board.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749
  1. /*
  2. * Copyright (c) 2022-2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_femc_drv.h"
  13. #include "pinmux.h"
  14. #include "hpm_pmp_drv.h"
  15. #include "assert.h"
  16. #include "hpm_clock_drv.h"
  17. #include "hpm_sysctl_drv.h"
  18. #include "hpm_sdxc_drv.h"
  19. #include "hpm_pwm_drv.h"
  20. #include "hpm_trgm_drv.h"
  21. #include "hpm_pllctlv2_drv.h"
  22. #include "hpm_enet_drv.h"
  23. #include "hpm_pcfg_drv.h"
  24. #include "hpm_debug_console.h"
  25. static board_timer_cb timer_cb;
  26. ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
  27. /**
  28. * @brief FLASH configuration option definitions:
  29. * option[0]:
  30. * [31:16] 0xfcf9 - FLASH configuration option tag
  31. * [15:4] 0 - Reserved
  32. * [3:0] option words (exclude option[0])
  33. * option[1]:
  34. * [31:28] Flash probe type
  35. * 0 - SFDP SDR / 1 - SFDP DDR
  36. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  37. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  38. * 6 - OctaBus DDR (SPI -> OPI DDR)
  39. * 8 - Xccela DDR (SPI -> OPI DDR)
  40. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  41. * [27:24] Command Pads after Power-on Reset
  42. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  43. * [23:20] Command Pads after Configuring FLASH
  44. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  45. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  46. * 0 - Not needed
  47. * 1 - QE bit is at bit 6 in Status Register 1
  48. * 2 - QE bit is at bit1 in Status Register 2
  49. * 3 - QE bit is at bit7 in Status Register 2
  50. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  51. * [15:8] Dummy cycles
  52. * 0 - Auto-probed / detected / default value
  53. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  54. * [7:4] Misc.
  55. * 0 - Not used
  56. * 1 - SPI mode
  57. * 2 - Internal loopback
  58. * 3 - External DQS
  59. * [3:0] Frequency option
  60. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  61. *
  62. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  63. * [31:20] Reserved
  64. * [19:16] IO voltage
  65. * 0 - 3V / 1 - 1.8V
  66. * [15:12] Pin group
  67. * 0 - 1st group / 1 - 2nd group
  68. * [11:8] Connection selection
  69. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  70. * [7:0] Drive Strength
  71. * 0 - Default value
  72. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  73. * JESD216)
  74. * [31:16] reserved
  75. * [15:12] Sector Erase Command Option, not required here
  76. * [11:8] Sector Size Option, not required here
  77. * [7:0] Flash Size Option
  78. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  79. */
  80. #if defined(FLASH_XIP) && FLASH_XIP
  81. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  82. #endif
  83. #if defined(FLASH_UF2) && FLASH_UF2
  84. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  85. #endif
  86. void board_init_console(void)
  87. {
  88. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  89. console_config_t cfg;
  90. /* Configure the UART clock to 24MHz */
  91. clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
  92. cfg.type = BOARD_CONSOLE_TYPE;
  93. cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
  94. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
  95. cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
  96. init_uart_pins((UART_Type *) cfg.base);
  97. if (status_success != console_init(&cfg)) {
  98. /* failed to initialize debug console */
  99. while (1) {
  100. }
  101. }
  102. #else
  103. while(1);
  104. #endif
  105. }
  106. void board_print_clock_freq(void)
  107. {
  108. printf("==============================\n");
  109. printf(" %s clock summary\n", BOARD_NAME);
  110. printf("==============================\n");
  111. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  112. printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi));
  113. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  114. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  115. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  116. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  117. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  118. printf("==============================\n");
  119. }
  120. void board_init_uart(UART_Type *ptr)
  121. {
  122. init_uart_pins(ptr);
  123. }
  124. void board_init_ahb(void)
  125. {
  126. clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2);/*200m hz*/
  127. }
  128. void board_print_banner(void)
  129. {
  130. const uint8_t banner[] = {"\n\
