235. disk[index] = RT_NULL;
  236. /* close device */
  237. rt_device_close(dev_id);
  238. }
  239. if (result != FR_OK)
  240. {
  241. rt_kprintf("format error, result=%d\n", result);
  242. return elm_result_to_dfs(result);
  243. }
  244. return RT_EOK;
  245. }
  246. int dfs_elm_statfs(struct dfs_filesystem *fs, struct statfs *buf)
  247. {
  248. FATFS *f;
  249. FRESULT res;
  250. char driver[4];
  251. DWORD fre_clust, fre_sect, tot_sect;
  252. RT_ASSERT(fs != RT_NULL);
  253. RT_ASSERT(buf != RT_NULL);
  254. f = (FATFS *)fs->data;
  255. rt_snprintf(driver, sizeof(driver), "%d:", f->pdrv);
  256. res = f_getfree(driver, &fre_clust, &f);
  257. if (res)
  258. return elm_result_to_dfs(res);
  259. /* Get total sectors and free sectors */
  260. tot_sect = (f->n_fatent - 2) * f->csize;
  261. fre_sect = fre_clust * f->csize;
  262. buf->f_bfree = fre_sect;
  263. buf->f_blocks = tot_sect;
  264. #if FF_MAX_SS != 512
  265. buf->f_bsize = f->ssize;
  266. #else
  267. buf->f_bsize = 512;
  268. #endif
  269. return 0;
  270. }
  271. int dfs_elm_open(struct dfs_fd *file)
  272. {
  273. FIL *fd;
  274. BYTE mode;
  275. FRESULT result;
  276. char *drivers_fn;
  277. #if (FF_VOLUMES > 1)
  278. int vol;
  279. struct dfs_filesystem *fs = file->vnode->fs;
  280. extern int elm_get_vol(FATFS * fat);
  281. RT_ASSERT(file->vnode->ref_count > 0);
  282. if (file->vnode->ref_count > 1)
  283. {
  284. if (file->vnode->type == FT_DIRECTORY
  285. && !(file->flags & O_DIRECTORY))
  286. {
  287. return -ENOENT;
  288. }
  289. file->pos = 0;
  290. return 0;
  291. }
  292. if (fs == NULL)
  293. return -ENOENT;
  294. /* add path for ELM FatFS driver support */
  295. vol = elm_get_vol((FATFS *)fs->data);
  296. if (vol < 0)
  297. return -ENOENT;
  298. drivers_fn = (char *)rt_malloc(256);
  299. if (drivers_fn == RT_NULL)
  300. return -ENOMEM;
  301. rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->vnode->path);
  302. #else
  303. drivers_fn = file->vnode->path;
  304. #endif
  305. if (file->flags & O_DIRECTORY)
  306. {
  307. DIR *dir;
  308. if (file->flags & O_CREAT)
  309. {
  310. result = f_mkdir(drivers_fn);
  311. if (result != FR_OK)
  312. {
  313. #if FF_VOLUMES > 1
  314. rt_free(drivers_fn);
  315. #endif
  316. return elm_result_to_dfs(result);
  317. }
  318. }
  319. /* open directory */
  320. dir = (DIR *)rt_malloc(sizeof(DIR));
  321. if (dir == RT_NULL)
  322. {
  323. #if FF_VOLUMES > 1
  324. rt_free(drivers_fn);
  325. #endif
  326. return -ENOMEM;
  327. }
  328. result = f_opendir(dir, drivers_fn);
  329. #if FF_VOLUMES > 1
  330. rt_free(drivers_fn);
  331. #endif
  332. if (result != FR_OK)
  333. {
  334. rt_free(dir);
  335. return elm_result_to_dfs(result);
  336. }
  337. file->data = dir;
  338. return RT_EOK;
  339. }
  340. else
  341. {
  342. mode = FA_READ;
  343. if (file->flags & O_WRONLY)
  344. mode |= FA_WRITE;
  345. if ((file->flags & O_ACCMODE) & O_RDWR)
  346. mode |= FA_WRITE;
