board.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. /*
  2. * Copyright (c) 2021-2023 HPMicro
  3. * SPDX-License-Identifier: BSD-3-Clause
  4. *
  5. */
  6. #include "board.h"
  7. #include "hpm_uart_drv.h"
  8. #include "hpm_gptmr_drv.h"
  9. #include "hpm_lcdc_drv.h"
  10. #include "hpm_i2c_drv.h"
  11. #include "hpm_gpio_drv.h"
  12. #include "hpm_debug_console.h"
  13. #include "hpm_femc_drv.h"
  14. #include "pinmux.h"
  15. #include "hpm_pmp_drv.h"
  16. #include "assert.h"
  17. #include "hpm_clock_drv.h"
  18. #include "hpm_sysctl_drv.h"
  19. #include "hpm_sdxc_drv.h"
  20. #include "hpm_pwm_drv.h"
  21. #include "hpm_trgm_drv.h"
  22. #include "hpm_pllctl_drv.h"
  23. #include "hpm_enet_drv.h"
  24. #include "hpm_pcfg_drv.h"
  25. static board_timer_cb timer_cb;
  26. /**
  27. * @brief FLASH configuration option definitions:
  28. * option[0]:
  29. * [31:16] 0xfcf9 - FLASH configuration option tag
  30. * [15:4] 0 - Reserved
  31. * [3:0] option words (exclude option[0])
  32. * option[1]:
  33. * [31:28] Flash probe type
  34. * 0 - SFDP SDR / 1 - SFDP DDR
  35. * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
  36. * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
  37. * 6 - OctaBus DDR (SPI -> OPI DDR)
  38. * 8 - Xccela DDR (SPI -> OPI DDR)
  39. * 10 - EcoXiP DDR (SPI -> OPI DDR)
  40. * [27:24] Command Pads after Power-on Reset
  41. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  42. * [23:20] Command Pads after Configuring FLASH
  43. * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
  44. * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
  45. * 0 - Not needed
  46. * 1 - QE bit is at bit 6 in Status Register 1
  47. * 2 - QE bit is at bit1 in Status Register 2
  48. * 3 - QE bit is at bit7 in Status Register 2
  49. * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
  50. * [15:8] Dummy cycles
  51. * 0 - Auto-probed / detected / default value
  52. * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
  53. * [7:4] Misc.
  54. * 0 - Not used
  55. * 1 - SPI mode
  56. * 2 - Internal loopback
  57. * 3 - External DQS
  58. * [3:0] Frequency option
  59. * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
  60. *
  61. * option[2] (Effective only if the bit[3:0] in option[0] > 1)
  62. * [31:20] Reserved
  63. * [19:16] IO voltage
  64. * 0 - 3V / 1 - 1.8V
  65. * [15:12] Pin group
  66. * 0 - 1st group / 1 - 2nd group
  67. * [11:8] Connection selection
  68. * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
  69. * [7:0] Drive Strength
  70. * 0 - Default value
  71. * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
  72. * JESD216)
  73. * [31:16] reserved
  74. * [15:12] Sector Erase Command Option, not required here
  75. * [11:8] Sector Size Option, not required here
  76. * [7:0] Flash Size Option
  77. * 0 - 4MB / 1 - 8MB / 2 - 16MB
  78. */
  79. #if defined(FLASH_XIP) && FLASH_XIP
  80. __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0};
  81. #endif
  82. #if defined(FLASH_UF2) && FLASH_UF2
  83. ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
  84. #endif
  85. void board_init_console(void)
  86. {
  87. #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
  88. console_config_t cfg;
  89. /* Configure the UART clock to 24MHz */
  90. clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
  91. cfg.type = BOARD_CONSOLE_TYPE;
  92. cfg.base = (uint32_t) BOARD_CONSOLE_BASE;
  93. cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
  94. cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
  95. init_uart_pins((UART_Type *) cfg.base);
  96. if (status_success != console_init(&cfg)) {
  97. /* failed to initialize debug console */
  98. while (1) {
  99. }
  100. }
  101. #else
  102. while(1);
  103. #endif
  104. }
  105. void board_print_clock_freq(void)
  106. {
  107. printf("==============================\n");
  108. printf(" %s clock summary\n", BOARD_NAME);
  109. printf("==============================\n");
  110. printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0));
  111. printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
  112. printf("axi0:\t\t %luHz\n", clock_get_frequency(clock_axi0));
  113. printf("axi1:\t\t %luHz\n", clock_get_frequency(clock_axi1));
  114. printf("axi2:\t\t %luHz\n", clock_get_frequency(clock_axi2));
  115. printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb));
  116. printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0));
  117. printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
  118. printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0));
  119. printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1));
  120. printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
  121. printf("display:\t %luHz\n", clock_get_frequency(clock_display));