  131. ----------------------------------------------------------------------\n\
  132. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  133. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  134. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  135. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  136. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  137. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  138. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  139. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  140. ----------------------------------------------------------------------\n"};
  141. printf("%s", banner);
  142. }
  143. void board_ungate_mchtmr_at_lp_mode(void)
  144. {
  145. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  146. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  147. }
  148. void board_init(void)
  149. {
  150. pcfg_dcdc_set_voltage(HPM_PCFG, 1100);
  151. board_init_clock();
  152. board_init_console();
  153. board_init_pmp();
  154. board_init_ahb();
  155. #if BOARD_SHOW_CLOCK
  156. board_print_clock_freq();
  157. #endif
  158. #if BOARD_SHOW_BANNER
  159. board_print_banner();
  160. #endif
  161. }
  162. void board_init_sdram_pins(void)
  163. {
  164. init_sdram_pins();
  165. }
  166. uint32_t board_init_femc_clock(void)
  167. {
  168. clock_add_to_group(clock_femc, 0);
  169. /* Configure the SDRAM to 166MHz */
  170. clock_set_source_divider(clock_femc, clk_src_pll0_clk1, 2U);
  171. return clock_get_frequency(clock_femc);
  172. }
  173. void board_delay_us(uint32_t us)
  174. {
  175. clock_cpu_delay_us(us);
  176. }
  177. void board_delay_ms(uint32_t ms)
  178. {
  179. clock_cpu_delay_ms(ms);
  180. }
  181. void board_timer_isr(void)
  182. {
  183. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  184. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  185. timer_cb();
  186. }
  187. }
  188. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  189. void board_timer_create(uint32_t ms, board_timer_cb cb)
  190. {
  191. uint32_t gptmr_freq;
  192. gptmr_channel_config_t config;
  193. timer_cb = cb;
  194. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  195. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  196. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  197. config.reload = gptmr_freq / 1000 * ms;
  198. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  199. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  200. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  201. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  202. }
  203. void board_i2c_bus_clear(I2C_Type *ptr)
  204. {
  205. init_i2c_pins_as_gpio(ptr);
  206. }
  207. void board_init_i2c(I2C_Type *ptr)
  208. {
  209. }
  210. uint32_t board_init_spi_clock(SPI_Type *ptr)
  211. {
  212. if (ptr == HPM_SPI3) {
  213. /* SPI3 clock configure */
  214. clock_add_to_group(clock_spi3, 0);
  215. clock_set_source_divider(clock_spi3, clk_src_osc24m, 1U);
  216. return clock_get_frequency(clock_spi3);
  217. }
  218. return 0;
  219. }
  220. void board_init_gpio_pins(void)
  221. {
  222. init_gpio_pins();
  223. }
  224. void board_init_spi_pins(SPI_Type *ptr)
  225. {
  226. init_spi_pins(ptr);
  227. }
  228. void board_init_led_pins(void)
  229. {
  230. init_led_pins();
  231. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  232. }
  233. void board_led_toggle(void)
  234. {
  235. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  236. }
  237. void board_led_write(uint8_t state)
  238. {
  239. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  240. }
  241. void board_init_usb_pins(void)
  242. {
  243. /* set pull-up for USBx ID pin */
  244. init_usb_pins();
  245. /* configure USBx ID pin as input function */
  246. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  247. }
  248. uint8_t board_get_usb_id_status(void)
  249. {
  250. return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  251. }
  252. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  253. {
  254. }
  255. void board_init_pmp(void)
  256. {
  257. extern uint32_t __noncacheable_start__[];
  258. extern uint32_t __noncacheable_end__[];
  259. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  260. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  261. uint32_t length = end_addr - start_addr;
  262. if (length == 0) {
  263. return;
  264. }
  265. /* Ensure the address and the length are power of 2 aligned */
  266. assert((length & (length - 1U)) == 0U);
  267. assert((start_addr & (length - 1U)) == 0U);
  268. pmp_entry_t pmp_entry[3] = {0};
  269. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000);