  347. /* Opens the file, if it is existing. If not, a new file is created. */
  348. if (file->flags & O_CREAT)
  349. mode |= FA_OPEN_ALWAYS;
  350. /* Creates a new file. If the file is existing, it is truncated and overwritten. */
  351. if (file->flags & O_TRUNC)
  352. mode |= FA_CREATE_ALWAYS;
  353. /* Creates a new file. The function fails if the file is already existing. */
  354. if (file->flags & O_EXCL)
  355. mode |= FA_CREATE_NEW;
  356. /* allocate a fd */
  357. fd = (FIL *)rt_malloc(sizeof(FIL));
  358. if (fd == RT_NULL)
  359. {
  360. #if FF_VOLUMES > 1
  361. rt_free(drivers_fn);
  362. #endif
  363. return -ENOMEM;
  364. }
  365. result = f_open(fd, drivers_fn, mode);
  366. #if FF_VOLUMES > 1
  367. rt_free(drivers_fn);
  368. #endif
  369. if (result == FR_OK)
  370. {
  371. file->pos = fd->fptr;
  372. file->vnode->size = f_size(fd);
  373. file->vnode->type = FT_REGULAR;
  374. file->data = fd;
  375. if (file->flags & O_APPEND)
  376. {
  377. /* seek to the end of file */
  378. f_lseek(fd, f_size(fd));
  379. file->pos = fd->fptr;
  380. }
  381. }
  382. else
  383. {
  384. /* open failed, return */
  385. rt_free(fd);
  386. return elm_result_to_dfs(result);
  387. }
  388. }
  389. return RT_EOK;
  390. }
  391. int dfs_elm_close(struct dfs_fd *file)
  392. {
  393. FRESULT result;
  394. RT_ASSERT(file->vnode->ref_count > 0);
  395. if (file->vnode->ref_count > 1)
  396. {
  397. return 0;
  398. }
  399. result = FR_OK;
  400. if (file->vnode->type == FT_DIRECTORY)
  401. {
  402. DIR *dir = RT_NULL;
  403. dir = (DIR *)(file->data);
  404. RT_ASSERT(dir != RT_NULL);
  405. /* release memory */
  406. rt_free(dir);
  407. }
  408. else if (file->vnode->type == FT_REGULAR)
  409. {
  410. FIL *fd = RT_NULL;
  411. fd = (FIL *)(file->data);
  412. RT_ASSERT(fd != RT_NULL);
  413. result = f_close(fd);
  414. if (result == FR_OK)
  415. {
  416. /* release memory */
  417. rt_free(fd);
  418. }
  419. }
  420. return elm_result_to_dfs(result);
  421. }
  422. int dfs_elm_ioctl(struct dfs_fd *file, int cmd, void *args)
  423. {
  424. switch (cmd)
  425. {
  426. case RT_FIOFTRUNCATE:
  427. {
  428. FIL *fd;
  429. FSIZE_t fptr, length;
  430. FRESULT result = FR_OK;
  431. fd = (FIL *)(file->data);
  432. RT_ASSERT(fd != RT_NULL);
  433. /* save file read/write point */
  434. fptr = fd->fptr;
  435. length = *(off_t*)args;
  436. if (length <= fd->obj.objsize)
  437. {
  438. fd->fptr = length;
  439. result = f_truncate(fd);
  440. }
  441. else
  442. {
  443. result = f_lseek(fd, length);
  444. }
  445. /* restore file read/write point */
  446. fd->fptr = fptr;
  447. return elm_result_to_dfs(result);
  448. }
  449. case F_GETLK:
  450. return 0;
  451. case F_SETLK:
  452. return 0;
  453. }
  454. return -ENOSYS;
  455. }
  456. int dfs_elm_read(struct dfs_fd *file, void *buf, size_t len)
  457. {
  458. FIL *fd;
  459. FRESULT result;
  460. UINT byte_read;
  461. if (file->vnode->type == FT_DIRECTORY)
  462. {
