hal_spi.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934
  1. /*
  2. * Copyright (c) 2019-2025 Allwinner Technology Co., Ltd. ALL rights reserved.
  3. *
  4. * Allwinner is a trademark of Allwinner Technology Co.,Ltd., registered in
  5. * the the People's Republic of China and other countries.
  6. * All Allwinner Technology Co.,Ltd. trademarks are used with permission.
  7. *
  8. * DISCLAIMER
  9. * THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT.
  10. * IF YOU NEED TO INTEGRATE THIRD PARTY¡¯S TECHNOLOGY (SONY, DTS, DOLBY, AVS OR
  11. * MPEGLA, ETC.)
  12. * IN ALLWINNERS¡¯SDK OR PRODUCTS, YOU SHALL BE SOLELY RESPONSIBLE TO OBTAIN
  13. * ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES.
  14. * ALLWINNER SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT
  15. * TO MATTERS
  16. * COVERED UNDER ANY REQUIRED THIRD PARTY LICENSE.
  17. * YOU ARE SOLELY RESPONSIBLE FOR YOUR USAGE OF THIRD PARTY¡¯S TECHNOLOGY.
  18. *
  19. *
  20. * THIS SOFTWARE IS PROVIDED BY ALLWINNER"AS IS" AND TO THE MAXIMUM EXTENT
  21. * PERMITTED BY LAW, ALLWINNER EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND,
  22. * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION REGARDING
  23. * THE TITLE, NON-INFRINGEMENT, ACCURACY, CONDITION, COMPLETENESS, PERFORMANCE
  24. * OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  25. * IN NO EVENT SHALL ALLWINNER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  26. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  27. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  28. * LOSS OF USE, DATA, OR PROFITS, OR BUSINESS INTERRUPTION)
  29. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  30. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  31. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  32. * OF THE POSSIBILITY OF SUCH DAMAGE.
  33. */
  34. #define DBG_LVL DBG_WARNING
  35. #define DBG_TAG "hal.spi"
  36. #include <stdio.h>
  37. #include <stdlib.h>
  38. #include <interrupt.h>
  39. #include <sunxi_hal_spi.h>
  40. #include <hal_cache.h>
  41. #include <hal_mem.h>
  42. #include <hal_osal.h>
  43. #include <hal_log.h>
  44. #include <hal_gpio.h>
  45. #include <hal_dma.h>
  46. #include <hal_reset.h>
  47. #ifdef CONFIG_OS_MELIS
  48. #include <hal_cfg.h>
  49. #include <script.h>
  50. #endif
  51. #define SPI_ALIGN(x, a) __ALIGN_KERNEL((x), (a))
  52. #define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a)-1), (a))
  53. #define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (typeof(x))(a)-1)
  54. #define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask))
  55. #define MIN(a, b) (a > b ? b : a)
  56. #if (0)
  57. #define CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  58. #endif
  59. #if (0)
  60. #define SPI_INFO_LEVEL
  61. #endif
  62. #if (0)
  63. #define SPI_DATA_LEVEL
  64. #endif
  65. #if (0)
  66. #define SPI_DUMPREG_LEVEL
  67. #endif
  68. #ifdef SPI_INFO_LEVEL
  69. #define SPI_INFO(fmt, arg...) LOG_I("%s()%d " fmt, __func__, __LINE__, ##arg)
  70. #define SPI_INFO_IRQ(fmt, arg...) LOG_I("%s()%d " fmt, __func__, __LINE__, ##arg)
  71. #define SPI_ERR(fmt, arg...) LOG_E("%s()%d " fmt, __func__, __LINE__, ##arg)
  72. #define SPI_INIT(fmt, arg...) LOG_I("%s()%d " fmt, __func__, __LINE__, ##arg)
  73. #else
  74. #define SPI_INFO(fmt, arg...) \
  75. do \
  76. { \
  77. } while (0);
  78. #define SPI_INFO_IRQ(fmt, arg...) \
  79. do \
  80. { \
  81. } while (0);
  82. #define SPI_ERR(fmt, arg...) \
  83. do \
  84. { \
  85. } while (0);
  86. #define SPI_INIT(fmt, arg...) \
  87. do \
  88. { \
  89. } while (0);
  90. #endif
  91. static sunxi_spi_t g_sunxi_spi[HAL_SPI_MASTER_MAX];
  92. struct sunxi_spi_params_t g_sunxi_spi_params[] = {
  93. SPI0_PARAMS,
  94. SPI1_PARAMS,
  95. #ifdef SPI2_PARAMS
  96. SPI2_PARAMS,
  97. #endif
  98. };
  99. void spi_dump_reg(sunxi_spi_t *sspi, uint32_t offset, uint32_t len)
  100. {
  101. uint32_t i;
  102. uint8_t buf[64], cnt = 0;
  103. for (i = 0; i < len; i = i + REG_INTERVAL)
  104. {
  105. if (i % HEXADECIMAL == 0)
  106. cnt += sprintf(buf + cnt, "0x%08lx: ",
  107. (unsigned long)(sspi->base + offset + i));
  108. cnt += sprintf(buf + cnt, "%08lx ",
  109. (unsigned long)hal_readl(sspi->base + offset + i));
  110. if (i % HEXADECIMAL == REG_CL)
  111. {
  112. rt_kprintf("%s\n", buf);
  113. cnt = 0;
  114. }
  115. }
  116. }
  117. /* config chip select */
  118. static spi_master_status_t spi_set_cs(hal_spi_master_slave_port_t chipselect, sunxi_spi_t *sspi)
  119. {
  120. spi_master_status_t ret;
  121. uint32_t reg_val = hal_readl(sspi->base + SPI_TC_REG);
  122. if (chipselect < 4)
  123. {
  124. reg_val &= ~SPI_TC_SS_MASK; /* SS-chip select, clear two bits */
  125. reg_val |= chipselect
  126. << SPI_TC_SS_BIT_POS; /* set chip select */
  127. hal_writel(reg_val, sspi->base + SPI_TC_REG);
  128. ret = SPI_MASTER_OK;
  129. }
  130. else
  131. {
  132. SPI_ERR("[spi%d] Chip Select set fail! cs = %d\n", sspi->port,
  133. chipselect);
  134. ret = SPI_MASTER_INVALID_PARAMETER;
  135. }
  136. return ret;
  137. }
  138. static void spi_config_dhb(sunxi_spi_t *sspi, uint8_t value)
  139. {
  140. uint32_t reg_val = hal_readl(sspi->base + SPI_TC_REG);
  141. /*6.discard hash burst-DHB */
  142. if (value)
  143. {
  144. reg_val &= ~SPI_TC_DHB;
  145. }
  146. else
  147. {
  148. reg_val |= SPI_TC_DHB; /*default DHB =1, discard unused burst */
  149. }
  150. hal_writel(reg_val, sspi->base + SPI_TC_REG);
  151. }
  152. /* config spi */
  153. static void spi_config_tc(uint32_t config, sunxi_spi_t *sspi)
  154. {
  155. uint32_t reg_val = hal_readl(sspi->base + SPI_TC_REG);
  156. /*1. POL */
  157. if (config & SPI_POL_ACTIVE_)
  158. {
  159. reg_val |= SPI_TC_POL; /*default POL = 1 */
  160. }
  161. else
  162. {
  163. reg_val &= ~SPI_TC_POL;
  164. }
  165. /*2. PHA */
  166. if (config & SPI_PHA_ACTIVE_)
  167. {
  168. reg_val |= SPI_TC_PHA; /*default PHA = 1 */
  169. }
  170. else
  171. {
  172. reg_val &= ~SPI_TC_PHA;
  173. }
  174. /*3. SSPOL,chip select signal polarity */
  175. if (config & SPI_CS_HIGH_ACTIVE_)
  176. {
  177. reg_val &= ~SPI_TC_SPOL;
  178. }
  179. else
  180. {
  181. reg_val |= SPI_TC_SPOL; /*default SSPOL = 1,Low level effect */
  182. }
  183. /*4. LMTF--LSB/MSB transfer first select */
  184. if (config & SPI_LSB_FIRST_ACTIVE_)
  185. {
  186. reg_val |= SPI_TC_FBS;
  187. }
  188. else
  189. {
  190. reg_val &= ~SPI_TC_FBS; /*default LMTF =0, MSB first */
  191. }
  192. /* set DDB,DHB,SMC,SSCTL */
  193. /*5. dummy burst type */
  194. if (config & SPI_DUMMY_ONE_ACTIVE_)
  195. {
  196. reg_val |= SPI_TC_DDB;
  197. }
  198. else
  199. {
  200. reg_val &= ~SPI_TC_DDB; /*default DDB =0, ZERO */
  201. }
  202. /*6.discard hash burst-DHB */
  203. if (config & SPI_RECEIVE_ALL_ACTIVE_)
  204. {
  205. reg_val &= ~SPI_TC_DHB;
  206. }
  207. else
  208. {