  270. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  271. pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000);
  272. pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  273. pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  274. pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  275. pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  276. pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  277. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  278. }
  279. void board_init_clock(void)
  280. {
  281. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  282. hpm_core_clock = cpu0_freq;
  283. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  284. /* Configure the External OSC ramp-up time: ~9ms */
  285. pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
  286. /* Select clock setting preset1 */
  287. sysctl_clock_set_preset(HPM_SYSCTL, 2);
  288. }
  289. /* Add most Clocks to group 0 */
  290. clock_add_to_group(clock_cpu0, 0);
  291. clock_add_to_group(clock_ahbp, 0);
  292. clock_add_to_group(clock_axic, 0);
  293. clock_add_to_group(clock_axis, 0);
  294. clock_add_to_group(clock_mchtmr0, 0);
  295. clock_add_to_group(clock_femc, 0);
  296. clock_add_to_group(clock_xpi0, 0);
  297. clock_add_to_group(clock_xpi1, 0);
  298. clock_add_to_group(clock_gptmr0, 0);
  299. clock_add_to_group(clock_gptmr1, 0);
  300. clock_add_to_group(clock_gptmr2, 0);
  301. clock_add_to_group(clock_gptmr3, 0);
  302. clock_add_to_group(clock_i2c0, 0);
  303. clock_add_to_group(clock_i2c1, 0);
  304. clock_add_to_group(clock_i2c2, 0);
  305. clock_add_to_group(clock_i2c3, 0);
  306. clock_add_to_group(clock_spi0, 0);
  307. clock_add_to_group(clock_spi1, 0);
  308. clock_add_to_group(clock_spi2, 0);
  309. clock_add_to_group(clock_spi3, 0);
  310. clock_add_to_group(clock_can0, 0);
  311. clock_add_to_group(clock_can1, 0);
  312. clock_add_to_group(clock_sdxc0, 0);
  313. clock_add_to_group(clock_ptpc, 0);
  314. clock_add_to_group(clock_ref0, 0);
  315. clock_add_to_group(clock_ref1, 0);
  316. clock_add_to_group(clock_watchdog0, 0);
  317. clock_add_to_group(clock_eth0, 0);
  318. clock_add_to_group(clock_sdp, 0);
  319. clock_add_to_group(clock_xdma, 0);
  320. clock_add_to_group(clock_ram0, 0);
  321. clock_add_to_group(clock_usb0, 0);
  322. clock_add_to_group(clock_kman, 0);
  323. clock_add_to_group(clock_gpio, 0);
  324. clock_add_to_group(clock_mbx0, 0);
  325. clock_add_to_group(clock_hdma, 0);
  326. clock_add_to_group(clock_rng, 0);
  327. clock_add_to_group(clock_mot0, 0);
  328. clock_add_to_group(clock_mot1, 0);
  329. clock_add_to_group(clock_acmp, 0);
  330. clock_add_to_group(clock_dao, 0);
  331. clock_add_to_group(clock_msyn, 0);
  332. clock_add_to_group(clock_lmm0, 0);
  333. clock_add_to_group(clock_pdm, 0);
  334. clock_add_to_group(clock_adc0, 0);
  335. clock_add_to_group(clock_adc1, 0);
  336. clock_add_to_group(clock_adc2, 0);
  337. clock_add_to_group(clock_dac0, 0);
  338. clock_add_to_group(clock_i2s0, 0);
  339. clock_add_to_group(clock_i2s1, 0);
  340. clock_add_to_group(clock_ffa0, 0);
  341. clock_add_to_group(clock_tsns, 0);
  342. /* Connect Group0 to CPU0 */
  343. clock_connect_group_to_cpu(0, 0);
  344. /*
  345. * Configure CPU0 to 480MHz
  346. *
  347. * NOTE: The PLL2 is disabled by default, and it will be enabled automatically if
  348. * it is required by any nodes.
  349. * Here the PLl2 clock is enabled after switching CPU clock source to it
  350. */
  351. clock_set_source_divider(clock_cpu0, clk_src_pll1_clk0, 1);
  352. /* Configure PLL1_CLK0 Post Divider to 1.2 */
  353. pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 1);
  354. /* Configure PLL1 clock frequencey to 576MHz, the PLL1_CLK0 frequency =- 576MHz / 1.2 = 480MHz */
  355. pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 576000000);
  356. clock_update_core_clock();
  357. clock_set_source_divider(clock_aud1, clk_src_pll2_clk0, 46); /* config clock_aud1 for 44100*n sample rate */
  358. }
  359. uint32_t board_init_adc16_clock(ADC16_Type *ptr)
  360. {
  361. uint32_t freq = 0;
  362. switch ((uint32_t) ptr) {
  363. case HPM_ADC0_BASE:
  364. /* Configure the ADC clock to 200MHz */
  365. clock_set_adc_source(clock_adc0, clk_adc_src_ana);
  366. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  367. freq = clock_get_frequency(clock_adc0);
  368. break;
  369. case HPM_ADC1_BASE:
  370. /* Configure the ADC clock to 200MHz */
  371. clock_set_adc_source(clock_adc1, clk_adc_src_ana);
  372. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  373. freq = clock_get_frequency(clock_adc1);
  374. break;
  375. case HPM_ADC2_BASE:
  376. /* Configure the ADC clock to 200MHz */
  377. clock_set_adc_source(clock_adc2, clk_adc_src_ana);
  378. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  379. freq = clock_get_frequency(clock_adc2);
  380. break;
  381. default:
  382. /* Invalid ADC instance */
  383. break;
  384. }
  385. return freq;
  386. }
  387. uint32_t board_init_dao_clock(void)
  388. {
  389. return clock_get_frequency(clock_dao);
  390. }
  391. uint32_t board_init_pdm_clock(void)
  392. {
  393. return clock_get_frequency(clock_pdm);
  394. }
  395. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  396. {
  397. return 0;
  398. }
  399. uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
  400. {
  401. uint32_t freq = 0;
  402. if (ptr == HPM_DAC) {
  403. if (clk_src_ahb == true) {
  404. /* Configure the DAC clock to 160MHz */
  405. clock_set_dac_source(clock_dac0, clk_dac_src_ahb);
  406. } else {
  407. /* Configure the DAC clock to 166MHz */
  408. clock_set_dac_source(clock_dac0, clk_dac_src_ana);
  409. clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
  410. }
  411. freq = clock_get_frequency(clock_dac0);
  412. }
  413. return freq;
  414. }
  415. void board_init_can(CAN_Type *ptr)
  416. {
  417. init_can_pins(ptr);
  418. }
  419. uint32_t board_init_can_clock(CAN_Type *ptr)
  420. {
  421. uint32_t freq = 0;
  422. if (ptr == HPM_CAN0) {
  423. /* Set the CAN0 peripheral clock to 80MHz */
  424. clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
  425. freq = clock_get_frequency(clock_can0);
  426. } else if (ptr == HPM_CAN1) {
  427. /* Set the CAN1 peripheral clock to 80MHz */
  428. clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
  429. freq = clock_get_frequency(clock_can1);
  430. } else {
  431. /* Invalid CAN instance */
  432. }
  433. return freq;
  434. }
  435. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  436. {
  437. uint32_t freq = 0;
  438. if (ptr == HPM_GPTMR0) {
  439. clock_add_to_group(clock_gptmr0, 0);
  440. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  441. freq = clock_get_frequency(clock_gptmr0);
  442. }
  443. else if (ptr == HPM_GPTMR1) {
  444. clock_add_to_group(clock_gptmr1, 0);
  445. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  446. freq = clock_get_frequency(clock_gptmr1);
  447. }
  448. else if (ptr == HPM_GPTMR2) {
  449. clock_add_to_group(clock_gptmr2, 0);
  450. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  451. freq = clock_get_frequency(clock_gptmr2);
  452. }
  453. else if (ptr == HPM_GPTMR3) {
  454. clock_add_to_group(clock_gptmr3, 0);
  455. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  456. freq = clock_get_frequency(clock_gptmr3);
  457. }
  458. else {
  459. /* Invalid instance */
  460. }
  461. }
  462. /*
  463. * this function will be called during startup to initialize external memory for data use
  464. */
  465. void _init_ext_ram(void)
  466. {
  467. uint32_t femc_clk_in_hz;
  468. board_init_sdram_pins();
  469. femc_clk_in_hz = board_init_femc_clock();
  470. femc_config_t config = {0};
  471. femc_sdram_config_t sdram_config = {0};
  472. femc_default_config(HPM_FEMC, &config);
  473. config.dqs = FEMC_DQS_INTERNAL;
  474. femc_init(HPM_FEMC, &config);
  475. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  476. sdram_config.prescaler = 0x3;
  477. sdram_config.burst_len_in_byte = 8;
  478. sdram_config.auto_refresh_count_in_one_burst = 1;
  479. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  480. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  481. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  482. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  483. sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
  484. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  485. sdram_config.cke_off_in_ns = 42; /* Trcd */
  486. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  487. sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
  488. sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
  489. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  490. sdram_config.idle_timeout_in_ns = 6;
  491. sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
  492. sdram_config.cs = BOARD_SDRAM_CS;
  493. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  494. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  495. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  496. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  497. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  498. sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
  499. sdram_config.delay_cell_value = 29;