  463. return -EISDIR;
  464. }
  465. fd = (FIL *)(file->data);
  466. RT_ASSERT(fd != RT_NULL);
  467. result = f_read(fd, buf, len, &byte_read);
  468. /* update position */
  469. file->pos = fd->fptr;
  470. if (result == FR_OK)
  471. return byte_read;
  472. return elm_result_to_dfs(result);
  473. }
  474. int dfs_elm_write(struct dfs_fd *file, const void *buf, size_t len)
  475. {
  476. FIL *fd;
  477. FRESULT result;
  478. UINT byte_write;
  479. if (file->vnode->type == FT_DIRECTORY)
  480. {
  481. return -EISDIR;
  482. }
  483. fd = (FIL *)(file->data);
  484. RT_ASSERT(fd != RT_NULL);
  485. result = f_write(fd, buf, len, &byte_write);
  486. /* update position and file size */
  487. file->pos = fd->fptr;
  488. file->vnode->size = f_size(fd);
  489. if (result == FR_OK)
  490. return byte_write;
  491. return elm_result_to_dfs(result);
  492. }
  493. int dfs_elm_flush(struct dfs_fd *file)
  494. {
  495. FIL *fd;
  496. FRESULT result;
  497. fd = (FIL *)(file->data);
  498. RT_ASSERT(fd != RT_NULL);
  499. result = f_sync(fd);
  500. return elm_result_to_dfs(result);
  501. }
  502. int dfs_elm_lseek(struct dfs_fd *file, off_t offset)
  503. {
  504. FRESULT result = FR_OK;
  505. if (file->vnode->type == FT_REGULAR)
  506. {
  507. FIL *fd;
  508. /* regular file type */
  509. fd = (FIL *)(file->data);
  510. RT_ASSERT(fd != RT_NULL);
  511. result = f_lseek(fd, offset);
  512. if (result == FR_OK)
  513. {
  514. /* return current position */
  515. file->pos = fd->fptr;
  516. return fd->fptr;
  517. }
  518. }
  519. else if (file->vnode->type == FT_DIRECTORY)
  520. {
  521. /* which is a directory */
  522. DIR *dir = RT_NULL;
  523. dir = (DIR *)(file->data);
  524. RT_ASSERT(dir != RT_NULL);
  525. result = f_seekdir(dir, offset / sizeof(struct dirent));
  526. if (result == FR_OK)
  527. {
  528. /* update file position */
  529. file->pos = offset;
  530. return file->pos;
  531. }
  532. }
  533. return elm_result_to_dfs(result);
  534. }
  535. int dfs_elm_getdents(struct dfs_fd *file, struct dirent *dirp, uint32_t count)
  536. {
  537. DIR *dir;
  538. FILINFO fno;
  539. FRESULT result;
  540. rt_uint32_t index;
  541. struct dirent *d;
  542. dir = (DIR *)(file->data);
  543. RT_ASSERT(dir != RT_NULL);
  544. /* make integer count */
  545. count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
  546. if (count == 0)
  547. return -EINVAL;
  548. index = 0;
  549. while (1)
  550. {
  551. char *fn;
  552. d = dirp + index;
  553. result = f_readdir(dir, &fno);
  554. if (result != FR_OK || fno.fname[0] == 0)
  555. break;
  556. #if FF_USE_LFN
  557. fn = *fno.fname ? fno.fname : fno.altname;
  558. #else
  559. fn = fno.fname;
  560. #endif
  561. d->d_type = DT_UNKNOWN;
  562. if (fno.fattrib & AM_DIR)
  563. d->d_type = DT_DIR;
  564. else
  565. d->d_type = DT_REG;
  566. d->d_namlen = (rt_uint8_t)rt_strlen(fn);
  567. d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
  568. rt_strncpy(d->d_name, fn, DFS_PATH_MAX);