  122. printf("cam0:\t\t %luHz\n", clock_get_frequency(clock_camera0));
  123. printf("cam1:\t\t %luHz\n", clock_get_frequency(clock_camera1));
  124. printf("jpeg:\t\t %luHz\n", clock_get_frequency(clock_jpeg));
  125. printf("pdma:\t\t %luHz\n", clock_get_frequency(clock_pdma));
  126. printf("==============================\n");
  127. }
  128. void board_init_uart(UART_Type *ptr)
  129. {
  130. init_uart_pins(ptr);
  131. board_init_uart_clock(ptr);
  132. }
  133. void board_init_ahb(void)
  134. {
  135. clock_set_source_divider(clock_ahb,clk_src_pll1_clk1,2);/*200m hz*/
  136. }
  137. void board_print_banner(void)
  138. {
  139. const uint8_t banner[] = {"\n\
  140. ----------------------------------------------------------------------\n\
  141. $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
  142. $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
  143. $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
  144. $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
  145. $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
  146. $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
  147. $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
  148. \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
  149. ----------------------------------------------------------------------\n"};
  150. printf("%s", banner);
  151. }
  152. static void board_turnoff_rgb_led(void)
  153. {
  154. uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PS_SET(1);
  155. HPM_IOC->PAD[IOC_PAD_PB11].FUNC_CTL = IOC_PB11_FUNC_CTL_GPIO_B_11;
  156. HPM_IOC->PAD[IOC_PAD_PB12].FUNC_CTL = IOC_PB12_FUNC_CTL_GPIO_B_12;
  157. HPM_IOC->PAD[IOC_PAD_PB13].FUNC_CTL = IOC_PB13_FUNC_CTL_GPIO_B_13;
  158. HPM_IOC->PAD[IOC_PAD_PB11].PAD_CTL = pad_ctl;
  159. HPM_IOC->PAD[IOC_PAD_PB12].PAD_CTL = pad_ctl;
  160. HPM_IOC->PAD[IOC_PAD_PB13].PAD_CTL = pad_ctl;
  161. }
  162. void board_ungate_mchtmr_at_lp_mode(void)
  163. {
  164. /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
  165. sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
  166. }
  167. void board_init(void)
  168. {
  169. board_turnoff_rgb_led();
  170. board_init_clock();
  171. board_init_console();
  172. board_init_pmp();
  173. board_init_ahb();
  174. #if BOARD_SHOW_CLOCK
  175. board_print_clock_freq();
  176. #endif
  177. #if BOARD_SHOW_BANNER
  178. board_print_banner();
  179. #endif
  180. }
  181. void board_init_sdram_pins(void)
  182. {
  183. init_sdram_pins();
  184. }
  185. uint32_t board_init_femc_clock(void)
  186. {
  187. clock_set_source_divider(clock_femc, clk_src_pll2_clk0, 2U); /* 166Mhz */
  188. /* clock_set_source_divider(clock_femc, clk_src_pll1_clk1, 2U); [> 200Mhz <] */
  189. return clock_get_frequency(clock_femc);
  190. }
  191. void board_power_cycle_lcd(void)
  192. {
  193. /* turn off backlight */
  194. gpio_set_pin_output(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN);
  195. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 0);
  196. gpio_set_pin_output(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN);
  197. gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 0);
  198. gpio_write_pin(BOARD_LCD_POWER_EN_GPIO_BASE, BOARD_LCD_POWER_EN_GPIO_INDEX, BOARD_LCD_POWER_EN_GPIO_PIN, 1);
  199. board_delay_ms(150);
  200. /* power recycle */
  201. gpio_set_pin_output(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN);
  202. gpio_write_pin(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN, 0);
  203. board_delay_ms(150);
  204. gpio_write_pin(BOARD_LCD_RESET_GPIO_BASE, BOARD_LCD_RESET_GPIO_INDEX, BOARD_LCD_RESET_GPIO_PIN, 1);
  205. board_delay_ms(150);
  206. /* turn on backlight */
  207. gpio_write_pin(BOARD_LCD_BACKLIGHT_GPIO_BASE, BOARD_LCD_BACKLIGHT_GPIO_INDEX, BOARD_LCD_BACKLIGHT_GPIO_PIN, 1);
  208. }
  209. void board_init_lcd(void)
  210. {
  211. board_init_lcd_clock();
  212. init_lcd_pins(BOARD_LCD_BASE);
  213. board_power_cycle_lcd();
  214. }
  215. void board_panel_para_to_lcdc(lcdc_config_t *config)
  216. {
  217. const uint16_t panel_timing_para[] = BOARD_PANEL_TIMING_PARA;
  218. config->resolution_x = BOARD_LCD_WIDTH;
  219. config->resolution_y = BOARD_LCD_HEIGHT;
  220. config->hsync.pulse_width = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HSPW_INDEX];
  221. config->hsync.back_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HBP_INDEX];
  222. config->hsync.front_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HFP_INDEX];
  223. config->vsync.pulse_width = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VSPW_INDEX];
  224. config->vsync.back_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VBP_INDEX];
  225. config->vsync.front_porch_pulse = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VFP_INDEX];
  226. config->control.invert_hsync = panel_timing_para[BOARD_PANEL_TIMEING_PARA_HSSP_INDEX];