  209. reg_val |= SPI_TC_DHB; /*default DHB =1, discard unused burst */
  210. }
  211. /*7. set SMC = 1 , SSCTL = 0 ,TPE = 1 */
  212. reg_val &= ~SPI_TC_SSCTL;
  213. hal_writel(reg_val, sspi->base + SPI_TC_REG);
  214. }
  215. /* delay internal read sample point*/
  216. static void spi_sample_delay(uint32_t sdm, uint32_t sdc, sunxi_spi_t *sspi)
  217. {
  218. uint32_t reg_val = hal_readl(sspi->base + SPI_TC_REG);
  219. uint32_t org_val = reg_val;
  220. if (sdm)
  221. {
  222. reg_val |= SPI_TC_SDM;
  223. }
  224. else
  225. {
  226. reg_val &= ~SPI_TC_SDM;
  227. }
  228. if (sdc)
  229. {
  230. reg_val |= SPI_TC_SDC;
  231. }
  232. else
  233. {
  234. reg_val &= ~SPI_TC_SDC;
  235. }
  236. if (reg_val != org_val)
  237. {
  238. hal_writel(reg_val, sspi->base + SPI_TC_REG);
  239. }
  240. }
  241. /* start spi transfer */
  242. static void spi_start_xfer(sunxi_spi_t *sspi)
  243. {
  244. uint32_t reg_val = hal_readl(sspi->base + SPI_TC_REG);
  245. reg_val |= SPI_TC_XCH;
  246. hal_writel(reg_val, sspi->base + SPI_TC_REG);
  247. }
  248. /* enable spi bus */
  249. static void spi_enable_bus(sunxi_spi_t *sspi)
  250. {
  251. uint32_t reg_val = hal_readl(sspi->base + SPI_GC_REG);
  252. reg_val |= SPI_GC_EN;
  253. hal_writel(reg_val, sspi->base + SPI_GC_REG);
  254. }
  255. /* disbale spi bus */
  256. static void spi_disable_bus(sunxi_spi_t *sspi)
  257. {
  258. uint32_t reg_val = hal_readl(sspi->base + SPI_GC_REG);
  259. reg_val &= ~SPI_GC_EN;
  260. hal_writel(reg_val, sspi->base + SPI_GC_REG);
  261. }
  262. /* set master mode */
  263. static void spi_set_master(sunxi_spi_t *sspi)
  264. {
  265. uint32_t reg_val = hal_readl(sspi->base + SPI_GC_REG);
  266. reg_val |= SPI_GC_MODE;
  267. hal_writel(reg_val, sspi->base + SPI_GC_REG);
  268. }
  269. /* soft reset spi controller */
  270. static void spi_soft_reset(sunxi_spi_t *sspi)
  271. {
  272. uint32_t reg_val = hal_readl(sspi->base + SPI_GC_REG);
  273. reg_val |= SPI_GC_SRST;
  274. hal_writel(reg_val, sspi->base + SPI_GC_REG);
  275. }
  276. /* enable transmit pause */
  277. static void spi_enable_tp(sunxi_spi_t *sspi)
  278. {
  279. uint32_t reg_val = hal_readl(sspi->base + SPI_GC_REG);
  280. reg_val |= SPI_GC_TP_EN;
  281. hal_writel(reg_val, sspi->base + SPI_GC_REG);
  282. }
  283. /* set ss control */
  284. static void spi_ss_owner(sunxi_spi_t *sspi, uint32_t on_off)
  285. {
  286. u32 reg_val = hal_readl(sspi->base + SPI_TC_REG);
  287. on_off &= 0x1;
  288. if (on_off)
  289. {
  290. reg_val |= SPI_TC_SS_OWNER;
  291. }
  292. else
  293. {
  294. reg_val &= ~SPI_TC_SS_OWNER;
  295. }
  296. hal_writel(reg_val, sspi->base + SPI_TC_REG);
  297. }
  298. /* enable irq type */
  299. static void spi_enable_irq(uint32_t bitmap, sunxi_spi_t *sspi)
  300. {
  301. uint32_t reg_val = hal_readl(sspi->base + SPI_INT_CTL_REG);
  302. bitmap &= SPI_INTEN_MASK;
  303. reg_val |= bitmap;
  304. hal_writel(reg_val, sspi->base + SPI_INT_CTL_REG);
  305. }
  306. /* disable irq type */
  307. static void spi_disable_irq(uint32_t bitmap, sunxi_spi_t *sspi)
  308. {
  309. uint32_t reg_val = hal_readl(sspi->base + SPI_INT_CTL_REG);
  310. bitmap &= SPI_INTEN_MASK;
  311. reg_val &= ~bitmap;
  312. hal_writel(reg_val, sspi->base + SPI_INT_CTL_REG);
  313. }
  314. /* enable dma irq */
  315. static void spi_enable_dma_irq(uint32_t bitmap, sunxi_spi_t *sspi)
  316. {
  317. uint32_t reg_val = hal_readl(sspi->base + SPI_FIFO_CTL_REG);
  318. bitmap &= SPI_FIFO_CTL_DRQEN_MASK;
  319. reg_val |= bitmap;
  320. hal_writel(reg_val, sspi->base + SPI_FIFO_CTL_REG);
  321. }
  322. /* disable dma irq */
  323. static void spi_disable_dma_irq(uint32_t bitmap, sunxi_spi_t *sspi)
  324. {
  325. uint32_t reg_val = hal_readl(sspi->base + SPI_FIFO_CTL_REG);
  326. bitmap &= SPI_FIFO_CTL_DRQEN_MASK;
  327. reg_val &= ~bitmap;
  328. hal_writel(reg_val, sspi->base + SPI_FIFO_CTL_REG);
  329. }
  330. /* query irq enable */
  331. static uint32_t spi_qry_irq_enable(sunxi_spi_t *sspi)
  332. {
  333. return (SPI_INTEN_MASK & hal_readl(sspi->base + SPI_INT_CTL_REG));
  334. }
  335. /* query irq pending */
  336. static uint32_t spi_qry_irq_pending(sunxi_spi_t *sspi)
  337. {
  338. return (SPI_INT_STA_MASK & hal_readl(sspi->base + SPI_INT_STA_REG));
  339. }
  340. /* clear irq pending */
  341. static void spi_clr_irq_pending(uint32_t pending_bit, sunxi_spi_t *sspi)
  342. {
  343. pending_bit &= SPI_INT_STA_MASK;
  344. hal_writel(pending_bit, sspi->base + SPI_INT_STA_REG);
  345. }
  346. /* query txfifo bytes */
  347. static uint32_t spi_query_txfifo(sunxi_spi_t *sspi)
  348. {
  349. uint32_t reg_val =
  350. (SPI_FIFO_STA_TX_CNT & hal_readl(sspi->base + SPI_FIFO_STA_REG));
  351. reg_val >>= SPI_TXCNT_BIT_POS;
  352. return reg_val;
  353. }
  354. /* query rxfifo bytes */
  355. static uint32_t spi_query_rxfifo(sunxi_spi_t *sspi)
  356. {
  357. uint32_t reg_val =
  358. (SPI_FIFO_STA_RX_CNT & hal_readl(sspi->base + SPI_FIFO_STA_REG));
  359. reg_val >>= SPI_RXCNT_BIT_POS;
  360. return reg_val;
  361. }
  362. /* reset fifo */
  363. static void spi_reset_fifo(sunxi_spi_t *sspi)
  364. {
  365. uint32_t reg_val = hal_readl(sspi->base + SPI_FIFO_CTL_REG);
  366. reg_val |= (SPI_FIFO_CTL_RX_RST | SPI_FIFO_CTL_TX_RST);
  367. /* Set the trigger level of RxFIFO/TxFIFO. */
  368. reg_val &= ~(SPI_FIFO_CTL_RX_LEVEL | SPI_FIFO_CTL_TX_LEVEL);
  369. reg_val |= (0x20 << 16) | 0x20;
  370. hal_writel(reg_val, sspi->base + SPI_FIFO_CTL_REG);
  371. }
  372. static void spi_set_rx_trig(uint32_t val, sunxi_spi_t *sspi)
  373. {
  374. uint32_t reg_val = hal_readl(sspi->base + SPI_FIFO_CTL_REG);
  375. reg_val &= ~SPI_FIFO_CTL_RX_LEVEL;
  376. reg_val |= val & SPI_FIFO_CTL_RX_LEVEL;
  377. hal_writel(reg_val, sspi->base + SPI_FIFO_CTL_REG);
  378. }
  379. static void spi_set_tx_trig(uint32_t val, sunxi_spi_t *sspi)
  380. {
  381. uint32_t reg_val = hal_readl(sspi->base + SPI_FIFO_CTL_REG);
  382. reg_val &= ~SPI_FIFO_CTL_TX_LEVEL;
  383. reg_val |= (val << 16) & SPI_FIFO_CTL_TX_LEVEL;
  384. hal_writel(reg_val, sspi->base + SPI_FIFO_CTL_REG);
  385. }
  386. /* set transfer total length BC, transfer length TC and single transmit length
  387. * STC */
  388. static void spi_set_bc_tc_stc(uint32_t tx_len, uint32_t rx_len,
  389. uint32_t stc_len, uint32_t dummy_cnt,
  390. sunxi_spi_t *sspi)
  391. {
  392. uint32_t reg_val;
  393. /* set MBC(0x30) = tx_len + rx_len + dummy_cnt */
  394. reg_val = hal_readl(sspi->base + SPI_BURST_CNT_REG);
  395. reg_val &= ~SPI_BC_CNT_MASK;
  396. reg_val |= (SPI_BC_CNT_MASK & (rx_len + dummy_cnt));
  397. hal_writel(reg_val, sspi->base + SPI_BURST_CNT_REG);
  398. /* set MTC(0x34) = tx_len */
  399. reg_val = hal_readl(sspi->base + SPI_TRANSMIT_CNT_REG);
  400. reg_val &= ~SPI_TC_CNT_MASK;
  401. reg_val |= (SPI_TC_CNT_MASK & tx_len);
  402. hal_writel(reg_val, sspi->base + SPI_TRANSMIT_CNT_REG);
