wormhole_demo.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2022-10-10 Wayne First version
  10. *
  11. ******************************************************************************/
  12. #include <rtthread.h>
  13. #if defined(BSP_USING_WHC)
  14. #include "drv_whc.h"
  15. #include <stdio.h>
  16. #define DBG_ENABLE
  17. #define DBG_LEVEL DBG_LOG
  18. #define DBG_SECTION_NAME "whc.demo"
  19. #define DBG_COLOR
  20. #include <rtdbg.h>
  21. #define USE_WORMHOLE_CHNAME "whc0-0"
  22. typedef enum
  23. {
  24. evCMD_MEM_ALLOCATE,
  25. evCMD_MEM_FREE,
  26. evCMD_MEM_COPY,
  27. evCMD_DEVMEM_WRITE,
  28. evCMD_DEVMEM_READ,
  29. evCMD_MEM_SET
  30. } nu_whc_cmd;
  31. typedef enum
  32. {
  33. evCMD_REQ,
  34. evCMD_RESP,
  35. } nu_whc_cmd_type;
  36. #define CMD_TYPE_Pos 16
  37. #define CMD_TYPE_Msk (3<<CMD_TYPE_Pos)
  38. #define PACK_MSG_CMD(t, x) (((t<<CMD_TYPE_Pos)&CMD_TYPE_Msk)|x)
  39. #define CMD_IS_REQ(m) (((m.u32Cmd&CMD_TYPE_Msk)>>CMD_TYPE_Pos)==evCMD_REQ)
  40. #define CMD_IS_RESP(m) (((m.u32Cmd&CMD_TYPE_Msk)>>CMD_TYPE_Pos)==evCMD_RESP)
  41. typedef struct
  42. {
  43. union
  44. {
  45. nu_whc_msg sMsgBuf;
  46. struct
  47. {
  48. uint32_t u32Cmd;
  49. uint32_t u32Addr0; //Dst, free, allocate, set
  50. uint32_t u32Addr1; //Src, value
  51. uint32_t u32Size;
  52. } msg;
  53. };
  54. } whc_mem;
  55. typedef whc_mem *whc_mem_t;
  56. static struct rt_semaphore tx_sem;
  57. static struct rt_semaphore rx_sem;
  58. static rt_device_t device = RT_NULL;
  59. static rt_err_t whc_tx_complete(rt_device_t dev, void *buffer)
  60. {
  61. return rt_sem_release(&tx_sem);
  62. }
  63. static rt_err_t whc_rx_indicate(rt_device_t dev, rt_size_t size)
  64. {
  65. return rt_sem_release(&rx_sem);
  66. }
  67. static rt_err_t proc_msg(whc_mem_t req, whc_mem_t resp)
  68. {
  69. switch ((nu_whc_cmd)req->msg.u32Cmd)
  70. {
  71. case evCMD_MEM_ALLOCATE:
  72. resp->msg.u32Addr0 = (uint32_t)rt_malloc(req->msg.u32Size);
  73. resp->msg.u32Size = req->msg.u32Size;
  74. resp->msg.u32Cmd = PACK_MSG_CMD(evCMD_RESP, evCMD_MEM_ALLOCATE);
  75. break;
  76. case evCMD_MEM_FREE:
  77. rt_free((void *)req->msg.u32Addr0);
  78. resp->msg.u32Addr0 = (uint32_t)req->msg.u32Addr0;
  79. resp->msg.u32Cmd = PACK_MSG_CMD(evCMD_RESP, evCMD_MEM_FREE);
  80. resp->msg.u32Size = 0;
  81. break;
  82. case evCMD_MEM_COPY:
  83. rt_memcpy((void *)req->msg.u32Addr0, (void *)req->msg.u32Addr1, req->msg.u32Size);
  84. resp->msg.u32Cmd = PACK_MSG_CMD(evCMD_RESP, evCMD_MEM_COPY);
  85. resp->msg.u32Addr0 = (uint32_t)req->msg.u32Addr0;
  86. resp->msg.u32Addr1 = (uint32_t)req->msg.u32Addr1;
  87. resp->msg.u32Size = req->msg.u32Size;
  88. break;
  89. case evCMD_MEM_SET:
  90. rt_memset((void *)req->msg.u32Addr0, (req->msg.u32Addr1 & 0xff), req->msg.u32Size);