  227. config->control.invert_vsync = panel_timing_para[BOARD_PANEL_TIMEING_PARA_VSSP_INDEX];
  228. config->control.invert_href = panel_timing_para[BOARD_PANEL_TIMEING_PARA_DESP_INDEX];
  229. config->control.invert_pixel_data = panel_timing_para[BOARD_PANEL_TIMEING_PARA_PDSP_INDEX];
  230. config->control.invert_pixel_clock = panel_timing_para[BOARD_PANEL_TIMEING_PARA_PCSP_INDEX];
  231. }
  232. void board_delay_ms(uint32_t ms)
  233. {
  234. clock_cpu_delay_ms(ms);
  235. }
  236. void board_timer_isr(void)
  237. {
  238. if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
  239. gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
  240. timer_cb();
  241. }
  242. }
  243. SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
  244. void board_timer_create(uint32_t ms, board_timer_cb cb)
  245. {
  246. uint32_t gptmr_freq;
  247. gptmr_channel_config_t config;
  248. timer_cb = cb;
  249. gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
  250. clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
  251. gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
  252. config.reload = gptmr_freq / 1000 * ms;
  253. gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
  254. gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
  255. intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
  256. gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
  257. }
  258. void board_i2c_bus_clear(I2C_Type *ptr)
  259. {
  260. init_i2c_pins_as_gpio(ptr);
  261. if (ptr == BOARD_CAP_I2C_BASE) {
  262. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN);
  263. gpio_set_pin_input(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  264. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN)) {
  265. printf("CLK is low, please power cycle the board\n");
  266. while (1) {}
  267. }
  268. if (!gpio_read_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_SDA_GPIO_INDEX, BOARD_CAP_I2C_SDA_GPIO_PIN)) {
  269. printf("SDA is low, try to issue I2C bus clear\n");
  270. } else {
  271. printf("I2C bus is ready\n");
  272. return;
  273. }
  274. gpio_set_pin_output(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN);
  275. while (1) {
  276. for (uint32_t i = 0; i < 9; i++) {
  277. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 1);
  278. board_delay_ms(10);
  279. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_CAP_I2C_CLK_GPIO_INDEX, BOARD_CAP_I2C_CLK_GPIO_PIN, 0);
  280. board_delay_ms(10);
  281. }
  282. board_delay_ms(100);
  283. }
  284. printf("I2C bus is cleared\n");
  285. }
  286. }
  287. void board_init_i2c(I2C_Type *ptr)
  288. {
  289. hpm_stat_t stat;
  290. uint32_t freq;
  291. i2c_config_t config;
  292. board_i2c_bus_clear(ptr);
  293. init_i2c_pins(ptr);
  294. clock_add_to_group(clock_i2c0, 0);
  295. clock_add_to_group(clock_i2c1, 0);
  296. clock_add_to_group(clock_i2c2, 0);
  297. clock_add_to_group(clock_i2c3, 0);
  298. /* Configure the I2C clock to 24MHz */
  299. clock_set_source_divider(BOARD_CAP_I2C_CLK_NAME, clk_src_osc24m, 1U);
  300. config.i2c_mode = i2c_mode_normal;
  301. config.is_10bit_addressing = false;
  302. freq = clock_get_frequency(BOARD_CAP_I2C_CLK_NAME);
  303. stat = i2c_init_master(BOARD_CAP_I2C_BASE, freq, &config);
  304. if (stat != status_success) {
  305. printf("failed to initialize i2c 0x%x\n", (uint32_t)BOARD_CAP_I2C_BASE);
  306. while (1) {}
  307. }
  308. }
  309. uint32_t board_init_uart_clock(UART_Type *ptr)
  310. {
  311. uint32_t freq = 0;
  312. clock_name_t clock_name = clock_uart0;
  313. bool need_init_clock = true;
  314. if (ptr == HPM_UART0) {
  315. clock_name = clock_uart0;
  316. } else if (ptr == HPM_UART1) {
  317. clock_name = clock_uart1;
  318. } else if (ptr == HPM_UART2) {
  319. clock_name = clock_uart2;
  320. } else if (ptr == HPM_UART3) {
  321. clock_name = clock_uart3;
  322. } else if (ptr == HPM_UART4) {
  323. clock_name = clock_uart4;
  324. } else if (ptr == HPM_UART5) {
  325. clock_name = clock_uart5;
  326. } else if (ptr == HPM_UART6) {
  327. clock_name = clock_uart6;
  328. } else if (ptr == HPM_UART7) {
  329. clock_name = clock_uart7;
  330. } else if (ptr == HPM_UART8) {
  331. clock_name = clock_uart8;
  332. } else if (ptr == HPM_UART9) {
  333. clock_name = clock_uart9;
  334. } else if (ptr == HPM_UART10) {
  335. clock_name = clock_uart10;
  336. } else if (ptr == HPM_UART11) {
  337. clock_name = clock_uart11;
  338. } else if (ptr == HPM_UART12) {
  339. clock_name = clock_uart12;
  340. } else if (ptr == HPM_UART13) {
  341. clock_name = clock_uart13;
  342. } else if (ptr == HPM_UART14) {
  343. clock_name = clock_uart14;
  344. } else if (ptr == HPM_UART15) {
  345. clock_name = clock_uart15;
  346. } else {
  347. /* Unsupported instance */
  348. need_init_clock = false;