  569. index ++;
  570. if (index * sizeof(struct dirent) >= count)
  571. break;
  572. }
  573. if (index == 0)
  574. return elm_result_to_dfs(result);
  575. file->pos += index * sizeof(struct dirent);
  576. return index * sizeof(struct dirent);
  577. }
  578. int dfs_elm_unlink(struct dfs_filesystem *fs, const char *path)
  579. {
  580. FRESULT result;
  581. #if FF_VOLUMES > 1
  582. int vol;
  583. char *drivers_fn;
  584. extern int elm_get_vol(FATFS * fat);
  585. /* add path for ELM FatFS driver support */
  586. vol = elm_get_vol((FATFS *)fs->data);
  587. if (vol < 0)
  588. return -ENOENT;
  589. drivers_fn = (char *)rt_malloc(256);
  590. if (drivers_fn == RT_NULL)
  591. return -ENOMEM;
  592. rt_snprintf(drivers_fn, 256, "%d:%s", vol, path);
  593. #else
  594. const char *drivers_fn;
  595. drivers_fn = path;
  596. #endif
  597. result = f_unlink(drivers_fn);
  598. #if FF_VOLUMES > 1
  599. rt_free(drivers_fn);
  600. #endif
  601. return elm_result_to_dfs(result);
  602. }
  603. int dfs_elm_rename(struct dfs_filesystem *fs, const char *oldpath, const char *newpath)
  604. {
  605. FRESULT result;
  606. #if FF_VOLUMES > 1
  607. char *drivers_oldfn;
  608. const char *drivers_newfn;
  609. int vol;
  610. extern int elm_get_vol(FATFS * fat);
  611. /* add path for ELM FatFS driver support */
  612. vol = elm_get_vol((FATFS *)fs->data);
  613. if (vol < 0)
  614. return -ENOENT;
  615. drivers_oldfn = (char *)rt_malloc(256);
  616. if (drivers_oldfn == RT_NULL)
  617. return -ENOMEM;
  618. drivers_newfn = newpath;
  619. rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, oldpath);
  620. #else
  621. const char *drivers_oldfn, *drivers_newfn;
  622. drivers_oldfn = oldpath;
  623. drivers_newfn = newpath;
  624. #endif
  625. result = f_rename(drivers_oldfn, drivers_newfn);
  626. #if FF_VOLUMES > 1
  627. rt_free(drivers_oldfn);
  628. #endif
  629. return elm_result_to_dfs(result);
  630. }
  631. int dfs_elm_stat(struct dfs_filesystem *fs, const char *path, struct stat *st)
  632. {
  633. FILINFO file_info;
  634. FRESULT result;
  635. #if FF_VOLUMES > 1
  636. int vol;
  637. char *drivers_fn;
  638. extern int elm_get_vol(FATFS * fat);
  639. /* add path for ELM FatFS driver support */
  640. vol = elm_get_vol((FATFS *)fs->data);
  641. if (vol < 0)
  642. return -ENOENT;
  643. drivers_fn = (char *)rt_malloc(256);
  644. if (drivers_fn == RT_NULL)
  645. return -ENOMEM;
  646. rt_snprintf(drivers_fn, 256, "%d:%s", vol, path);
  647. #else
  648. const char *drivers_fn;
  649. drivers_fn = path;
  650. #endif
  651. result = f_stat(drivers_fn, &file_info);
  652. #if FF_VOLUMES > 1
  653. rt_free(drivers_fn);
  654. #endif
  655. if (result == FR_OK)
  656. {
  657. /* convert to dfs stat structure */
  658. st->st_dev = 0;
  659. st->st_mode = S_IFREG | S_IRUSR | S_IRGRP | S_IROTH |
  660. S_IWUSR | S_IWGRP | S_IWOTH;
  661. if (file_info.fattrib & AM_DIR)
  662. {
  663. st->st_mode &= ~S_IFREG;