  403. /* set BBC(0x38) = dummy cnt & single mode transmit counter */
  404. reg_val = hal_readl(sspi->base + SPI_BCC_REG);
  405. reg_val &= ~SPI_BCC_STC_MASK;
  406. reg_val |= (SPI_BCC_STC_MASK & stc_len);
  407. reg_val &= ~(0xf << 24);
  408. reg_val |= (dummy_cnt << 24);
  409. hal_writel(reg_val, sspi->base + SPI_BCC_REG);
  410. }
  411. /* set ss control */
  412. static void spi_ss_ctrl(sunxi_spi_t *sspi, uint8_t on_off)
  413. {
  414. uint32_t reg_val = hal_readl(sspi->base + SPI_TC_REG);
  415. on_off &= 0x1;
  416. if (on_off)
  417. {
  418. reg_val |= SPI_TC_SS_LEVEL;
  419. }
  420. else
  421. {
  422. reg_val &= ~SPI_TC_SS_LEVEL;
  423. }
  424. hal_writel(reg_val, sspi->base + SPI_TC_REG);
  425. }
  426. static void spi_disable_dual(sunxi_spi_t *sspi)
  427. {
  428. uint32_t reg_val = hal_readl(sspi->base + SPI_BCC_REG);
  429. reg_val &= ~SPI_BCC_DUAL_MODE;
  430. hal_writel(reg_val, sspi->base + SPI_BCC_REG);
  431. }
  432. static void spi_enable_dual(sunxi_spi_t *sspi)
  433. {
  434. uint32_t reg_val = hal_readl(sspi->base + SPI_BCC_REG);
  435. reg_val &= ~SPI_BCC_QUAD_MODE;
  436. reg_val |= SPI_BCC_DUAL_MODE;
  437. hal_writel(reg_val, sspi->base + SPI_BCC_REG);
  438. }
  439. static void spi_disable_quad(sunxi_spi_t *sspi)
  440. {
  441. uint32_t reg_val = hal_readl(sspi->base + SPI_BCC_REG);
  442. reg_val &= ~SPI_BCC_QUAD_MODE;
  443. hal_writel(reg_val, sspi->base + SPI_BCC_REG);
  444. }
  445. static void spi_enable_quad(sunxi_spi_t *sspi)
  446. {
  447. uint32_t reg_val = hal_readl(sspi->base + SPI_BCC_REG);
  448. reg_val |= SPI_BCC_QUAD_MODE;
  449. hal_writel(reg_val, sspi->base + SPI_BCC_REG);
  450. }
  451. static spi_master_status_t spi_mode_check(sunxi_spi_t *sspi)
  452. {
  453. uint32_t flags = 0;
  454. if (sspi->mode_type != MODE_TYPE_NULL)
  455. {
  456. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  457. return SPI_MASTER_INVALID_PARAMETER;
  458. }
  459. /* full duplex */
  460. if (sspi->transfer->tx_buf && sspi->transfer->rx_buf)
  461. {
  462. spi_set_bc_tc_stc(sspi->transfer->tx_len,
  463. sspi->transfer->rx_len,
  464. sspi->transfer->tx_single_len,
  465. sspi->transfer->dummy_byte, sspi);
  466. sspi->mode_type = FULL_DUPLEX_TX_RX;
  467. if (sspi->transfer->rx_nbits == SPI_NBITS_QUAD)
  468. {
  469. spi_disable_dual(sspi);
  470. spi_enable_quad(sspi);
  471. SPI_INFO("[spi%d] Quad mode Full duplex tx rx\n",
  472. sspi->port);
  473. }
  474. else if (sspi->transfer->rx_nbits == SPI_NBITS_DUAL)
  475. {
  476. spi_disable_quad(sspi);
  477. spi_enable_dual(sspi);
  478. SPI_INFO("[spi%d] Dual mode Full duplex tx rx\n",
  479. sspi->port);
  480. }
  481. else
  482. {
  483. spi_disable_quad(sspi);
  484. spi_disable_dual(sspi);
  485. SPI_INFO("[spi%d] Single mode Full duplex tx rx\n",
  486. sspi->port);
  487. }
  488. } /* half duplex transmit */
  489. else if (sspi->transfer->tx_buf)
  490. {
  491. if (sspi->transfer->tx_nbits == SPI_NBITS_QUAD)
  492. {
  493. spi_disable_dual(sspi);
  494. spi_enable_quad(sspi);
  495. spi_set_bc_tc_stc(sspi->transfer->tx_len, sspi->transfer->tx_len,
  496. sspi->transfer->tx_single_len,
  497. sspi->transfer->dummy_byte, sspi);
  498. sspi->mode_type = QUAD_HALF_DUPLEX_TX;
  499. SPI_INFO("[spi%d] Quad mode Half duplex tx\n",
  500. sspi->port);
  501. }
  502. else if (sspi->transfer->tx_nbits == SPI_NBITS_DUAL)
  503. {
  504. spi_disable_quad(sspi);
  505. spi_enable_dual(sspi);
  506. spi_set_bc_tc_stc(sspi->transfer->tx_len, sspi->transfer->tx_len,
  507. sspi->transfer->tx_single_len,
  508. sspi->transfer->dummy_byte, sspi);
  509. sspi->mode_type = DUAL_HALF_DUPLEX_TX;
  510. SPI_INFO("[spi%d] Dual mode Half duplex tx\n",
  511. sspi->port);
  512. }
  513. else
  514. {
  515. spi_disable_quad(sspi);
  516. spi_disable_dual(sspi);
  517. spi_set_bc_tc_stc(sspi->transfer->tx_len, sspi->transfer->tx_len,
  518. sspi->transfer->tx_len,
  519. sspi->transfer->dummy_byte, sspi);
  520. sspi->mode_type = SGLE_HALF_DUPLEX_TX;
  521. SPI_INFO("[spi%d] Single mode Half duplex tx\n",
  522. sspi->port);
  523. }
  524. } /* half duplex receive */
  525. else if (sspi->transfer->rx_buf)
  526. {
  527. if (sspi->transfer->rx_nbits == SPI_NBITS_QUAD)
  528. {
  529. spi_disable_dual(sspi);
  530. spi_enable_quad(sspi);
  531. sspi->mode_type = QUAD_HALF_DUPLEX_RX;
  532. SPI_INFO("[spi%d] Quad mode Half duplex rx\n",
  533. sspi->port);
  534. }
  535. else if (sspi->transfer->rx_nbits == SPI_NBITS_DUAL)
  536. {
  537. spi_disable_quad(sspi);
  538. spi_enable_dual(sspi);
  539. sspi->mode_type = DUAL_HALF_DUPLEX_RX;
  540. SPI_INFO("[spi%d] Dual mode Half duplex rx\n",
  541. sspi->port);
  542. }
  543. else
  544. {
  545. spi_disable_quad(sspi);
  546. spi_disable_dual(sspi);
  547. sspi->mode_type = SGLE_HALF_DUPLEX_RX;
  548. SPI_INFO("[spi%d] Single mode Half duplex rx\n",
  549. sspi->port);
  550. }
  551. spi_set_bc_tc_stc(0, sspi->transfer->rx_len, 0,
  552. sspi->transfer->dummy_byte, sspi);
  553. }
  554. return SPI_MASTER_OK;
  555. }
  556. static spi_master_status_t spi_cpu_write(sunxi_spi_t *sspi)
  557. {
  558. uint32_t flags = 0;
  559. uint32_t len = sspi->transfer->tx_len;
  560. const uint8_t *buf = sspi->transfer->tx_buf;
  561. volatile int32_t poll_time;
  562. #ifdef SPI_DATA_LEVEL
  563. uint32_t i, j;
  564. uint8_t dbuf[64], cnt = 0;
  565. #endif
  566. if (NULL == buf)
  567. {
  568. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  569. return SPI_MASTER_INVALID_PARAMETER;
  570. }
  571. #ifdef SPI_DUMPREG_LEVEL
  572. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  573. spi_dump_reg(sspi, 0, 0x60);
  574. #endif
  575. #ifdef SPI_DATA_LEVEL
  576. SPI_INFO("tx_len = %d\n", len);
  577. for (i = 0; i < len; i += 16)
  578. {
  579. cnt = 0;
  580. cnt += sprintf(dbuf + cnt, "%04x: ", i);
  581. for (j = 0; ((i + j) < len) && (j < 16); j++)
  582. cnt += sprintf(dbuf + cnt, "%02x ",
  583. ((uint8_t *)(buf))[i + j]);
  584. printf("%s\n", dbuf);
  585. }
  586. #endif
  587. for (; len > 0; --len)
  588. {
  589. poll_time = 0xFFFFFF;
  590. while ((spi_query_txfifo(sspi) >= MAX_FIFU) && poll_time--)
  591. ;
  592. if (poll_time <= 0)
  593. {
  594. SPI_ERR("[spi%d] cpu transfer data time out!\n",
  595. sspi->port);
  596. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  597. spi_dump_reg(sspi, 0, 0x60);
  598. return SPI_MASTER_ERROR_TIMEOUT;
  599. }
  600. hal_writeb(*buf++, sspi->base + SPI_TXDATA_REG);
  601. }
  602. return SPI_MASTER_OK;
  603. }
  604. static spi_master_status_t spi_cpu_read(sunxi_spi_t *sspi)
  605. {
  606. uint32_t flags = 0;
  607. uint32_t len = sspi->transfer->rx_len;
  608. uint8_t *buf = sspi->transfer->rx_buf;
  609. volatile int32_t poll_time;
  610. uint32_t n;
  611. #ifdef SPI_DATA_LEVEL
  612. uint32_t i, j;
  613. uint8_t dbuf[64], cnt = 0;
  614. #endif
  615. if (NULL == buf)