  349. }
  350. if (need_init_clock) {
  351. clock_set_source_divider(clock_name, clk_src_osc24m, 1);
  352. clock_add_to_group(clock_name, 0);
  353. freq = clock_get_frequency(clock_name);
  354. }
  355. return freq;
  356. }
  357. uint32_t board_init_spi_clock(SPI_Type *ptr)
  358. {
  359. if (ptr == HPM_SPI2) {
  360. /* SPI2 clock configure */
  361. clock_add_to_group(clock_spi2, 0);
  362. clock_set_source_divider(clock_spi2, clk_src_osc24m, 1U);
  363. return clock_get_frequency(clock_spi2);
  364. }
  365. return 0;
  366. }
  367. void board_init_cap_touch(void)
  368. {
  369. init_cap_pins();
  370. gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0);
  371. gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  372. board_delay_ms(1);
  373. gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  374. board_delay_ms(1);
  375. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1);
  376. board_delay_ms(6);
  377. gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0);
  378. board_init_i2c(BOARD_CAP_I2C_BASE);
  379. }
  380. void board_init_gpio_pins(void)
  381. {
  382. init_gpio_pins();
  383. }
  384. void board_init_spi_pins(SPI_Type *ptr)
  385. {
  386. init_spi_pins(ptr);
  387. }
  388. void board_init_led_pins(void)
  389. {
  390. init_led_pins_as_gpio();
  391. gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  392. gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  393. gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
  394. }
  395. void board_led_toggle(void)
  396. {
  397. #ifdef BOARD_LED_TOGGLE_RGB
  398. static uint8_t i;
  399. gpio_write_port(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, (7 & ~(1 << i)) << BOARD_R_GPIO_PIN);
  400. i++;
  401. i = i % 3;
  402. #else
  403. gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
  404. #endif
  405. }
  406. void board_led_write(uint8_t state)
  407. {
  408. gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
  409. }
  410. void board_init_cam_pins(void)
  411. {
  412. init_cam_pins();
  413. /* enable cam RST pin out with high level */
  414. gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1);
  415. }
  416. void board_write_cam_rst(uint8_t state)
  417. {
  418. gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state);
  419. }
  420. void board_init_usb_pins(void)
  421. {
  422. /* set pull-up for USBx OC pins and ID pins */
  423. init_usb_pins();
  424. /* configure USBx ID pins as input function */
  425. gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
  426. gpio_set_pin_input(BOARD_USB1_ID_PORT, BOARD_USB1_ID_GPIO_INDEX, BOARD_USB1_ID_GPIO_PIN);
  427. /* configure USBx OC Flag pins as input function */
  428. gpio_set_pin_input(BOARD_USB0_OC_PORT, BOARD_USB0_OC_GPIO_INDEX, BOARD_USB0_OC_GPIO_PIN);
  429. gpio_set_pin_input(BOARD_USB1_OC_PORT, BOARD_USB1_OC_GPIO_INDEX, BOARD_USB1_OC_GPIO_PIN);
  430. }
  431. void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
  432. {
  433. }
  434. void board_init_pmp(void)
  435. {
  436. extern uint32_t __noncacheable_start__[];
  437. extern uint32_t __noncacheable_end__[];
  438. uint32_t start_addr = (uint32_t) __noncacheable_start__;
  439. uint32_t end_addr = (uint32_t) __noncacheable_end__;
  440. uint32_t length = end_addr - start_addr;
  441. if (length == 0) {
  442. return;
  443. }
  444. /* Ensure the address and the length are power of 2 aligned */
  445. assert((length & (length - 1U)) == 0U);
  446. assert((start_addr & (length - 1U)) == 0U);
  447. pmp_entry_t pmp_entry[1];
  448. pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
  449. pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
  450. pmp_entry[0].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
  451. pmp_entry[0].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
  452. pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry));
  453. }
  454. void board_init_clock(void)
  455. {
  456. uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
  457. hpm_core_clock = cpu0_freq;
  458. if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
  459. /* Configure the External OSC ramp-up time: ~9ms */
  460. pllctl_xtal_set_rampup_time(HPM_PLLCTL, 32UL * 1000UL * 9U);
  461. /* Select clock setting preset1 */
  462. sysctl_clock_set_preset(HPM_SYSCTL, sysctl_preset_1);
  463. }
  464. /* Add most Clocks to group 0 */
  465. clock_add_to_group(clock_cpu0, 0);
  466. clock_add_to_group(clock_mchtmr0, 0);
  467. clock_add_to_group(clock_axi0, 0);
  468. clock_add_to_group(clock_axi1, 0);
  469. clock_add_to_group(clock_axi2, 0);
  470. clock_add_to_group(clock_ahb, 0);
  471. clock_add_to_group(clock_femc, 0);
  472. clock_add_to_group(clock_xpi0, 0);
  473. clock_add_to_group(clock_xpi1, 0);
  474. clock_add_to_group(clock_gptmr0, 0);
  475. clock_add_to_group(clock_gptmr1, 0);