  664. st->st_mode |= S_IFDIR | S_IXUSR | S_IXGRP | S_IXOTH;
  665. }
  666. if (file_info.fattrib & AM_RDO)
  667. st->st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH);
  668. st->st_size = file_info.fsize;
  669. /* get st_mtime. */
  670. {
  671. struct tm tm_file;
  672. int year, mon, day, hour, min, sec;
  673. WORD tmp;
  674. tmp = file_info.fdate;
  675. day = tmp & 0x1F; /* bit[4:0] Day(1..31) */
  676. tmp >>= 5;
  677. mon = tmp & 0x0F; /* bit[8:5] Month(1..12) */
  678. tmp >>= 4;
  679. year = (tmp & 0x7F) + 1980; /* bit[15:9] Year origin from 1980(0..127) */
  680. tmp = file_info.ftime;
  681. sec = (tmp & 0x1F) * 2; /* bit[4:0] Second/2(0..29) */
  682. tmp >>= 5;
  683. min = tmp & 0x3F; /* bit[10:5] Minute(0..59) */
  684. tmp >>= 6;
  685. hour = tmp & 0x1F; /* bit[15:11] Hour(0..23) */
  686. rt_memset(&tm_file, 0, sizeof(tm_file));
  687. tm_file.tm_year = year - 1900; /* Years since 1900 */
  688. tm_file.tm_mon = mon - 1; /* Months *since* january: 0-11 */
  689. tm_file.tm_mday = day; /* Day of the month: 1-31 */
  690. tm_file.tm_hour = hour; /* Hours since midnight: 0-23 */
  691. tm_file.tm_min = min; /* Minutes: 0-59 */
  692. tm_file.tm_sec = sec; /* Seconds: 0-59 */
  693. st->st_mtime = timegm(&tm_file);
  694. } /* get st_mtime. */
  695. }
  696. return elm_result_to_dfs(result);
  697. }
  698. static const struct dfs_file_ops dfs_elm_fops =
  699. {
  700. dfs_elm_open,
  701. dfs_elm_close,
  702. dfs_elm_ioctl,
  703. dfs_elm_read,
  704. dfs_elm_write,
  705. dfs_elm_flush,
  706. dfs_elm_lseek,
  707. dfs_elm_getdents,
  708. RT_NULL, /* poll interface */
  709. };
  710. static const struct dfs_filesystem_ops dfs_elm =
  711. {
  712. "elm",
  713. DFS_FS_FLAG_DEFAULT,
  714. &dfs_elm_fops,
  715. dfs_elm_mount,
  716. dfs_elm_unmount,
  717. dfs_elm_mkfs,
  718. dfs_elm_statfs,
  719. dfs_elm_unlink,
  720. dfs_elm_stat,
  721. dfs_elm_rename,
  722. };
  723. int elm_init(void)
  724. {
  725. /* register fatfs file system */
  726. dfs_register(&dfs_elm);
  727. return 0;
  728. }
  729. INIT_COMPONENT_EXPORT(elm_init);
  730. /*
  731. * RT-Thread Device Interface for ELM FatFs
  732. */
  733. #include "diskio.h"
  734. /* Initialize a Drive */
  735. DSTATUS disk_initialize(BYTE drv)
  736. {
  737. return 0;
  738. }
  739. /* Return Disk Status */
  740. DSTATUS disk_status(BYTE drv)
  741. {
  742. return 0;
  743. }
  744. /* Read Sector(s) */
  745. DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, UINT count)
  746. {
  747. rt_size_t result;
  748. rt_device_t device = disk[drv];
  749. result = rt_device_read(device, sector, buff, count);
  750. if (result == count)
  751. {
  752. return RES_OK;
  753. }
  754. return RES_ERROR;
  755. }
  756. /* Write Sector(s) */
  757. DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, UINT count)
  758. {
  759. rt_size_t result;
  760. rt_device_t device = disk[drv];
  761. result = rt_device_write(device, sector, buff, count);
