drv_hwtimer.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2023-09-04 Rbb666 first version
  9. */
  10. #include "board.h"
  11. #include "drv_hwtimer.h"
  12. //#define DRV_DEBUG
  13. #define LOG_TAG "drv.timer"
  14. #include <rtdbg.h>
  15. #ifdef RT_USING_HWTIMER
  16. static struct ra_hwtimer ra_hwtimer_obj[BSP_TIMERS_NUM] =
  17. {
  18. #ifdef BSP_USING_TIM0
  19. [BSP_TIMER0_INDEX] = TIMER_DRV_INITIALIZER(0),
  20. #endif
  21. #ifdef BSP_USING_TIM1
  22. [BSP_TIMER1_INDEX] = TIMER_DRV_INITIALIZER(1),
  23. #endif
  24. };
  25. const rt_uint32_t PLCKD_FREQ_PRESCALER[PLCKD_PRESCALER_MAX_SELECT] =
  26. {
  27. #ifdef SOC_SERIES_R7FA6M3
  28. PLCKD_PRESCALER_120M,
  29. PLCKD_PRESCALER_60M,
  30. PLCKD_PRESCALER_30M,
  31. PLCKD_PRESCALER_15M,
  32. PLCKD_PRESCALER_7_5M,
  33. PLCKD_PRESCALER_3_75M,
  34. PLCKD_PRESCALER_1_875M,
  35. #endif
  36. };
  37. static void timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
  38. {
  39. RT_ASSERT(timer != RT_NULL);
  40. struct ra_hwtimer *tim;
  41. tim = (struct ra_hwtimer *)timer->parent.user_data;
  42. if (state)
  43. {
  44. fsp_err_t fsp_err = FSP_SUCCESS;
  45. fsp_err = R_GPT_Open(tim->g_ctrl, tim->g_cfg);
  46. if (fsp_err != FSP_SUCCESS)
  47. {
  48. LOG_E("%s init fail", tim->name);
  49. }
  50. }
  51. }
  52. static rt_err_t timer_start(rt_hwtimer_t *timer, rt_uint32_t pr, rt_hwtimer_mode_t opmode)
  53. {
  54. RT_ASSERT(timer != RT_NULL);
  55. RT_ASSERT(opmode != RT_NULL);
  56. struct ra_hwtimer *tim;
  57. tim = (struct ra_hwtimer *)timer->parent.user_data;
  58. fsp_err_t err = FSP_SUCCESS;
  59. /* set timer count */
  60. R_GPT_CounterSet(tim->g_ctrl, 0);
  61. /* set timer period register */
  62. err = R_GPT_PeriodSet(tim->g_ctrl, pr);
  63. if (err != FSP_SUCCESS)
  64. {
  65. return -RT_ERROR;
  66. }
  67. /* set timer to one cycle mode */
  68. err = R_GPT_Start(tim->g_ctrl);
  69. return (err == FSP_SUCCESS) ? RT_EOK : -RT_ERROR;
  70. }
  71. static void timer_stop(rt_hwtimer_t *timer)
  72. {
  73. struct ra_hwtimer *tim = RT_NULL;
  74. RT_ASSERT(timer != RT_NULL);
  75. tim = (struct ra_hwtimer *)timer->parent.user_data;
  76. /* stop timer */
  77. R_GPT_Stop(tim->g_ctrl);
  78. /* set timer count */
  79. R_GPT_CounterSet(tim->g_ctrl, 0);
  80. }
  81. static rt_uint32_t timer_counter_get(rt_hwtimer_t *timer)
  82. {
  83. struct ra_hwtimer *tim = RT_NULL;
  84. RT_ASSERT(timer != RT_NULL);
  85. tim = (struct ra_hwtimer *)timer->parent.user_data;
  86. timer_info_t info;
  87. if (R_GPT_InfoGet(tim->g_ctrl, &info) != FSP_SUCCESS)
  88. return -RT_ERROR;
  89. return info.period_counts;
  90. }
  91. static rt_err_t timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
  92. {
  93. rt_err_t result = RT_EOK;
  94. struct ra_hwtimer *tim = RT_NULL;
  95. RT_ASSERT(timer != RT_NULL);
  96. RT_ASSERT(arg != RT_NULL);
  97. tim = (struct ra_hwtimer *)timer->parent.user_data;
  98. switch (cmd)
  99. {
  100. case HWTIMER_CTRL_FREQ_SET:
  101. {
  102. rt_uint8_t index = 0;
  103. rt_uint32_t freq = *((rt_uint32_t *)arg);
  104. for (rt_uint8_t i = 0; i < PLCKD_PRESCALER_MAX_SELECT; i++)
  105. {
  106. if (freq <= PLCKD_FREQ_PRESCALER[i])
  107. {
  108. index = i;
  109. }
  110. }
  111. tim->g_ctrl->p_reg->GTCR_b.TPCS = index;
  112. }
  113. break;
  114. default:
  115. {
  116. result = -RT_ENOSYS;
  117. }
  118. break;
  119. }
  120. return result;
  121. }
  122. static void timer_one_shot_check(void)
  123. {
  124. IRQn_Type irq = R_FSP_CurrentIrqGet();
  125. /* Recover ISR context saved in open. */
  126. gpt_instance_ctrl_t *p_instance_ctrl = (gpt_instance_ctrl_t *) R_FSP_IsrContextGet(irq);
  127. /* If one-shot mode is selected, stop the timer since period has expired. */
  128. if (TIMER_MODE_ONE_SHOT == p_instance_ctrl->p_cfg->mode)
  129. {
  130. p_instance_ctrl->p_reg->GTSTP = p_instance_ctrl->channel_mask;
  131. /* Clear the GPT counter and the overflow flag after the one shot pulse has being generated */