  476. clock_add_to_group(clock_gptmr2, 0);
  477. clock_add_to_group(clock_gptmr3, 0);
  478. clock_add_to_group(clock_gptmr4, 0);
  479. clock_add_to_group(clock_gptmr5, 0);
  480. clock_add_to_group(clock_gptmr6, 0);
  481. clock_add_to_group(clock_gptmr7, 0);
  482. clock_add_to_group(clock_i2c0, 0);
  483. clock_add_to_group(clock_i2c1, 0);
  484. clock_add_to_group(clock_i2c2, 0);
  485. clock_add_to_group(clock_i2c3, 0);
  486. clock_add_to_group(clock_spi0, 0);
  487. clock_add_to_group(clock_spi1, 0);
  488. clock_add_to_group(clock_spi2, 0);
  489. clock_add_to_group(clock_spi3, 0);
  490. clock_add_to_group(clock_can0, 0);
  491. clock_add_to_group(clock_can1, 0);
  492. clock_add_to_group(clock_can2, 0);
  493. clock_add_to_group(clock_can3, 0);
  494. clock_add_to_group(clock_display, 0);
  495. clock_add_to_group(clock_sdxc0, 0);
  496. clock_add_to_group(clock_sdxc1, 0);
  497. clock_add_to_group(clock_camera0, 0);
  498. clock_add_to_group(clock_camera1, 0);
  499. clock_add_to_group(clock_ptpc, 0);
  500. clock_add_to_group(clock_ref0, 0);
  501. clock_add_to_group(clock_ref1, 0);
  502. clock_add_to_group(clock_watchdog0, 0);
  503. clock_add_to_group(clock_eth0, 0);
  504. clock_add_to_group(clock_eth1, 0);
  505. clock_add_to_group(clock_sdp, 0);
  506. clock_add_to_group(clock_xdma, 0);
  507. clock_add_to_group(clock_ram0, 0);
  508. clock_add_to_group(clock_ram1, 0);
  509. clock_add_to_group(clock_usb0, 0);
  510. clock_add_to_group(clock_usb1, 0);
  511. clock_add_to_group(clock_jpeg, 0);
  512. clock_add_to_group(clock_pdma, 0);
  513. clock_add_to_group(clock_kman, 0);
  514. clock_add_to_group(clock_gpio, 0);
  515. clock_add_to_group(clock_mbx0, 0);
  516. clock_add_to_group(clock_hdma, 0);
  517. clock_add_to_group(clock_rng, 0);
  518. clock_add_to_group(clock_mot0, 0);
  519. clock_add_to_group(clock_mot1, 0);
  520. clock_add_to_group(clock_mot2, 0);
  521. clock_add_to_group(clock_mot3, 0);
  522. clock_add_to_group(clock_acmp, 0);
  523. clock_add_to_group(clock_dao, 0);
  524. clock_add_to_group(clock_msyn, 0);
  525. clock_add_to_group(clock_lmm0, 0);
  526. clock_add_to_group(clock_lmm1, 0);
  527. clock_add_to_group(clock_pdm, 0);
  528. clock_add_to_group(clock_adc0, 0);
  529. clock_add_to_group(clock_adc1, 0);
  530. clock_add_to_group(clock_adc2, 0);
  531. clock_add_to_group(clock_adc3, 0);
  532. clock_add_to_group(clock_i2s0, 0);
  533. clock_add_to_group(clock_i2s1, 0);
  534. clock_add_to_group(clock_i2s2, 0);
  535. clock_add_to_group(clock_i2s3, 0);
  536. /* Connect Group0 to CPU0 */
  537. clock_connect_group_to_cpu(0, 0);
  538. /* Add the CPU1 clock to Group1 */
  539. clock_add_to_group(clock_mchtmr1, 1);
  540. clock_add_to_group(clock_mbx1, 1);
  541. /* Connect Group1 to CPU1 */
  542. clock_connect_group_to_cpu(1, 1);
  543. /* Bump up DCDC voltage to 1200mv */
  544. pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
  545. if (status_success != pllctl_init_int_pll_with_freq(HPM_PLLCTL, 0, BOARD_CPU_FREQ)) {
  546. printf("Failed to set pll0_clk0 to %ldHz\n", BOARD_CPU_FREQ);
  547. while (1) {
  548. }
  549. }
  550. clock_set_source_divider(clock_cpu0, clk_src_pll0_clk0, 1);
  551. clock_set_source_divider(clock_cpu1, clk_src_pll0_clk0, 1);
  552. /* Connect Group1 to CPU1 */
  553. clock_connect_group_to_cpu(1, 1);
  554. clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 54); /* config clock_aud1 for 44100*n sample rate */
  555. }
  556. uint32_t board_init_cam_clock(CAM_Type *ptr)
  557. {
  558. uint32_t freq = 0;
  559. if (ptr == HPM_CAM0) {
  560. /* Configure camera clock to 24MHz */
  561. clock_set_source_divider(clock_camera0, clk_src_osc24m, 1U);
  562. freq = clock_get_frequency(clock_camera0);
  563. } else if (ptr == HPM_CAM1) {
  564. /* Configure camera clock to 24MHz */
  565. clock_set_source_divider(clock_camera1, clk_src_osc24m, 1U);
  566. freq = clock_get_frequency(clock_camera1);
  567. } else {
  568. /* Invalid camera instance */
  569. }
  570. return freq;
  571. }
  572. uint32_t board_init_lcd_clock(void)
  573. {
  574. uint32_t freq;
  575. clock_add_to_group(clock_display, 0);
  576. /* Configure LCDC clock to 29.7MHz */
  577. clock_set_source_divider(clock_display, clock_source_pll4_clk0, 10U);
  578. freq = clock_get_frequency(clock_display);
  579. return freq;
  580. }
  581. uint32_t board_init_adc12_clock(ADC12_Type *ptr)
  582. {
  583. uint32_t freq = 0;
  584. switch ((uint32_t) ptr) {
  585. case HPM_ADC0_BASE:
  586. /* Configure the ADC clock to 200MHz */
  587. clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
  588. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  589. freq = clock_get_frequency(clock_adc0);
  590. break;
  591. case HPM_ADC1_BASE:
  592. /* Configure the ADC clock to 200MHz */