  616. {
  617. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  618. return SPI_MASTER_INVALID_PARAMETER;
  619. }
  620. #ifdef SPI_DUMPREG_LEVEL
  621. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  622. spi_dump_reg(sspi, 0, 0x60);
  623. #endif
  624. for (n = 0; n < len; n++)
  625. {
  626. poll_time = 0xFFFFFF;
  627. while (!spi_query_rxfifo(sspi) && poll_time--)
  628. {
  629. }
  630. if (poll_time <= 0)
  631. {
  632. SPI_ERR("[spi%d] cpu receive data time out!\n",
  633. sspi->port);
  634. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  635. spi_dump_reg(sspi, 0, 0x60);
  636. return SPI_MASTER_ERROR_TIMEOUT;
  637. }
  638. *(buf + n) = hal_readb(sspi->base + SPI_RXDATA_REG);
  639. }
  640. #ifdef SPI_DATA_LEVEL
  641. SPI_INFO("rx_len = %d\n", len);
  642. for (i = 0; i < len; i += 16)
  643. {
  644. cnt = 0;
  645. cnt += sprintf(dbuf + cnt, "%04x: ", i);
  646. for (j = 0; ((i + j) < len) && (j < 16); j++)
  647. cnt += sprintf(dbuf + cnt, "%02x ",
  648. ((uint8_t *)(buf))[i + j]);
  649. printf("%s\n", dbuf);
  650. }
  651. #endif
  652. return SPI_MASTER_OK;
  653. }
  654. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  655. static spi_master_status_t spi_dma_tx_config(struct sunxi_spi *sspi)
  656. {
  657. hal_dma_chan_status_t ret;
  658. uint32_t flags = 0;
  659. uint32_t len = sspi->transfer->tx_len;
  660. uint8_t const *buf = sspi->transfer->tx_buf;
  661. struct dma_slave_config *config = &sspi->dma_tx.config;
  662. #ifdef SPI_DATA_LEVEL
  663. unsigned int i, j;
  664. u8 dbuf[64], cnt = 0;
  665. #endif
  666. if (NULL == buf)
  667. {
  668. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  669. return SPI_MASTER_INVALID_PARAMETER;
  670. }
  671. if (len <= ALIGN_DMA_BUF_SIZE)
  672. {
  673. memcpy(sspi->align_dma_buf, buf, len);
  674. buf = sspi->align_dma_buf;
  675. }
  676. else
  677. {
  678. SPI_ERR("[spi%d] tx size over dma align buf size\n",
  679. sspi->port);
  680. /* buffer on DMA must align to cache line */
  681. if ((unsigned long)buf & (64 - 1) || len & (64 - 1))
  682. {
  683. SPI_ERR("[spi%d] tx buf or len not align to 64\n",
  684. sspi->port);
  685. return SPI_MASTER_INVALID_PARAMETER;
  686. }
  687. }
  688. hal_dcache_clean((unsigned long)buf, SPI_ALIGN(len, 64));
  689. #ifdef SPI_DATA_LEVEL
  690. SPI_INFO("tx_len = %d\n", len);
  691. for (i = 0; i < len; i += 16)
  692. {
  693. cnt = 0;
  694. cnt += sprintf(dbuf + cnt, "%03x: ", i);
  695. for (j = 0; ((i + j) < len) && (j < 16); j++)
  696. cnt += sprintf(dbuf + cnt, "%02x ",
  697. ((uint8_t *)(buf))[i + j]);
  698. printf("%s\n", dbuf);
  699. }
  700. #endif
  701. ret = hal_dma_chan_request(&sspi->dma_tx.chan);
  702. if (ret == HAL_DMA_CHAN_STATUS_BUSY)
  703. {
  704. SPI_ERR("[spi%d] request dma_rx failed\n", sspi->port);
  705. return SPI_MASTER_ERROR;
  706. }
  707. spi_set_tx_trig(0x20, sspi);
  708. spi_enable_dma_irq(SPI_FIFO_CTL_TX_DRQEN, sspi);
  709. #ifdef SPI_DUMPREG_LEVEL
  710. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  711. spi_dump_reg(sspi, 0, 0x60);
  712. #endif
  713. config->direction = DMA_MEM_TO_DEV;
  714. config->dst_addr = sspi->base + SPI_TXDATA_REG;
  715. config->src_addr = (unsigned long)buf;
  716. if (len % DMA_SLAVE_BUSWIDTH_4_BYTES)
  717. {
  718. config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  719. config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  720. config->dst_maxburst = DMA_SLAVE_BURST_16;
  721. config->src_maxburst = DMA_SLAVE_BURST_16;
  722. }
  723. else
  724. {
  725. config->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  726. config->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  727. config->dst_maxburst = DMA_SLAVE_BURST_8;
  728. config->src_maxburst = DMA_SLAVE_BURST_8;
  729. }
  730. config->slave_id =
  731. sunxi_slave_id(SUNXI_SPI_DRQ_TX(sspi->port), DRQSRC_SDRAM);
  732. SPI_INFO("[spi%d] config:\n"
  733. " direction: %d\n"
  734. " src_addr: 0x%08lx,"
  735. " dst_addr: 0x%08lx\n"
  736. " src_addr_width: %d,"
  737. " dst_addr_width: %d\n"
  738. " src_maxburst: %lu,"
  739. " dst_maxburst: %lu\n"
  740. " slave_id: 0x%08lx\n",
  741. sspi->port, config->direction, config->src_addr,
  742. config->dst_addr, config->src_addr_width,
  743. config->dst_addr_width, config->src_maxburst,
  744. config->dst_maxburst, config->slave_id);
  745. return SPI_MASTER_OK;
  746. }
  747. #ifdef SPI_INFO_LEVEL
  748. static void spi_dma_tx_callback(void *para)
  749. {
  750. sunxi_spi_t *sspi = (sunxi_spi_t *)para;
  751. SPI_INFO("[spi%d] DMA TX callback function\n", sspi->port);
  752. }
  753. #endif
  754. static spi_master_status_t spi_dma_tx_submit(struct sunxi_spi *sspi)
  755. {
  756. hal_dma_status_t ret;
  757. uint32_t len = sspi->transfer->tx_len;
  758. struct dma_slave_config *config = &sspi->dma_tx.config;
  759. struct sunxi_dma_chan *chan = sspi->dma_tx.chan;
  760. ret = hal_dma_slave_config(chan, config);
  761. if (ret)
  762. {
  763. SPI_ERR("[spi%d] dma slave config failed! return %d\n",
  764. sspi->port, ret);
  765. return SPI_MASTER_ERROR;
  766. }
  767. ret = hal_dma_prep_device(chan, config->dst_addr, config->src_addr, len,
  768. config->direction);
  769. if (ret)
  770. {
  771. SPI_ERR("[spi%d] dma prep device failed! return %d\n",
  772. sspi->port, ret);
  773. return SPI_MASTER_ERROR;
  774. }
  775. #ifdef SPI_INFO_LEVEL
  776. chan->callback = spi_dma_tx_callback;
  777. chan->callback_param = sspi;
  778. #endif
  779. ret = hal_dma_start(chan);
  780. if (ret)
  781. {
  782. SPI_ERR("[spi%d] dma start error! return %d\n", sspi->port,
  783. ret);
  784. return SPI_MASTER_ERROR;
  785. }
  786. return SPI_MASTER_OK;
  787. }
  788. static void spi_dma_rx_callback(void *para)
  789. {
  790. sunxi_spi_t *sspi = (sunxi_spi_t *)para;
  791. if (hal_sem_post(sspi->xSemaphore_rx))
  792. {
  793. SPI_ERR("[spi%d] xSemaphoreGive failed.\n", sspi->port);
  794. }
  795. }
  796. static spi_master_status_t spi_dma_rx_config(struct sunxi_spi *sspi)
  797. {
  798. hal_dma_chan_status_t ret;
  799. uint32_t flags = 0;
  800. uint32_t len = sspi->transfer->rx_len, size = 0;
  801. uint8_t *buf = sspi->transfer->rx_buf;
  802. struct dma_slave_config *config = &sspi->dma_rx.config;
  803. if (NULL == buf)
  804. {
  805. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  806. return SPI_MASTER_INVALID_PARAMETER;
  807. }
  808. if (len <= ALIGN_DMA_BUF_SIZE)
  809. {
  810. buf = sspi->align_dma_buf;
  811. memset(buf, 0, ALIGN_DMA_BUF_SIZE);
  812. }
  813. else
  814. {
  815. SPI_ERR("[spi%d] rx size over dma align buf size\n",
  816. sspi->port);
  817. /* buffer on DMA must align to cache line */
  818. if ((unsigned long)buf & (64 - 1) || len & (64 - 1))
  819. {
  820. SPI_ERR("[spi%d] rx buf or len not align to 64\n",
  821. sspi->port);
  822. return SPI_MASTER_INVALID_PARAMETER;
  823. }