  132. p_instance_ctrl->p_reg->GTCNT = 0;
  133. p_instance_ctrl->p_reg->GTCCR[0U] = 0;
  134. p_instance_ctrl->p_reg->GTCCR[1U] = 0;
  135. /* Clear pending interrupt to make sure it doesn't fire again if another overflow has already occurred. */
  136. R_BSP_IrqClearPending(irq);
  137. }
  138. }
  139. #ifdef BSP_USING_TIM0
  140. void timer0_callback(timer_callback_args_t *p_args)
  141. {
  142. /* enter interrupt */
  143. rt_interrupt_enter();
  144. if (TIMER_EVENT_CYCLE_END == p_args->event)
  145. {
  146. rt_device_hwtimer_isr(&ra_hwtimer_obj[BSP_TIMER0_INDEX].tmr_device);
  147. timer_one_shot_check();
  148. }
  149. /* leave interrupt */
  150. rt_interrupt_leave();
  151. }
  152. #endif
  153. #ifdef BSP_USING_TIM1
  154. void timer1_callback(timer_callback_args_t *p_args)
  155. {
  156. /* enter interrupt */
  157. rt_interrupt_enter();
  158. if (TIMER_EVENT_CYCLE_END == p_args->event)
  159. {
  160. rt_device_hwtimer_isr(&ra_hwtimer_obj[BSP_TIMER1_INDEX].tmr_device);
  161. timer_one_shot_check();
  162. }
  163. /* leave interrupt */
  164. rt_interrupt_leave();
  165. }
  166. #endif
  167. static const struct rt_hwtimer_ops _ops =
  168. {
  169. .init = timer_init,
  170. .start = timer_start,
  171. .stop = timer_stop,
  172. .count_get = timer_counter_get,
  173. .control = timer_ctrl,
  174. };
  175. static const struct rt_hwtimer_info _info = TMR_DEV_INFO_CONFIG;
  176. static int rt_hw_hwtimer_init(void)
  177. {
  178. int result = RT_EOK;
  179. for (int i = 0; i < sizeof(ra_hwtimer_obj) / sizeof(ra_hwtimer_obj[0]); i++)
  180. {
  181. ra_hwtimer_obj[i].tmr_device.info = &_info;
  182. ra_hwtimer_obj[i].tmr_device.ops = &_ops;
  183. if (rt_device_hwtimer_register(&ra_hwtimer_obj[i].tmr_device, ra_hwtimer_obj[i].name, &ra_hwtimer_obj[i]) == RT_EOK)
  184. {
  185. LOG_D("%s register success", ra_hwtimer_obj[i].name);
  186. }
  187. else
  188. {
  189. LOG_E("%s register failed", ra_hwtimer_obj[i].name);
  190. result = -RT_ERROR;
  191. }
  192. }
  193. return result;
  194. }
  195. INIT_BOARD_EXPORT(rt_hw_hwtimer_init);
  196. /* This is a hwtimer example */
  197. #define HWTIMER_DEV_NAME "timer0" /* device name */
  198. static rt_err_t timeout_cb(rt_device_t dev, rt_size_t size)
  199. {
  200. rt_kprintf("this is hwtimer timeout callback fucntion!\n");
  201. rt_kprintf("tick is :%d !\n", rt_tick_get());
  202. return RT_EOK;
  203. }
  204. int hwtimer_sample(void)
  205. {
  206. rt_err_t ret = RT_EOK;
  207. rt_hwtimerval_t timeout_s;
  208. rt_device_t hw_dev = RT_NULL;
  209. rt_hwtimer_mode_t mode;
  210. rt_uint32_t freq = 1875000; /* 1Mhz */
  211. hw_dev = rt_device_find(HWTIMER_DEV_NAME);
  212. if (hw_dev == RT_NULL)
  213. {
  214. rt_kprintf("hwtimer sample run failed! can't find %s device!\n", HWTIMER_DEV_NAME);
  215. return -RT_ERROR;
  216. }
  217. ret = rt_device_open(hw_dev, RT_DEVICE_OFLAG_RDWR);
  218. if (ret != RT_EOK)
  219. {
  220. rt_kprintf("open %s device failed!\n", HWTIMER_DEV_NAME);
  221. return ret;
  222. }
  223. rt_device_set_rx_indicate(hw_dev, timeout_cb);
  224. rt_device_control(hw_dev, HWTIMER_CTRL_FREQ_SET, &freq);
  225. mode = HWTIMER_MODE_PERIOD;
  226. ret = rt_device_control(hw_dev, HWTIMER_CTRL_MODE_SET, &mode);
  227. if (ret != RT_EOK)
  228. {
  229. rt_kprintf("set mode failed! ret is :%d\n", ret);
  230. return ret;
  231. }
  232. /* Example Set the timeout period of the timer */
  233. timeout_s.sec = 1; /* secend */
  234. timeout_s.usec = 0; /* microsecend */
  235. if (rt_device_write(hw_dev, 0, &timeout_s, sizeof(timeout_s)) != sizeof(timeout_s))
  236. {
  237. rt_kprintf("set timeout value failed\n");
  238. return -RT_ERROR;
  239. }
  240. /* read hwtimer value */
  241. rt_device_read(hw_dev, 0, &timeout_s, sizeof(timeout_s));
  242. rt_kprintf("Read: Sec = %d, Usec = %d\n", timeout_s.sec, timeout_s.usec);
  243. return ret;
  244. }
  245. MSH_CMD_EXPORT(hwtimer_sample, hwtimer sample);
  246. #endif /* BSP_USING_HWTIMER */