  593. clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
  594. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  595. freq = clock_get_frequency(clock_adc1);
  596. break;
  597. case HPM_ADC2_BASE:
  598. /* Configure the ADC clock to 200MHz */
  599. clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
  600. clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
  601. freq = clock_get_frequency(clock_adc2);
  602. break;
  603. default:
  604. /* Invalid ADC instance */
  605. break;
  606. }
  607. return freq;
  608. }
  609. uint32_t board_init_dao_clock(void)
  610. {
  611. clock_add_to_group(clock_dao, 0);
  612. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  613. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s1, clock_source_i2s_aud0_clk);
  614. return clock_get_frequency(clock_dao);
  615. }
  616. uint32_t board_init_pdm_clock(void)
  617. {
  618. clock_add_to_group(clock_pdm, 0);
  619. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  620. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  621. return clock_get_frequency(clock_pdm);
  622. }
  623. uint32_t board_init_i2s_clock(I2S_Type *ptr)
  624. {
  625. if (ptr == HPM_I2S0) {
  626. clock_add_to_group(clock_i2s0, 0);
  627. sysctl_config_clock(HPM_SYSCTL, clock_node_aud0, clock_source_pll3_clk0, 25);
  628. sysctl_set_adc_i2s_clock_mux(HPM_SYSCTL, clock_node_i2s0, clock_source_i2s_aud0_clk);
  629. return clock_get_frequency(clock_i2s0);
  630. }
  631. return 0;
  632. }
  633. uint32_t board_init_adc16_clock(ADC16_Type *ptr)
  634. {
  635. uint32_t freq = 0;
  636. if (ptr == HPM_ADC3) {
  637. /* Configure the ADC clock to 200MHz */
  638. clock_set_adc_source(clock_adc3, clk_adc_src_ana1);
  639. clock_set_source_divider(clock_ana1, clk_src_pll1_clk1, 2U);
  640. freq = clock_get_frequency(clock_adc3);
  641. }
  642. return freq;
  643. }
  644. void board_init_can(CAN_Type *ptr)
  645. {
  646. init_can_pins(ptr);
  647. }
  648. uint32_t board_init_can_clock(CAN_Type *ptr)
  649. {
  650. uint32_t freq = 0;
  651. if (ptr == HPM_CAN0) {
  652. /* Set the CAN0 peripheral clock to 80MHz */
  653. clock_set_source_divider(clock_can0, clk_src_pll1_clk1, 5);
  654. freq = clock_get_frequency(clock_can0);
  655. } else if (ptr == HPM_CAN1) {
  656. /* Set the CAN1 peripheral clock to 80MHz */
  657. clock_set_source_divider(clock_can1, clk_src_pll1_clk1, 5);
  658. freq = clock_get_frequency(clock_can1);
  659. } else if (ptr == HPM_CAN2) {
  660. /* Set the CAN2 peripheral clock to 80MHz */
  661. clock_set_source_divider(clock_can2, clk_src_pll1_clk1, 5);
  662. freq = clock_get_frequency(clock_can2);
  663. } else if (ptr == HPM_CAN3) {
  664. /* Set the CAN3 peripheral clock to 80MHz */
  665. clock_set_source_divider(clock_can3, clk_src_pll1_clk1, 5);
  666. freq = clock_get_frequency(clock_can3);
  667. } else {
  668. /* Invalid CAN instance */
  669. }
  670. return freq;
  671. }
  672. uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
  673. {
  674. uint32_t freq = 0;
  675. if (ptr == HPM_GPTMR0) {
  676. clock_add_to_group(clock_gptmr0, 0);
  677. clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
  678. freq = clock_get_frequency(clock_gptmr0);
  679. }
  680. else if (ptr == HPM_GPTMR1) {
  681. clock_add_to_group(clock_gptmr1, 0);
  682. clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
  683. freq = clock_get_frequency(clock_gptmr1);
  684. }
  685. else if (ptr == HPM_GPTMR2) {
  686. clock_add_to_group(clock_gptmr2, 0);
  687. clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
  688. freq = clock_get_frequency(clock_gptmr2);
  689. }
  690. else if (ptr == HPM_GPTMR3) {
  691. clock_add_to_group(clock_gptmr3, 0);
  692. clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
  693. freq = clock_get_frequency(clock_gptmr3);
  694. }
  695. else if (ptr == HPM_GPTMR4) {
  696. clock_add_to_group(clock_gptmr4, 0);
  697. clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk1, 4);
  698. freq = clock_get_frequency(clock_gptmr4);
  699. }
  700. else if (ptr == HPM_GPTMR5) {
  701. clock_add_to_group(clock_gptmr5, 0);
  702. clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk1, 4);
  703. freq = clock_get_frequency(clock_gptmr5);
  704. }
  705. else if (ptr == HPM_GPTMR6) {
  706. clock_add_to_group(clock_gptmr6, 0);
  707. clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk1, 4);
  708. freq = clock_get_frequency(clock_gptmr6);
  709. }
  710. else if (ptr == HPM_GPTMR7) {
  711. clock_add_to_group(clock_gptmr7, 0);
  712. clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk1, 4);
  713. freq = clock_get_frequency(clock_gptmr7);
  714. }
  715. else {
  716. /* Invalid instance */
  717. }
  718. }
  719. /*
  720. * this function will be called during startup to initialize external memory for data use