  824. }
  825. hal_dcache_clean_invalidate((unsigned long)buf, SPI_ALIGN(len, 64));
  826. spi_enable_dma_irq(SPI_FIFO_CTL_RX_DRQEN, sspi);
  827. #ifdef SPI_DUMPREG_LEVEL
  828. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  829. spi_dump_reg(sspi, 0, 0x60);
  830. #endif
  831. ret = hal_dma_chan_request(&sspi->dma_rx.chan);
  832. if (ret == HAL_DMA_CHAN_STATUS_BUSY)
  833. {
  834. SPI_ERR("[spi%d] request dma_rx failed\n", sspi->port);
  835. return SPI_MASTER_ERROR;
  836. }
  837. config->direction = DMA_DEV_TO_MEM;
  838. config->dst_addr = (unsigned long)buf;
  839. config->src_addr = sspi->base + SPI_RXDATA_REG;
  840. if (len % DMA_SLAVE_BUSWIDTH_4_BYTES)
  841. {
  842. config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  843. config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  844. config->dst_maxburst = DMA_SLAVE_BURST_16;
  845. config->src_maxburst = DMA_SLAVE_BURST_16;
  846. }
  847. else
  848. {
  849. config->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  850. config->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  851. config->dst_maxburst = DMA_SLAVE_BURST_8;
  852. config->src_maxburst = DMA_SLAVE_BURST_8;
  853. }
  854. config->slave_id =
  855. sunxi_slave_id(DRQDST_SDRAM, SUNXI_SPI_DRQ_RX(sspi->port));
  856. SPI_INFO("[spi%d] config:\n"
  857. " direction: %d\n"
  858. " src_addr: 0x%08lx,"
  859. " dst_addr: 0x%08lx\n"
  860. " src_addr_width: %d,"
  861. " dst_addr_width: %d\n"
  862. " src_maxburst: %lu,"
  863. " dst_maxburst: %lu\n"
  864. " slave_id: 0x%08lx\n",
  865. sspi->port, config->direction, config->src_addr,
  866. config->dst_addr, config->src_addr_width,
  867. config->dst_addr_width, config->src_maxburst,
  868. config->dst_maxburst, config->slave_id);
  869. return SPI_MASTER_OK;
  870. }
  871. static spi_master_status_t spi_dma_rx_submit(struct sunxi_spi *sspi)
  872. {
  873. hal_dma_status_t ret;
  874. uint32_t flags = 0;
  875. uint32_t len = sspi->transfer->rx_len, size = 0;
  876. struct sunxi_dma_chan *chan = sspi->dma_rx.chan;
  877. struct dma_slave_config *config = &sspi->dma_rx.config;
  878. ret = hal_dma_slave_config(chan, config);
  879. if (ret)
  880. {
  881. SPI_ERR("[spi%d] dma slave config failed! return %d\n",
  882. sspi->port, ret);
  883. return SPI_MASTER_ERROR;
  884. }
  885. ret = hal_dma_prep_device(chan, config->dst_addr, config->src_addr, len,
  886. config->direction);
  887. if (ret)
  888. {
  889. SPI_ERR("[spi%d] dma prep device failed! return %d\n",
  890. sspi->port, ret);
  891. return SPI_MASTER_ERROR;
  892. }
  893. chan->callback = spi_dma_rx_callback;
  894. chan->callback_param = sspi;
  895. ret = hal_dma_start(chan);
  896. if (ret)
  897. {
  898. SPI_ERR("[spi%d] dma start error! return %d\n", sspi->port,
  899. ret);
  900. return SPI_MASTER_ERROR;
  901. }
  902. return SPI_MASTER_OK;
  903. }
  904. #endif
  905. static spi_master_status_t spi_transfer(sunxi_spi_t *sspi)
  906. {
  907. spi_config_dhb(sspi, 1);
  908. switch (sspi->mode_type)
  909. {
  910. case SGLE_HALF_DUPLEX_RX:
  911. case DUAL_HALF_DUPLEX_RX:
  912. case QUAD_HALF_DUPLEX_RX:
  913. {
  914. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  915. /* >64 use DMA transfer, or use cpu */
  916. if (sspi->transfer->rx_len > BULK_DATA_BOUNDARY)
  917. {
  918. SPI_INFO("[spi%d] rx by dma\n", sspi->port);
  919. /* For Rx mode, the DMA end(not TC flag) is real end. */
  920. spi_disable_irq(SPI_INTEN_TC, sspi);
  921. if (spi_dma_rx_config(sspi))
  922. {
  923. return SPI_MASTER_ERROR;
  924. }
  925. if (spi_dma_rx_submit(sspi))
  926. {
  927. return SPI_MASTER_ERROR;
  928. }
  929. spi_start_xfer(sspi);
  930. }
  931. else
  932. {
  933. #endif
  934. SPI_INFO("[spi%d] rx by cpu\n", sspi->port);
  935. spi_clr_irq_pending(SPI_INT_STA_MASK, sspi);
  936. spi_start_xfer(sspi);
  937. spi_cpu_read(sspi);
  938. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  939. }
  940. #endif
  941. break;
  942. }
  943. case SGLE_HALF_DUPLEX_TX:
  944. case DUAL_HALF_DUPLEX_TX:
  945. case QUAD_HALF_DUPLEX_TX:
  946. {
  947. spi_config_dhb(sspi, 0);
  948. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  949. /* >64 use DMA transfer, or use cpu */
  950. if (sspi->transfer->tx_len > BULK_DATA_BOUNDARY)
  951. {
  952. SPI_INFO("[spi%d] tx by dma\n", sspi->port);
  953. sspi->sem = 1;
  954. spi_start_xfer(sspi);
  955. if (spi_dma_tx_config(sspi))
  956. {
  957. return SPI_MASTER_ERROR;
  958. }
  959. if (spi_dma_tx_submit(sspi))
  960. {
  961. return SPI_MASTER_ERROR;
  962. }
  963. }
  964. else
  965. {
  966. #endif
  967. SPI_INFO("[spi%d] tx by cpu\n", sspi->port);
  968. spi_start_xfer(sspi);
  969. spi_cpu_write(sspi);
  970. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  971. }
  972. #endif
  973. break;
  974. }
  975. case FULL_DUPLEX_TX_RX:
  976. {
  977. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  978. /* >64 use DMA transfer, or use cpu */
  979. if (sspi->transfer->rx_len > BULK_DATA_BOUNDARY)
  980. {
  981. SPI_INFO("[spi%d] tx and rx by dma\n", sspi->port);
  982. /* For Rx mode, the DMA end(not TC flag) is real end. */
  983. spi_disable_irq(SPI_INTEN_TC, sspi);
  984. spi_start_xfer(sspi);
  985. if (spi_dma_rx_config(sspi))
  986. {
  987. return SPI_MASTER_ERROR;
  988. }
  989. if (spi_dma_rx_submit(sspi))
  990. {
  991. return SPI_MASTER_ERROR;
  992. }
  993. spi_cpu_write(sspi);
  994. }
  995. else
  996. {
  997. #endif
  998. SPI_INFO("[spi%d] tx and rx by cpu\n", sspi->port);
  999. spi_start_xfer(sspi);
  1000. spi_cpu_write(sspi);
  1001. spi_cpu_read(sspi);
  1002. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1003. }
  1004. #endif
  1005. break;
  1006. }
  1007. default:
  1008. {
  1009. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  1010. return SPI_MASTER_INVALID_PARAMETER;
  1011. }
  1012. }
  1013. return SPI_MASTER_OK;
  1014. }
  1015. /* wake up the sleep thread, and give the result code */
  1016. static irqreturn_t spi_irq_handler(int irq, void *ptr)
  1017. {
  1018. uint32_t flags = 0;
  1019. uint32_t status = 0, enable = 0;
  1020. sunxi_spi_t *sspi = (sunxi_spi_t *)ptr;
  1021. enable = spi_qry_irq_enable(sspi);
  1022. status = spi_qry_irq_pending(sspi);
  1023. spi_clr_irq_pending(status, sspi);
  1024. sspi->result = SPI_XFER_OK;
  1025. /* master mode, Transfer Complete Interrupt */
  1026. if (status & SPI_INT_STA_TC)
  1027. {
  1028. SPI_INFO_IRQ("[spi%d] SPI TC COME\n", sspi->port);
  1029. spi_disable_irq(SPI_INT_STA_TC | SPI_INT_STA_ERR, sspi);
  1030. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1031. if (sspi->sem)
  1032. {
  1033. sspi->sem = 0;
  1034. if (hal_sem_post(sspi->xSemaphore_tx))
  1035. SPI_INFO_IRQ("[spi%d] xSemaphorePostFromISR failed.\n",
  1036. sspi->port);
  1037. }
  1038. #endif
  1039. return 0;
  1040. }
  1041. else if (status & SPI_INT_STA_ERR) /* master mode:err */