  91. resp->msg.u32Cmd = PACK_MSG_CMD(evCMD_RESP, evCMD_MEM_SET);
  92. resp->msg.u32Addr0 = (uint32_t)req->msg.u32Addr0;
  93. resp->msg.u32Addr1 = (uint32_t)(req->msg.u32Addr1 & 0xff);
  94. resp->msg.u32Size = req->msg.u32Size;
  95. break;
  96. case evCMD_DEVMEM_WRITE:
  97. *((vu32 *)req->msg.u32Addr0) = req->msg.u32Addr1;
  98. resp->msg.u32Cmd = PACK_MSG_CMD(evCMD_RESP, evCMD_DEVMEM_WRITE);
  99. resp->msg.u32Addr0 = 0;
  100. resp->msg.u32Addr1 = 0;
  101. resp->msg.u32Size = sizeof(uint32_t);
  102. break;
  103. case evCMD_DEVMEM_READ:
  104. resp->msg.u32Cmd = PACK_MSG_CMD(evCMD_RESP, evCMD_DEVMEM_READ);
  105. resp->msg.u32Addr0 = *((vu32 *)req->msg.u32Addr0);
  106. resp->msg.u32Addr1 = 0;
  107. resp->msg.u32Size = sizeof(uint32_t);
  108. break;
  109. default:
  110. return -RT_ERROR;
  111. }
  112. return -RT_ERROR;
  113. }
  114. static rt_err_t send_msg(whc_mem_t req)
  115. {
  116. if (device)
  117. {
  118. if (sizeof(nu_whc_msg) != rt_device_write(device, 0, req, sizeof(nu_whc_msg)))
  119. {
  120. LOG_E("Failed to send msg.");
  121. return -RT_ERROR;
  122. }
  123. if (-RT_ETIMEOUT == rt_sem_take(&tx_sem, 100))
  124. LOG_E("Timeout cant get ACK.");
  125. }
  126. return RT_EOK;
  127. }
  128. static void whc_daemon(void *parameter)
  129. {
  130. rt_err_t ret;
  131. device = rt_device_find(USE_WORMHOLE_CHNAME);
  132. RT_ASSERT(device);
  133. /* Init semaphores */
  134. ret = rt_sem_init(&tx_sem, "whc_tx", 0, RT_IPC_FLAG_PRIO);
  135. RT_ASSERT(ret == RT_EOK);
  136. ret = rt_sem_init(&rx_sem, "whc_rx", 0, RT_IPC_FLAG_PRIO);
  137. RT_ASSERT(ret == RT_EOK);
  138. /* Set tx complete function */
  139. ret = rt_device_set_tx_complete(device, whc_tx_complete);
  140. RT_ASSERT(ret == RT_EOK);
  141. /* Set rx indicate function */
  142. ret = rt_device_set_rx_indicate(device, whc_rx_indicate);
  143. RT_ASSERT(ret == RT_EOK);
  144. ret = rt_device_open(device, 0);
  145. if (!device)
  146. {
  147. LOG_E("Failed to open %s", USE_WORMHOLE_CHNAME);
  148. return;
  149. }
  150. while (1)
  151. {
  152. if (rt_sem_take(&rx_sem, RT_WAITING_FOREVER) == RT_EOK)
  153. {
  154. nu_whc_msg sNuWhcMsg;
  155. whc_mem_t psWhcMem = (whc_mem_t)&sNuWhcMsg;
  156. if (sizeof(nu_whc_msg) != rt_device_read(device, 0, psWhcMem, sizeof(nu_whc_msg)))
  157. continue;
  158. if (CMD_IS_REQ(psWhcMem->msg))
  159. {
  160. nu_whc_msg sNuWhcMsg_Resp;
  161. proc_msg((whc_mem_t)&sNuWhcMsg, (whc_mem_t)&sNuWhcMsg_Resp);
  162. send_msg((whc_mem_t)&sNuWhcMsg_Resp);
  163. }
  164. else if (CMD_IS_RESP(psWhcMem->msg))
  165. {
  166. LOG_I("Get Resp. 0x%08x 0x%08x 0x%08x %d",
  167. psWhcMem->msg.u32Cmd,
  168. psWhcMem->msg.u32Addr0,
  169. psWhcMem->msg.u32Addr1,
  170. psWhcMem->msg.u32Size);
  171. }
  172. } //if