  721. */
  722. void _init_ext_ram(void)
  723. {
  724. uint32_t femc_clk_in_hz;
  725. clock_add_to_group(clock_femc, 0);
  726. board_init_sdram_pins();
  727. femc_clk_in_hz = board_init_femc_clock();
  728. femc_config_t config = {0};
  729. femc_sdram_config_t sdram_config = {0};
  730. femc_default_config(HPM_FEMC, &config);
  731. config.dqs = FEMC_DQS_INTERNAL;
  732. femc_init(HPM_FEMC, &config);
  733. sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
  734. sdram_config.prescaler = 0x3;
  735. sdram_config.burst_len_in_byte = 8;
  736. sdram_config.auto_refresh_count_in_one_burst = 1;
  737. sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
  738. sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
  739. sdram_config.precharge_to_act_in_ns = 18; /* Trp */
  740. sdram_config.act_to_rw_in_ns = 18; /* Trcd */
  741. sdram_config.refresh_recover_in_ns = 70; /* Trfc/Trc */
  742. sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
  743. sdram_config.cke_off_in_ns = 42; /* Trcd */
  744. sdram_config.act_to_precharge_in_ns = 42; /* Tras */
  745. sdram_config.self_refresh_recover_in_ns = 66; /* Txsr */
  746. sdram_config.refresh_to_refresh_in_ns = 66; /* Trfc/Trc */
  747. sdram_config.act_to_act_in_ns = 12; /* Trrd */
  748. sdram_config.idle_timeout_in_ns = 6;
  749. sdram_config.cs_mux_pin = FEMC_IO_MUX_NOT_USED;
  750. sdram_config.cs = BOARD_SDRAM_CS;
  751. sdram_config.base_address = BOARD_SDRAM_ADDRESS;
  752. sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
  753. sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
  754. sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
  755. sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
  756. sdram_config.data_width_in_byte = BOARD_SDRAM_DATA_WIDTH_IN_BYTE;
  757. sdram_config.delay_cell_value = 29;
  758. femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
  759. }
  760. void board_init_sd_pins(SDXC_Type *ptr)
  761. {
  762. init_sdxc_pins(ptr, false);
  763. init_sdxc_card_detection_pin(ptr);
  764. }
  765. void board_sd_power_switch(SDXC_Type *ptr, bool on_off)
  766. {
  767. if (ptr == HPM_SDXC1) {
  768. init_sdxc_power_pin(ptr);
  769. gpio_set_pin_output_with_initial(BOARD_APP_SDCARD_POWER_EN_GPIO_BASE, BOARD_APP_SDCARD_POWER_EN_GPIO_INDEX, BOARD_APP_SDCARD_POWER_EN_GPIO_PIN, on_off);
  770. }
  771. }
  772. uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq)
  773. {
  774. uint32_t actual_freq = 0;
  775. do {
  776. if (ptr != HPM_SDXC1) {
  777. break;
  778. }
  779. clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1;
  780. sdxc_enable_inverse_clock(ptr, false);
  781. sdxc_enable_sd_clock(ptr, false);
  782. /* Configure the clock below 400KHz for the identification state */
  783. if (freq <= 400000UL) {
  784. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 63);
  785. }
  786. /* configure the clock to 24MHz for the SDR12/Default speed */
  787. else if (freq <= 25000000UL) {
  788. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  789. }
  790. /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */
  791. else if (freq <= 50000000UL) {
  792. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 8);
  793. }
  794. /* Configure the clock to 100MHz for the SDR50 */
  795. else if (freq <= 100000000UL) {
  796. clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 4);
  797. }
  798. /* Configure the clock to 166MHz for SDR104/HS200/HS400 */
  799. else if (freq <= 208000000UL) {
  800. clock_set_source_divider(sdxc_clk, clk_src_pll2_clk0, 2);
  801. }
  802. /* For other unsupported clock ranges, configure the clock to 24MHz */
  803. else {
  804. clock_set_source_divider(sdxc_clk, clk_src_osc24m, 1);
  805. }
  806. sdxc_enable_inverse_clock(ptr, true);
  807. sdxc_enable_sd_clock(ptr, true);
  808. actual_freq = clock_get_frequency(sdxc_clk);
  809. } while (false);
  810. return actual_freq;
  811. }
  812. void board_sd_switch_pins_to_1v8(SDXC_Type *ptr)
  813. {
  814. /* This feature is not supported */
  815. }
  816. bool board_sd_detect_card(SDXC_Type *ptr)
  817. {
  818. GPIO_Type *gpio = BOARD_APP_SDCARD_CARD_DETECTION_GPIO;
  819. uint32_t gpio_index = BOARD_APP_SDCARD_CARD_DETECTION_GPIO_INDEX;
  820. uint32_t pin_index = BOARD_APP_SDCARD_CARD_DETECTION_PIN_INDEX;
  821. return ((gpio->DI[gpio_index].VALUE & (1UL << pin_index)) == 0U);
  822. }
  823. static void set_rgb_output_off(PWM_Type *ptr, uint8_t pin, uint8_t cmp_index)
  824. {
  825. pwm_cmp_config_t cmp_config = {0};
  826. pwm_output_channel_t ch_config = {0};
  827. pwm_stop_counter(ptr);
  828. pwm_get_default_cmp_config(ptr, &cmp_config);
  829. pwm_get_default_output_channel_config(ptr, &ch_config);
  830. pwm_set_reload(ptr, 0, 0xF);
  831. pwm_set_start_count(ptr, 0, 0);
  832. cmp_config.mode = pwm_cmp_mode_output_compare;