  500. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  501. }
  502. void board_init_sd_pins(SDXC_Type *ptr)
  503. {
  504. init_sdxc_pins(ptr, false);
  505. init_sdxc_card_detection_pin(ptr);
  506. }
  507. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
  508. {
  509. uint32_t actual_freq = 0;
  510. do {
  511. if (ptr != HPM_SDXC0) {
  512. break;
  513. }
  514. clock_name_t sdxc_clk = clock_sdxc0;
  515. sdxc_enable_sd_clock(ptr, false);
  516. /* Configure the SDXC Frequency to 200MHz */
  517. clock_set_source_divider(sdxc_clk, clk_src_pll0_clk0, 2);
  518. sdxc_enable_freq_selection(ptr);
  519. /* Configure the clock below 400KHz for the identification state */
  520. if (freq <= 400000UL) {
  521. sdxc_set_clock_divider(ptr, 600);
  522. }
  523. /* configure the clock to 24MHz for the SDR12/Default speed */
  524. else if (freq <= 25000000UL) {
  525. sdxc_set_clock_divider(ptr, 8);
  526. }
  527. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  528. else if (freq <= 50000000UL) {
  529. sdxc_set_clock_divider(ptr, 4);
  530. }
  531. /* Configure the clock to 100MHz for the SDR50 */
  532. else if (freq <= 100000000UL) {
  533. sdxc_set_clock_divider(ptr, 2);
  534. }
  535. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  536. else if (freq <= 208000000UL) {
  537. sdxc_set_clock_divider(ptr, 1);
  538. }
  539. /* For other unsupported clock ranges, configure the clock to 24MHz */
  540. else {
  541. sdxc_set_clock_divider(ptr, 8);
  542. }
  543. sdxc_enable_sd_clock(ptr, true);
  544. actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr);
  545. } while (false);
  546. return actual_freq;
  547. }
  548. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  549. {
  550. /* This feature is not supported */
  551. }
  552. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  553. {
  554. /* This feature is not supported */
  555. }
  556. bool board_sd_detect_card(SDXC_Type *ptr)
  557. {
  558. return sdxc_is_card_inserted(ptr);
  559. }
  560. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  561. {
  562. /* set clock source */
  563. if (ptr == HPM_ENET0) {
  564. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for ent0 ptp clock */
  565. clock_set_source_divider(clock_ptp0, clk_src_pll0_clk0, 4); /* 100MHz */
  566. } else {
  567. return status_invalid_argument;
  568. }
  569. return status_success;
  570. }
  571. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  572. {
  573. if (internal == false) {
  574. return status_success;
  575. }
  576. /* Configure Enet clock to output reference clock */
  577. if (ptr == HPM_ENET0) {
  578. /* make sure pll0_clk2 output clock at 250MHz then set 50MHz for enet0 */
  579. clock_set_source_divider(clock_eth0, clk_src_pll0_clk2, 5);
  580. } else {
  581. return status_invalid_argument;
  582. }
  583. enet_rmii_enable_clock(ptr, internal);
  584. return status_success;
  585. }
  586. void board_init_adc16_pins(void)
  587. {
  588. init_adc_pins();
  589. }
  590. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  591. {
  592. init_enet_pins(ptr);
  593. return status_success;
  594. }
  595. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  596. {
  597. return status_success;
  598. }
  599. void board_init_dac_pins(DAC_Type *ptr)
  600. {
  601. init_dac_pins(ptr);
  602. }
  603. uint32_t board_init_uart_clock(UART_Type *ptr)
  604. {
  605. uint32_t freq = 0U;
  606. if (ptr == HPM_UART0) {
  607. clock_set_source_divider(clock_uart0, clk_src_osc24m, 1);
  608. clock_add_to_group(clock_uart0, 0);
  609. freq = clock_get_frequency(clock_uart0);
  610. } else if (ptr == HPM_UART1) {
  611. clock_set_source_divider(clock_uart1, clk_src_osc24m, 1);
  612. clock_add_to_group(clock_uart1, 0);
  613. freq = clock_get_frequency(clock_uart1);
  614. } else if (ptr == HPM_UART2) {
  615. clock_set_source_divider(clock_uart2, clk_src_osc24m, 1);
  616. clock_add_to_group(clock_uart2, 0);
  617. freq = clock_get_frequency(clock_uart2);
  618. } else {
  619. /* Not supported */
  620. }
  621. return freq;
  622. }
  623. uint8_t board_enet_get_dma_pbl(ENET_Type *ptr)
  624. {
  625. return enet_pbl_16;
  626. }
  627. hpm_stat_t board_enet_enable_irq(ENET_Type *ptr)
  628. {
  629. if (ptr == HPM_ENET0) {
  630. intc_m_enable_irq(IRQn_ENET0);
  631. } else {
  632. return status_invalid_argument;
  633. }
  634. return status_success;
  635. }
  636. hpm_stat_t board_enet_disable_irq(ENET_Type *ptr)
  637. {
  638. if (ptr == HPM_ENET0) {
  639. intc_m_disable_irq(IRQn_ENET0);
  640. } else {
  641. return status_invalid_argument;
  642. }
  643. return status_success;
  644. }