  173. } //while
  174. }
  175. static int wormhole_app(void)
  176. {
  177. rt_err_t result = 0;
  178. rt_thread_t thread;
  179. thread = rt_thread_create("whcD", whc_daemon, RT_NULL, 2048, 25, 20);
  180. if (thread != RT_NULL)
  181. {
  182. result = rt_thread_startup(thread);
  183. RT_ASSERT(result == RT_EOK);
  184. }
  185. return 0;
  186. }
  187. INIT_COMPONENT_EXPORT(wormhole_app);
  188. void *whc_malloc(uint32_t u32Size)
  189. {
  190. whc_mem sWhcMem;
  191. sWhcMem.msg.u32Cmd = PACK_MSG_CMD(evCMD_REQ, evCMD_MEM_ALLOCATE);
  192. sWhcMem.msg.u32Size = (uint32_t)u32Size;
  193. send_msg(&sWhcMem);
  194. return 0;
  195. }
  196. RTM_EXPORT(whc_malloc);
  197. void *whc_memcpy(void *pvDst, void *pvSrc, uint32_t u32Size)
  198. {
  199. whc_mem sWhcMem;
  200. sWhcMem.msg.u32Cmd = PACK_MSG_CMD(evCMD_REQ, evCMD_MEM_COPY);
  201. sWhcMem.msg.u32Addr0 = (uint32_t)pvDst;
  202. sWhcMem.msg.u32Addr1 = (uint32_t)pvSrc;
  203. sWhcMem.msg.u32Size = (uint32_t)u32Size;
  204. send_msg(&sWhcMem);
  205. return 0;
  206. }
  207. RTM_EXPORT(whc_memcpy);
  208. uint32_t whc_devmem_write(void *pvaddr, uint32_t u32value)
  209. {
  210. whc_mem sWhcMem;
  211. sWhcMem.msg.u32Cmd = PACK_MSG_CMD(evCMD_REQ, evCMD_DEVMEM_WRITE);
  212. sWhcMem.msg.u32Addr0 = (uint32_t)pvaddr;
  213. sWhcMem.msg.u32Addr1 = u32value;
  214. sWhcMem.msg.u32Size = sizeof(uint32_t);
  215. send_msg(&sWhcMem);
  216. return 0;
  217. }
  218. RTM_EXPORT(whc_devmem_write);
  219. uint32_t whc_devmem_read(void *pvaddr)
  220. {
  221. whc_mem sWhcMem;
  222. sWhcMem.msg.u32Cmd = PACK_MSG_CMD(evCMD_REQ, evCMD_DEVMEM_READ);
  223. sWhcMem.msg.u32Addr0 = (uint32_t)pvaddr;
  224. sWhcMem.msg.u32Addr1 = 0;
  225. sWhcMem.msg.u32Size = sizeof(uint32_t);
  226. send_msg(&sWhcMem);
  227. return 0;
  228. }
  229. RTM_EXPORT(whc_devmem_read);
  230. void whc_devmem(int argc, char *argv[])
  231. {
  232. volatile unsigned int u32Addr;
  233. unsigned int value = 0, mode = 0;
  234. if (argc < 2 || argc > 3)
  235. {
  236. goto exit_devmem;
  237. }
  238. if (argc == 3)
  239. {
  240. if (sscanf(argv[2], "0x%x", &value) != 1)
  241. goto exit_devmem;
  242. mode = 1; //Write
  243. }
  244. if (sscanf(argv[1], "0x%x", &u32Addr) != 1)
  245. goto exit_devmem;
  246. else if (u32Addr & (4 - 1))
  247. goto exit_devmem;
  248. if (mode)
  249. {
  250. whc_devmem_write((void *) u32Addr, value);
  251. }
  252. rt_kprintf("0x%08x\n", whc_devmem_read((void *)u32Addr));
  253. return;
  254. exit_devmem:
  255. rt_kprintf("Read: whc_devmem <physical address in hex>\n");
  256. rt_kprintf("Write: whc_devmem <physical address in hex> <value in hex format>\n");
  257. return;
  258. }
  259. MSH_CMD_EXPORT(whc_devmem, dump device registers);
  260. #endif /* #if defined(BSP_USING_HWSEM)*/