  833. cmp_config.cmp = 0x10;
  834. cmp_config.update_trigger = pwm_shadow_register_update_on_modify;
  835. pwm_config_cmp(ptr, cmp_index, &cmp_config);
  836. ch_config.cmp_start_index = cmp_index;
  837. ch_config.cmp_end_index = cmp_index;
  838. ch_config.invert_output = false;
  839. pwm_config_output_channel(ptr, pin, &ch_config);
  840. }
  841. void board_init_rgb_pwm_pins(void)
  842. {
  843. trgm_output_t config = {0};
  844. board_turnoff_rgb_led();
  845. set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_OUT, BOARD_RED_PWM_CMP);
  846. set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT, BOARD_GREEN_PWM_CMP);
  847. set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT, BOARD_BLUE_PWM_CMP);
  848. init_rgb_pwm_pins();
  849. config.type = 0;
  850. config.invert = false;
  851. /* Red: TRGM1 P1 */
  852. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH8REF;
  853. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT1, &config);
  854. /* Green: TRGM0 P6 */
  855. config.input = HPM_TRGM0_INPUT_SRC_PWM0_CH8REF;
  856. trgm_output_config(HPM_TRGM0, TRGM_TRGOCFG_TRGM_OUT6, &config);
  857. /* Blue: TRGM1 P3 */
  858. config.input = HPM_TRGM1_INPUT_SRC_PWM1_CH9REF;
  859. trgm_output_config(HPM_TRGM1, TRGM_TRGOCFG_TRGM_OUT3, &config);
  860. }
  861. void board_disable_output_rgb_led(uint8_t color)
  862. {
  863. switch (color) {
  864. case BOARD_RGB_RED:
  865. trgm_disable_io_output(HPM_TRGM1, 1 << 1);
  866. break;
  867. case BOARD_RGB_GREEN:
  868. trgm_disable_io_output(HPM_TRGM0, 1 << 6);
  869. break;
  870. case BOARD_RGB_BLUE:
  871. trgm_disable_io_output(HPM_TRGM1, 1 << 3);
  872. break;
  873. default:
  874. while (1) {
  875. ;
  876. }
  877. }
  878. }
  879. void board_enable_output_rgb_led(uint8_t color)
  880. {
  881. switch (color) {
  882. case BOARD_RGB_RED:
  883. trgm_enable_io_output(HPM_TRGM1, 1 << 1);
  884. break;
  885. case BOARD_RGB_GREEN:
  886. trgm_enable_io_output(HPM_TRGM0, 1 << 6);
  887. break;
  888. case BOARD_RGB_BLUE:
  889. trgm_enable_io_output(HPM_TRGM1, 1 << 3);
  890. break;
  891. default:
  892. while (1) {
  893. ;
  894. }
  895. }
  896. }
  897. hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
  898. {
  899. /* set clock source */
  900. if (ptr == HPM_ENET0) {
  901. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
  902. clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); /* 100MHz */
  903. } else if (ptr == HPM_ENET1) {
  904. /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
  905. clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); /* 100MHz */
  906. } else {
  907. return status_invalid_argument;
  908. }
  909. return status_success;
  910. }
  911. hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
  912. {
  913. if (internal == false) {
  914. return status_success;
  915. }
  916. /* Configure Enet clock to output reference clock */
  917. if (ptr == HPM_ENET0) {
  918. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet0 */
  919. clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5);
  920. } else if (ptr == HPM_ENET1) {
  921. /* make sure pll2_clk1 output clock at 250MHz then set 50MHz for enet1 */
  922. clock_set_source_divider(clock_eth1, clk_src_pll2_clk1, 5); /* set 50MHz for enet1 */
  923. } else {
  924. return status_invalid_argument;
  925. }
  926. return status_success;
  927. }
  928. void board_init_adc12_pins(void)
  929. {
  930. init_adc12_pins();
  931. }
  932. void board_init_adc16_pins(void)
  933. {
  934. init_adc16_pins();
  935. }
  936. hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
  937. {
  938. init_enet_pins(ptr);
  939. if (ptr == HPM_ENET0) {
  940. gpio_set_pin_output_with_initial(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 0);
  941. } else if (ptr == HPM_ENET1) {
  942. gpio_set_pin_output_with_initial(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  943. } else {
  944. return status_invalid_argument;
  945. }
  946. return status_success;
  947. }
  948. hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
  949. {
  950. if (ptr == HPM_ENET0) {
  951. gpio_write_pin(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 0);
  952. board_delay_ms(BOARD_ENET0_PHY_RST_TIME);
  953. gpio_write_pin(BOARD_ENET0_RST_GPIO, BOARD_ENET0_RST_GPIO_INDEX, BOARD_ENET0_RST_GPIO_PIN, 1);
  954. } else if (ptr == HPM_ENET1) {
  955. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 0);
  956. board_delay_ms(BOARD_ENET1_PHY_RST_TIME);
  957. gpio_write_pin(BOARD_ENET1_RST_GPIO, BOARD_ENET1_RST_GPIO_INDEX, BOARD_ENET1_RST_GPIO_PIN, 1);
  958. } else {
  959. return status_invalid_argument;
  960. }
  961. return status_success;
  962. }
  963. uint8_t board_enet_get_dma_pbl(ENET_Type *ptr)
  964. {
  965. return enet_pbl_32;
  966. }