  1042. {
  1043. SPI_INFO_IRQ("[spi%d] SPI ERR! status %#lx\n", sspi->port, status);
  1044. /* __log("[spi%d] dump reg:\n", sspi->port); */
  1045. /* spi_dump_reg(sspi, 0, 0x60); */
  1046. spi_disable_irq(SPI_INT_STA_TC | SPI_INT_STA_ERR, sspi);
  1047. sspi->result = SPI_XFER_FAILED;
  1048. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1049. if (sspi->sem)
  1050. {
  1051. sspi->sem = 0;
  1052. if (hal_sem_post(sspi->xSemaphore_tx))
  1053. SPI_INFO_IRQ("[spi%d] xSemaphorePostFromISR failed.\n",
  1054. sspi->port);
  1055. }
  1056. #endif
  1057. return 0;
  1058. }
  1059. return 0;
  1060. }
  1061. static spi_master_status_t spi_pinctrl_init(sunxi_spi_t *sspi)
  1062. {
  1063. #ifdef CONFIG_OS_MELIS
  1064. user_gpio_set_t gpio_cfg[6] = {0};
  1065. gpio_pin_t spi_pin[6];
  1066. gpio_muxsel_t spi_muxsel[6];
  1067. int count, i;
  1068. char spi_name[16];
  1069. int ret = SPI_MASTER_OK;
  1070. if (sspi->port >= HAL_SPI_MASTER_MAX)
  1071. {
  1072. SPI_ERR("[spi%d] invalid port\n", sspi->port);
  1073. return SPI_MASTER_INVALID_PARAMETER;
  1074. }
  1075. sprintf(spi_name, "spi%d", sspi->port);
  1076. count = Hal_Cfg_GetGPIOSecKeyCount(spi_name);
  1077. if (!count)
  1078. {
  1079. SPI_ERR("[spi%d] not support in sys_config\n", sspi->port);
  1080. return SPI_MASTER_INVALID_PARAMETER;
  1081. }
  1082. Hal_Cfg_GetGPIOSecData(spi_name, gpio_cfg, count);
  1083. for (i = 0; i < count; i++)
  1084. {
  1085. spi_pin[i] = (gpio_cfg[i].port - 1) * 32 + gpio_cfg[i].port_num;
  1086. spi_muxsel[i] = gpio_cfg[i].mul_sel;
  1087. ret = hal_gpio_pinmux_set_function(spi_pin[i], spi_muxsel[i]);
  1088. if (ret)
  1089. {
  1090. SPI_ERR("[spi%d] PIN%u set function failed! return %d\n",
  1091. sspi->port, spi_pin[i], ret);
  1092. return SPI_MASTER_ERROR;
  1093. }
  1094. ret = hal_gpio_set_driving_level(spi_pin[i], gpio_cfg[i].drv_level);
  1095. if (ret)
  1096. {
  1097. SPI_ERR("[spi%d] PIN%u set driving level failed! return %d\n",
  1098. sspi->port, gpio_cfg[i].drv_level, ret);
  1099. return SPI_MASTER_ERROR;
  1100. }
  1101. if (gpio_cfg[i].pull)
  1102. {
  1103. ret = hal_gpio_set_pull(spi_pin[i], gpio_cfg[i].pull);
  1104. }
  1105. }
  1106. return ret;
  1107. #else
  1108. SPI_ERR("[spi%d] not support sys_config format\n", sspi->port);
  1109. #endif
  1110. }
  1111. static spi_master_status_t spi_clk_init(sunxi_spi_t *sspi, u32 mode_clk)
  1112. {
  1113. unsigned long rate;
  1114. hal_clk_status_t ret;
  1115. hal_reset_type_t reset_type = HAL_SUNXI_RESET;
  1116. u32 reset_id;
  1117. hal_clk_type_t clk_type = HAL_SUNXI_CCU;
  1118. hal_clk_id_t clk_id;
  1119. hal_clk_id_t clk_bus_id;
  1120. /* hal_clk_t clk; */
  1121. switch (sspi->port)
  1122. {
  1123. case 0:
  1124. clk_id = SUNXI_CLK_SPI(0);
  1125. clk_bus_id = SUNXI_CLK_BUS_SPI(0);
  1126. reset_id = SUNXI_CLK_RST_SPI(0);
  1127. break;
  1128. case 1:
  1129. clk_id = SUNXI_CLK_SPI(1);
  1130. clk_bus_id = SUNXI_CLK_BUS_SPI(1);
  1131. reset_id = SUNXI_CLK_RST_SPI(1);
  1132. break;
  1133. case 2:
  1134. clk_id = SUNXI_CLK_SPI(2);
  1135. clk_bus_id = SUNXI_CLK_BUS_SPI(2);
  1136. reset_id = SUNXI_CLK_RST_SPI(2);
  1137. break;
  1138. default:
  1139. SPI_ERR("spi%d is invalid\n", sspi->port);
  1140. return SPI_MASTER_INVALID_PARAMETER;
  1141. }
  1142. sspi->reset = hal_reset_control_get(reset_type, reset_id);
  1143. hal_reset_control_deassert(sspi->reset);
  1144. sspi->mclk = hal_clock_get(clk_type, clk_id);
  1145. sspi->bus_clk = hal_clock_get(clk_type, clk_bus_id);
  1146. sspi->pclk = hal_clock_get(clk_type, SUNXI_CLK_PLL_SPI);
  1147. ret = hal_clk_set_parent(sspi->mclk, sspi->pclk);
  1148. if (ret)
  1149. {
  1150. SPI_ERR("[spi%d] clk set parent failed! return %d\n",
  1151. sspi->port, ret);
  1152. return SPI_MASTER_ERROR;
  1153. }
  1154. rate = mode_clk;
  1155. /* rate = hal_clk_round_rate(sspi->mclk, mode_clk); */
  1156. /* if (!rate) */
  1157. /* { */
  1158. /* SPI_ERR("[spi%d] clk round rate failed! return %ld\n", */
  1159. /* sspi->port, rate); */
  1160. /* return SPI_MASTER_ERROR; */
  1161. /* } */
  1162. ret = hal_clk_set_rate(sspi->mclk, rate);
  1163. if (ret)
  1164. {
  1165. SPI_ERR("[spi%d] clk set rate failed! return %d\n", sspi->port,
  1166. ret);
  1167. return SPI_MASTER_ERROR;
  1168. }
  1169. rate = hal_clk_get_rate(sspi->mclk);
  1170. if (!rate)
  1171. {
  1172. SPI_ERR("[spi%d] clk get rate failed! return %ld\n", sspi->port,
  1173. rate);
  1174. return SPI_MASTER_ERROR;
  1175. }
  1176. ret = hal_clock_enable(sspi->bus_clk);
  1177. ret = hal_clock_enable(sspi->mclk);
  1178. if (ret)
  1179. {
  1180. SPI_ERR("[spi%d] couldn't enable mlck! return %d\n", sspi->port,
  1181. ret);
  1182. return SPI_MASTER_ERROR;
  1183. }
  1184. return SPI_MASTER_OK;
  1185. }
  1186. static spi_master_status_t spi_clk_exit(sunxi_spi_t *sspi)
  1187. {
  1188. hal_clk_status_t ret;
  1189. ret = hal_clock_disable(sspi->mclk);
  1190. ret = hal_clock_disable(sspi->bus_clk);
  1191. if (ret)
  1192. {
  1193. SPI_ERR("[spi%d] couldn't disable mlck! return %d\n",
  1194. sspi->port, ret);
  1195. return SPI_MASTER_ERROR;
  1196. }
  1197. hal_clock_put(sspi->mclk);
  1198. hal_clock_put(sspi->bus_clk);
  1199. hal_reset_control_assert(sspi->reset);
  1200. hal_reset_control_put(sspi->reset);
  1201. return SPI_MASTER_OK;
  1202. }
  1203. static spi_master_status_t spi_cpu_complete(sunxi_spi_t *sspi)
  1204. {
  1205. uint32_t timeout = 0xffff;
  1206. while (!sspi->result && timeout--)
  1207. ;
  1208. if (timeout <= 0)
  1209. {
  1210. SPI_ERR("[spi%d] xfer timeout\n", sspi->port);
  1211. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  1212. spi_dump_reg(sspi, 0, 0x60);
  1213. return SPI_MASTER_ERROR_TIMEOUT;
  1214. }
  1215. else if (SPI_XFER_FAILED == sspi->result)
  1216. {
  1217. SPI_ERR("[spi%d] xfer failed...\n", sspi->port);
  1218. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  1219. spi_dump_reg(sspi, 0, 0x60);
  1220. return SPI_MASTER_ERROR;
  1221. }
  1222. return SPI_MASTER_OK;
  1223. }
  1224. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1225. static spi_master_status_t spi_dma_tx_complete(sunxi_spi_t *sspi)
  1226. {
  1227. uint32_t flags = 0;
  1228. uint32_t timeout = 0x7fffffff;
  1229. struct sunxi_dma_chan *chan = sspi->dma_tx.chan;
  1230. hal_dma_status_t dma_ret;
  1231. spi_master_status_t ret = 0;
  1232. int xResult;
  1233. xResult = hal_sem_timedwait(sspi->xSemaphore_tx, 100); //100*10ms
  1234. if (xResult == 0)
  1235. {
  1236. if (SPI_XFER_OK == sspi->result)
  1237. {
  1238. SPI_INFO("ok\n");
  1239. ret = SPI_MASTER_OK;
  1240. }
  1241. else if (SPI_XFER_FAILED == sspi->result)
  1242. {
  1243. SPI_ERR("[spi%d] xfer failed...\n", sspi->port);
  1244. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  1245. spi_dump_reg(sspi, 0, 0x60);
  1246. ret = SPI_MASTER_ERROR;