  762. if (result == count)
  763. {
  764. return RES_OK;
  765. }
  766. return RES_ERROR;
  767. }
  768. /* Miscellaneous Functions */
  769. DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff)
  770. {
  771. rt_device_t device = disk[drv];
  772. if (device == RT_NULL)
  773. return RES_ERROR;
  774. if (ctrl == GET_SECTOR_COUNT)
  775. {
  776. struct rt_device_blk_geometry geometry;
  777. rt_memset(&geometry, 0, sizeof(geometry));
  778. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  779. *(DWORD *)buff = geometry.sector_count;
  780. if (geometry.sector_count == 0)
  781. return RES_ERROR;
  782. }
  783. else if (ctrl == GET_SECTOR_SIZE)
  784. {
  785. struct rt_device_blk_geometry geometry;
  786. rt_memset(&geometry, 0, sizeof(geometry));
  787. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  788. *(WORD *)buff = (WORD)(geometry.bytes_per_sector);
  789. }
  790. else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
  791. {
  792. struct rt_device_blk_geometry geometry;
  793. rt_memset(&geometry, 0, sizeof(geometry));
  794. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  795. *(DWORD *)buff = geometry.block_size / geometry.bytes_per_sector;
  796. }
  797. else if (ctrl == CTRL_SYNC)
  798. {
  799. rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL);
  800. }
  801. else if (ctrl == CTRL_TRIM)
  802. {
  803. rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff);
  804. }
  805. return RES_OK;
  806. }
  807. DWORD get_fattime(void)
  808. {
  809. DWORD fat_time = 0;
  810. time_t now;
  811. struct tm tm_now;
  812. now = time(RT_NULL);
  813. gmtime_r(&now, &tm_now);
  814. fat_time = (DWORD)(tm_now.tm_year - 80) << 25 |
  815. (DWORD)(tm_now.tm_mon + 1) << 21 |
  816. (DWORD)tm_now.tm_mday << 16 |
  817. (DWORD)tm_now.tm_hour << 11 |
  818. (DWORD)tm_now.tm_min << 5 |
  819. (DWORD)tm_now.tm_sec / 2 ;
  820. return fat_time;
  821. }
  822. #if FF_FS_REENTRANT
  823. int ff_cre_syncobj(BYTE drv, FF_SYNC_t *m)
  824. {
  825. char name[8];
  826. rt_mutex_t mutex;
  827. rt_snprintf(name, sizeof(name), "fat%d", drv);
  828. mutex = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  829. if (mutex != RT_NULL)
  830. {
  831. *m = mutex;
  832. return RT_TRUE;
  833. }
  834. return RT_FALSE;
  835. }
  836. int ff_del_syncobj(FF_SYNC_t m)
  837. {
  838. if (m != RT_NULL)
  839. rt_mutex_delete(m);
  840. return RT_TRUE;
  841. }
  842. int ff_req_grant(FF_SYNC_t m)
  843. {
  844. if (rt_mutex_take(m, FF_FS_TIMEOUT) == RT_EOK)
  845. return RT_TRUE;
  846. return RT_FALSE;
  847. }
  848. void ff_rel_grant(FF_SYNC_t m)
  849. {
  850. rt_mutex_release(m);
  851. }
  852. #endif
  853. /* Memory functions */
  854. #if FF_USE_LFN == 3
  855. /* Allocate memory block */
  856. void *ff_memalloc(UINT size)
  857. {
  858. return rt_malloc(size);
  859. }
  860. /* Free memory block */
  861. void ff_memfree(void *mem)
  862. {
  863. rt_free(mem);
  864. }
  865. #endif /* FF_USE_LFN == 3 */