  1247. }
  1248. }
  1249. else
  1250. {
  1251. SPI_ERR("[spi%d] dma xfer timeout\n", sspi->port);
  1252. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  1253. spi_dump_reg(sspi, 0, 0x60);
  1254. sspi->result = SPI_XFER_FAILED;
  1255. if (hal_sem_post(sspi->xSemaphore_tx))
  1256. {
  1257. SPI_ERR("[spi%d] xSemaphoreGive failed.\n", sspi->port);
  1258. }
  1259. ret = SPI_MASTER_ERROR_TIMEOUT;
  1260. }
  1261. end:
  1262. dma_ret = hal_dma_stop(chan);
  1263. if (dma_ret)
  1264. {
  1265. SPI_ERR("[spi%d] dma stop error! ret %d\n", sspi->port,
  1266. dma_ret);
  1267. return SPI_MASTER_ERROR;
  1268. }
  1269. dma_ret = hal_dma_chan_free(chan);
  1270. if (dma_ret)
  1271. {
  1272. SPI_ERR("[spi%d] free dma_tx failed, ret %d\n", sspi->port,
  1273. dma_ret);
  1274. return SPI_MASTER_ERROR;
  1275. }
  1276. return ret;
  1277. }
  1278. static spi_master_status_t spi_dma_rx_complete(sunxi_spi_t *sspi)
  1279. {
  1280. uint32_t flags = 0;
  1281. uint32_t len = sspi->transfer->rx_len, size = 0;
  1282. uint8_t *buf = sspi->transfer->rx_buf;
  1283. struct sunxi_dma_chan *chan = sspi->dma_rx.chan;
  1284. hal_dma_status_t dma_ret;
  1285. spi_master_status_t ret;
  1286. int xResult;
  1287. #ifdef SPI_DATA_LEVEL
  1288. unsigned int i, j;
  1289. u8 dbuf[64], cnt = 0;
  1290. #endif
  1291. xResult = hal_sem_timedwait(sspi->xSemaphore_rx, 1000); //100*10ms
  1292. if (xResult != 0)
  1293. {
  1294. rt_kprintf("[spi%d] dma rx timeout\n", sspi->port);
  1295. SPI_INFO("[spi%d] dump reg:\n", sspi->port);
  1296. spi_dump_reg(sspi, 0, 0x40);
  1297. sspi->result = SPI_XFER_FAILED;
  1298. ret = SPI_MASTER_ERROR_TIMEOUT;
  1299. goto end;
  1300. }
  1301. hal_dcache_invalidate((unsigned long)sspi->align_dma_buf, SPI_ALIGN(len, 64));
  1302. sspi->result = SPI_XFER_OK;
  1303. if (len <= ALIGN_DMA_BUF_SIZE)
  1304. {
  1305. memcpy(buf, sspi->align_dma_buf, len);
  1306. }
  1307. ret = SPI_MASTER_OK;
  1308. SPI_INFO("ok\n");
  1309. #ifdef SPI_DATA_LEVEL
  1310. SPI_INFO("rx_len = %d\n", len);
  1311. for (i = 0; i < len; i += 16)
  1312. {
  1313. cnt = 0;
  1314. cnt += sprintf(dbuf + cnt, "%03x: ", i);
  1315. for (j = 0; ((i + j) < len) && (j < 16); j++)
  1316. cnt += sprintf(dbuf + cnt, "%02x ",
  1317. ((uint8_t *)(buf))[i + j]);
  1318. printf("%s\n", dbuf);
  1319. }
  1320. #endif
  1321. end:
  1322. spi_disable_irq(SPI_INT_STA_TC | SPI_INT_STA_ERR, sspi);
  1323. dma_ret = hal_dma_stop(chan);
  1324. if (dma_ret)
  1325. {
  1326. SPI_ERR("[spi%d] dma stop error! ret %d\n", sspi->port,
  1327. dma_ret);
  1328. ret = SPI_MASTER_ERROR;
  1329. }
  1330. dma_ret = hal_dma_chan_free(chan);
  1331. if (dma_ret)
  1332. {
  1333. SPI_ERR("[spi%d] free dma_rx failed, ret %d\n", sspi->port,
  1334. dma_ret);
  1335. return SPI_MASTER_ERROR;
  1336. }
  1337. return ret;
  1338. }
  1339. #endif
  1340. /*
  1341. * < 64 : cpu ; >= 64 : dma
  1342. * wait for done completion in this function, wakup in the irq hanlder
  1343. */
  1344. spi_master_status_t hal_spi_xfer(hal_spi_master_port_t port,
  1345. hal_spi_master_transfer_t *transfer)
  1346. {
  1347. uint32_t flags = 0;
  1348. spi_master_status_t ret = 0;
  1349. sunxi_spi_t *sspi = &g_sunxi_spi[port];
  1350. if (NULL == transfer)
  1351. {
  1352. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  1353. ret = SPI_MASTER_INVALID_PARAMETER;
  1354. goto end;
  1355. }
  1356. SPI_INFO("[spi%d] tl=%lu rl=%lu, tsl=%lu\n", sspi->port, transfer->tx_len,
  1357. transfer->rx_len, transfer->tx_single_len);
  1358. if ((!transfer->tx_buf && !transfer->rx_buf) ||
  1359. (!transfer->tx_len && !transfer->rx_buf))
  1360. {
  1361. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  1362. ret = SPI_MASTER_INVALID_PARAMETER;
  1363. goto end;
  1364. }
  1365. sspi->result = SPI_XFER_READY;
  1366. sspi->transfer = transfer;
  1367. if (spi_mode_check(sspi))
  1368. {
  1369. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  1370. ret = SPI_MASTER_INVALID_PARAMETER;
  1371. goto end;
  1372. }
  1373. spi_clr_irq_pending(SPI_INT_STA_MASK, sspi);
  1374. spi_disable_dma_irq(SPI_FIFO_CTL_DRQEN_MASK, sspi);
  1375. spi_reset_fifo(sspi);
  1376. spi_enable_irq(SPI_INTEN_TC | SPI_INTEN_ERR, sspi);
  1377. // cpu_dcache_clean_all();
  1378. if (spi_transfer(sspi))
  1379. {
  1380. ret = SPI_MASTER_ERROR;
  1381. goto end;
  1382. }
  1383. switch (sspi->mode_type)
  1384. {
  1385. case SGLE_HALF_DUPLEX_RX:
  1386. case DUAL_HALF_DUPLEX_RX:
  1387. case QUAD_HALF_DUPLEX_RX:
  1388. case FULL_DUPLEX_TX_RX:
  1389. {
  1390. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1391. /* >64 use DMA transfer, or use cpu */
  1392. if (sspi->transfer->rx_len > BULK_DATA_BOUNDARY)
  1393. {
  1394. if (spi_dma_rx_complete(sspi))
  1395. {
  1396. ret = SPI_MASTER_ERROR;
  1397. goto end;
  1398. }
  1399. }
  1400. else
  1401. {
  1402. #endif
  1403. if (spi_cpu_complete(sspi))
  1404. {
  1405. ret = SPI_MASTER_ERROR;
  1406. goto end;
  1407. }
  1408. else
  1409. {
  1410. ret = SPI_MASTER_OK;
  1411. }
  1412. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1413. }
  1414. #endif
  1415. break;
  1416. }
  1417. case SGLE_HALF_DUPLEX_TX:
  1418. case DUAL_HALF_DUPLEX_TX:
  1419. case QUAD_HALF_DUPLEX_TX:
  1420. {
  1421. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1422. /* >64 use DMA transfer, or use cpu */
  1423. if (sspi->transfer->tx_len > BULK_DATA_BOUNDARY)
  1424. {
  1425. if (spi_dma_tx_complete(sspi))
  1426. {
  1427. ret = SPI_MASTER_ERROR;
  1428. goto end;
  1429. }
  1430. }
  1431. else
  1432. {
  1433. #endif
  1434. if (spi_cpu_complete(sspi))
  1435. {
  1436. ret = SPI_MASTER_ERROR;
  1437. goto end;
  1438. }
  1439. else
  1440. {
  1441. ret = SPI_MASTER_OK;
  1442. }
  1443. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1444. }
  1445. #endif
  1446. break;
  1447. }
  1448. default:
  1449. {
  1450. SPI_ERR("[spi%d] invalid parameter\n", sspi->port);
  1451. ret = SPI_MASTER_INVALID_PARAMETER;
  1452. }
  1453. }
  1454. end:
  1455. if (sspi->mode_type != MODE_TYPE_NULL)
  1456. {
  1457. sspi->mode_type = MODE_TYPE_NULL;
  1458. }
  1459. return ret;
  1460. }
  1461. static int sunxi_get_spic_clk(sunxi_spi_t *sspi)
  1462. {
  1463. unsigned long rate;
  1464. rate = hal_clk_get_rate(sspi->mclk);
  1465. if (!rate)
  1466. SPI_ERR("[spi%d] clk get rate failed! return %ld\n", sspi->port, rate);
  1467. return rate;
  1468. }
  1469. /* legacy interface*/
  1470. static void spi_set_clk(u32 spi_clk, u32 ahb_clk, unsigned long base_addr, u32 cdr)
  1471. {
  1472. u32 reg_val = 0;
  1473. u32 div_clk = 0;
  1474. SPI_INFO("set spi clock %ld, mclk %ld\n", spi_clk, ahb_clk);
  1475. reg_val = hal_readl(base_addr + SPI_CLK_CTL_REG);
  1476. /* CDR2 */
  1477. if (cdr)
  1478. {
  1479. div_clk = ahb_clk / (spi_clk * 2) - 1;
  1480. reg_val &= ~SPI_CLK_CTL_CDR2;
  1481. reg_val |= (div_clk | SPI_CLK_CTL_DRS);
  1482. SPI_INFO("CDR2 - n = %ld\n", div_clk);
  1483. }
  1484. else /* CDR1 */
  1485. {
  1486. while (ahb_clk > spi_clk)
  1487. {
  1488. div_clk++;
  1489. ahb_clk >>= 1;
  1490. }
  1491. reg_val &= ~(SPI_CLK_CTL_CDR1 | SPI_CLK_CTL_DRS);
  1492. reg_val |= (div_clk << 8);
  1493. SPI_INFO("CDR1 - n = %ld\n", div_clk);
  1494. }
  1495. hal_writel(reg_val, base_addr + SPI_CLK_CTL_REG);
  1496. }
  1497. spi_master_status_t hal_spi_hw_config(hal_spi_master_port_t port, hal_spi_master_config_t *spi_config)
  1498. {
  1499. int sclk_freq = 0;
  1500. unsigned long clock_frequency;
  1501. sunxi_spi_t *sspi = &g_sunxi_spi[port];
  1502. uint32_t config = 0;
  1503. if (NULL == spi_config)
  1504. {
  1505. SPI_ERR("[spi%d] invalid parameter\n", port);
  1506. return SPI_MASTER_INVALID_PARAMETER;
  1507. }
  1508. sspi->base = g_sunxi_spi_params[port].reg_base;
  1509. sspi->port = port;
  1510. sspi->mode_type = MODE_TYPE_NULL;
  1511. if (spi_config->clock_frequency)
  1512. clock_frequency = spi_config->clock_frequency;
  1513. else
  1514. clock_frequency = SPI_MOD_CLK;
  1515. if (clock_frequency > SPI_MAX_FREQUENCY)
  1516. {
  1517. SPI_ERR("[spi%d] invalid parameter! max_frequency is 100MHZ\n",
  1518. sspi->port);
  1519. }
  1520. else
  1521. {
  1522. SPI_INIT("[spi%d] clock_frequency = %ldHZ\n", sspi->port,
  1523. clock_frequency);
  1524. }
  1525. if (clock_frequency >= SPI_HIGH_FREQUENCY)
  1526. {
  1527. spi_sample_delay(0, 1, sspi);
  1528. }
  1529. else if (clock_frequency <= SPI_LOW_FREQUENCY)
  1530. {
  1531. spi_sample_delay(1, 0, sspi);
  1532. }
  1533. else
  1534. {
  1535. spi_sample_delay(0, 0, sspi);
  1536. }
  1537. spi_soft_reset(sspi);
  1538. sclk_freq = sunxi_get_spic_clk(sspi);
  1539. if (!sclk_freq)
  1540. {
  1541. SPI_INFO("spi clk error ! \n");
  1542. }
  1543. else if (sclk_freq != clock_frequency)
  1544. {
  1545. spi_clk_exit(sspi);
  1546. if (spi_clk_init(sspi, clock_frequency))
  1547. {
  1548. SPI_ERR("[spi%d] init clk error\n", sspi->port);
  1549. return SPI_MASTER_ERROR;
  1550. }
  1551. }
  1552. //spi_set_clk(clock_frequency, sclk_freq, sspi->base, 0);
  1553. if (spi_config->slave_port)
  1554. {
  1555. SPI_ERR("[spi%d] software control cs isn't support \n",
  1556. sspi->port);
  1557. return SPI_MASTER_INVALID_PARAMETER;
  1558. }
  1559. else
  1560. {
  1561. spi_set_cs(spi_config->slave_port, sspi);
  1562. }
  1563. if (spi_config->bit_order)
  1564. {
  1565. config |= SPI_LSB_FIRST_ACTIVE_;
  1566. // spi_config_tc(SPI_LSB_FIRST_ACTIVE_, sspi);
  1567. }
  1568. config |= (spi_config->cpol) | (spi_config->cpha);
  1569. spi_config_tc(config, sspi);
  1570. spi_enable_bus(sspi);
  1571. spi_set_master(sspi);
  1572. spi_enable_tp(sspi);
  1573. /*spi controller sends ss signal automatically*/
  1574. spi_ss_owner(sspi, spi_config->csmode);
  1575. /* reset fifo */
  1576. spi_reset_fifo(sspi);
  1577. return SPI_MASTER_OK;
  1578. }
  1579. spi_master_status_t hal_spi_init(hal_spi_master_port_t port,
  1580. hal_spi_master_config_t *cfg)
  1581. {
  1582. sunxi_spi_t *sspi = &g_sunxi_spi[port];
  1583. if (port >= HAL_SPI_MASTER_MAX)
  1584. {
  1585. SPI_ERR("[spi%d] invalid port\n", sspi->port);
  1586. return SPI_MASTER_ERROR;
  1587. }
  1588. sspi->base = g_sunxi_spi_params[port].reg_base;
  1589. sspi->irqnum = g_sunxi_spi_params[port].irq_num;
  1590. sspi->port = port;
  1591. sspi->mode_type = MODE_TYPE_NULL;
  1592. SPI_INFO("spi[%d] init ,reg base is %lx \n", port, sspi->base);
  1593. if (request_irq(sspi->irqnum, spi_irq_handler, 0, "spi-ctl", sspi) < 0)
  1594. {
  1595. SPI_ERR("[spi%d] request irq error\n", sspi->port);
  1596. return SPI_MASTER_ERROR;
  1597. }
  1598. enable_irq(sspi->irqnum);
  1599. if (spi_pinctrl_init(sspi))
  1600. {
  1601. SPI_ERR("[spi%d] init pinctrl error\n", sspi->port);
  1602. return SPI_MASTER_ERROR;
  1603. }
  1604. if (spi_clk_init(sspi, SPI_MAX_FREQUENCY))
  1605. {
  1606. SPI_ERR("[spi%d] init clk error\n", sspi->port);
  1607. return SPI_MASTER_ERROR;
  1608. }
  1609. spi_soft_reset(sspi);
  1610. hal_spi_hw_config(port, cfg);
  1611. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1612. sspi->xSemaphore_tx = hal_sem_create(0);
  1613. if (sspi->xSemaphore_tx == NULL)
  1614. {
  1615. SPI_ERR("[spi%d] creating semaphore_tx failed.\n", sspi->port);
  1616. return SPI_MASTER_ERROR;
  1617. }
  1618. sspi->xSemaphore_rx = hal_sem_create(0);
  1619. if (sspi->xSemaphore_rx == NULL)
  1620. {
  1621. SPI_ERR("[spi%d] creating semaphore_rx failed.\n", sspi->port);
  1622. return SPI_MASTER_ERROR;
  1623. }
  1624. sspi->align_dma_buf = dma_alloc_coherent(ALIGN_DMA_BUF_SIZE);
  1625. if (!sspi->align_dma_buf)
  1626. {
  1627. SPI_ERR("[spi%d] alloc memory failed\n", sspi->port);
  1628. return SPI_MASTER_ERROR_NOMEM;
  1629. }
  1630. SPI_INIT("[spi%d] DMA xfer enable\n", sspi->port);
  1631. #else
  1632. SPI_INIT("[spi%d] CPU xfer only\n", sspi->port);
  1633. #endif
  1634. return SPI_MASTER_OK;
  1635. }
  1636. spi_master_status_t hal_spi_deinit(hal_spi_master_port_t port)
  1637. {
  1638. uint8_t i;
  1639. sunxi_spi_t *sspi = &g_sunxi_spi[port];
  1640. spi_disable_bus(sspi);
  1641. disable_irq(sspi->irqnum);
  1642. #ifndef CONFIG_SUNXI_SPI_CPU_XFER_ONLY
  1643. dma_free_coherent(sspi->align_dma_buf);
  1644. hal_sem_delete(sspi->xSemaphore_tx);
  1645. hal_sem_delete(sspi->xSemaphore_rx);
  1646. #endif
  1647. if (spi_clk_exit(sspi))
  1648. {
  1649. SPI_ERR("[spi%d] exit clk error\n", sspi->port);
  1650. return SPI_MASTER_ERROR;
  1651. }
  1652. free_irq(sspi->irqnum, sspi);
  1653. return SPI_MASTER_OK;
  1654. }
  1655. spi_master_status_t hal_spi_write(hal_spi_master_port_t port,
  1656. const void *buf, uint32_t size)
  1657. {
  1658. spi_master_status_t ret;
  1659. hal_spi_master_transfer_t tr;
  1660. tr.tx_buf = buf;
  1661. tr.tx_len = size;
  1662. tr.rx_buf = NULL;
  1663. tr.rx_len = 0;
  1664. tr.dummy_byte = 0;
  1665. tr.tx_single_len = size;
  1666. tr.tx_nbits = SPI_NBITS_SINGLE;
  1667. SPI_INFO("spi[%d] write data,len is %ld \n", port, size);
  1668. ret = hal_spi_xfer(port, &tr);
  1669. return ret;
  1670. }
  1671. spi_master_status_t hal_spi_read(hal_spi_master_port_t port,
  1672. void *buf, uint32_t size)
  1673. {
  1674. spi_master_status_t ret;
  1675. hal_spi_master_transfer_t tr;
  1676. tr.rx_buf = buf;
  1677. tr.rx_len = size;
  1678. tr.tx_buf = NULL;
  1679. tr.tx_len = 0;
  1680. tr.dummy_byte = 0;
  1681. tr.tx_single_len = size;
  1682. tr.rx_nbits = SPI_NBITS_SINGLE;
  1683. SPI_INFO("spi[%d] read data,len is %ld \n", port, size);
  1684. ret = hal_spi_xfer(port, &tr);
  1685. return ret;
  1686. }
  1687. void hal_spi_cs(hal_spi_master_port_t port, uint8_t on_off)
  1688. {
  1689. sunxi_spi_t *sspi = &g_sunxi_spi[port];
  1690. spi_ss_ctrl(sspi, on_off);
  1691. }