sensor_cmd.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2019-07-16 WillianChan Increase the output of sensor information
  10. * 2020-02-22 luhuadong Add vendor info and sensor types for cmd
  11. * 2022-12-17 Meco Man re-implement sensor framework
  12. */
  13. #include <drivers/sensor.h>
  14. #define DBG_TAG "sensor.cmd"
  15. #define DBG_LVL DBG_INFO
  16. #include <rtdbg.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. static rt_sem_t sensor_rx_sem = RT_NULL;
  20. static const char *sensor_get_type_name(rt_sensor_info_t info)
  21. {
  22. switch(info->type)
  23. {
  24. case RT_SENSOR_TYPE_ACCE:
  25. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ACCE);
  26. case RT_SENSOR_TYPE_GYRO:
  27. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GYRO);
  28. case RT_SENSOR_TYPE_MAG:
  29. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_MAG);
  30. case RT_SENSOR_TYPE_TEMP:
  31. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TEMP);
  32. case RT_SENSOR_TYPE_HUMI:
  33. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HUMI);
  34. case RT_SENSOR_TYPE_BARO:
  35. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BARO);
  36. case RT_SENSOR_TYPE_LIGHT:
  37. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_LIGHT);
  38. case RT_SENSOR_TYPE_PROXIMITY:
  39. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_PROXIMITY);
  40. case RT_SENSOR_TYPE_HR:
  41. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HR);
  42. case RT_SENSOR_TYPE_TVOC:
  43. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TVOC);
  44. case RT_SENSOR_TYPE_NOISE:
  45. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NOISE);
  46. case RT_SENSOR_TYPE_STEP:
  47. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_STEP);
  48. case RT_SENSOR_TYPE_FORCE:
  49. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_FORCE);
  50. case RT_SENSOR_TYPE_DUST:
  51. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_DUST);
  52. case RT_SENSOR_TYPE_ECO2:
  53. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ECO2);
  54. case RT_SENSOR_TYPE_GNSS:
  55. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GNSS);
  56. case RT_SENSOR_TYPE_TOF:
  57. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TOF);
  58. case RT_SENSOR_TYPE_SPO2:
  59. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_SPO2);
  60. case RT_SENSOR_TYPE_IAQ:
  61. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_IAQ);
  62. case RT_SENSOR_TYPE_ETOH:
  63. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ETOH);
  64. case RT_SENSOR_TYPE_BP:
  65. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BP);
  66. case RT_SENSOR_TYPE_VOLTAGE:
  67. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_VOLTAGE);
  68. case RT_SENSOR_TYPE_CURRENT:
  69. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_CURRENT);
  70. case RT_SENSOR_TYPE_NONE:
  71. default:
  72. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NONE);
  73. }
  74. }
  75. static const char *sensor_get_vendor_name(rt_sensor_info_t info)
  76. {
  77. switch(info->vendor)
  78. {
  79. case RT_SENSOR_VENDOR_VIRTUAL:
  80. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_VIRTUAL);
  81. case RT_SENSOR_VENDOR_ONCHIP:
  82. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ONCHIP);
  83. case RT_SENSOR_VENDOR_STM:
  84. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_STM);
  85. case RT_SENSOR_VENDOR_BOSCH:
  86. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_BOSCH);
  87. case RT_SENSOR_VENDOR_INVENSENSE:
  88. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_INVENSENSE);
  89. case RT_SENSOR_VENDOR_SEMTECH:
  90. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SEMTECH);
  91. case RT_SENSOR_VENDOR_GOERTEK:
  92. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_GOERTEK);
  93. case RT_SENSOR_VENDOR_MIRAMEMS:
  94. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MIRAMEMS);
  95. case RT_SENSOR_VENDOR_DALLAS:
  96. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_DALLAS);
  97. case RT_SENSOR_VENDOR_ASAIR:
  98. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ASAIR);
  99. case RT_SENSOR_VENDOR_SHARP:
  100. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SHARP);
  101. case RT_SENSOR_VENDOR_SENSIRION:
  102. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SENSIRION);
  103. case RT_SENSOR_VENDOR_TI:
  104. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_TI);
  105. case RT_SENSOR_VENDOR_PLANTOWER:
  106. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_PLANTOWER);
  107. case RT_SENSOR_VENDOR_AMS:
  108. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_AMS);
  109. case RT_SENSOR_VENDOR_MAXIM:
  110. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MAXIM);
  111. case RT_SENSOR_VENDOR_MELEXIS:
  112. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MELEXIS);
  113. case RT_SENSOR_VENDOR_UNKNOWN:
  114. default:
  115. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_UNKNOWN);
  116. }
  117. }
  118. static const char *sensor_get_unit_name(rt_sensor_info_t info)
  119. {
  120. switch(info->unit)
  121. {
  122. case RT_SENSOR_UNIT_MG:
  123. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MG);
  124. case RT_SENSOR_UNIT_MDPS:
  125. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MDPS);
  126. case RT_SENSOR_UNIT_MGAUSS:
  127. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGAUSS);
  128. case RT_SENSOR_UNIT_LUX:
  129. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_LUX);
  130. case RT_SENSOR_UNIT_M:
  131. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_M);
  132. case RT_SENSOR_UNIT_CM:
  133. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CM);
  134. case RT_SENSOR_UNIT_MM:
  135. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MM);
  136. case RT_SENSOR_UNIT_PA:
  137. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PA);
  138. case RT_SENSOR_UNIT_MMHG:
  139. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MMHG);
  140. case RT_SENSOR_UNIT_PERCENTAGE:
  141. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERCENTAGE);
  142. case RT_SENSOR_UNIT_PERMILLAGE:
  143. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERMILLAGE);
  144. case RT_SENSOR_UNIT_CELSIUS:
  145. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CELSIUS);
  146. case RT_SENSOR_UNIT_FAHRENHEIT:
  147. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_FAHRENHEIT);
  148. case RT_SENSOR_UNIT_KELVIN:
  149. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_KELVIN);
  150. case RT_SENSOR_UNIT_HZ:
  151. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_HZ);
  152. case RT_SENSOR_UNIT_V:
  153. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_V);
  154. case RT_SENSOR_UNIT_MV:
  155. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MV);
  156. case RT_SENSOR_UNIT_A:
  157. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_A);
  158. case RT_SENSOR_UNIT_MA:
  159. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MA);
  160. case RT_SENSOR_UNIT_N:
  161. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_N);
  162. case RT_SENSOR_UNIT_MN:
  163. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MN);
  164. case RT_SENSOR_UNIT_BPM:
  165. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_BPM);
  166. case RT_SENSOR_UNIT_PPM:
  167. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPM);
  168. case RT_SENSOR_UNIT_PPB:
  169. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPB);
  170. case RT_SENSOR_UNIT_DMS:
  171. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DMS);
  172. case RT_SENSOR_UNIT_DD:
  173. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DD);
  174. case RT_SENSOR_UNIT_MGM3:
  175. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGM3);
  176. case RT_SENSOR_UNIT_NONE:
  177. default:
  178. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_NONE);
  179. }
  180. }
  181. static const char* sensor_get_accuracy_mode_name(rt_sensor_info_t info)
  182. {
  183. switch(RT_SENSOR_MODE_GET_ACCURACY(info->mode))
  184. {
  185. case RT_SENSOR_MODE_ACCURACY_HIGHEST:
  186. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGHEST);
  187. case RT_SENSOR_MODE_ACCURACY_HIGH:
  188. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGH);
  189. case RT_SENSOR_MODE_ACCURACY_MEDIUM:
  190. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_MEDIUM);
  191. case RT_SENSOR_MODE_ACCURACY_LOW:
  192. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOW);
  193. case RT_SENSOR_MODE_ACCURACY_LOWEST:
  194. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOWEST);
  195. case RT_SENSOR_MODE_ACCURACY_NOTRUST:
  196. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_NOTRUST);
  197. default:
  198. LOG_E("accuracy mode illegal!");
  199. return "";
  200. }
  201. }
  202. static const char* sensor_get_power_mode_name(rt_sensor_info_t info)
  203. {
  204. switch(RT_SENSOR_MODE_GET_POWER(info->mode))
  205. {
  206. case RT_SENSOR_MODE_POWER_HIGHEST:
  207. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGHEST);
  208. case RT_SENSOR_MODE_POWER_HIGH:
  209. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGH);
  210. case RT_SENSOR_MODE_POWER_MEDIUM:
  211. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_MEDIUM);
  212. case RT_SENSOR_MODE_POWER_LOW:
  213. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOW);
  214. case RT_SENSOR_MODE_POWER_LOWEST:
  215. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOWEST);
  216. case RT_SENSOR_MODE_POWER_DOWN:
  217. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_DOWN);
  218. default:
  219. LOG_E("power mode illegal!");
  220. return "";
  221. }
  222. }
  223. static const char* sensor_get_fetch_mode_name(rt_sensor_info_t info)
  224. {
  225. switch(RT_SENSOR_MODE_GET_FETCH(info->mode))
  226. {
  227. case RT_SENSOR_MODE_FETCH_POLLING:
  228. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_POLLING);
  229. case RT_SENSOR_MODE_FETCH_INT:
  230. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_INT);
  231. case RT_SENSOR_MODE_FETCH_FIFO:
  232. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_FIFO);
  233. default:
  234. LOG_E("fetch data mode illegal!");
  235. return "";
  236. }
  237. }
  238. static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
  239. {
  240. const char *unit_name = sensor_get_unit_name(&sensor->info);
  241. switch (sensor->info.type)
  242. {
  243. case RT_SENSOR_TYPE_ACCE:
  244. LOG_I("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, unit_name, sensor_data->timestamp);
  245. break;
  246. case RT_SENSOR_TYPE_GYRO:
  247. LOG_I("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u", num, sensor_data->data.gyro.x, sensor_data->data.gyro.y, sensor_data->data.gyro.z, unit_name, sensor_data->timestamp);
  248. break;
  249. case RT_SENSOR_TYPE_MAG:
  250. LOG_I("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, unit_name, sensor_data->timestamp);
  251. break;
  252. case RT_SENSOR_TYPE_GNSS:
  253. LOG_I("num:%d, lon:%f, lat:%f %s, timestamp:%u", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, unit_name, sensor_data->timestamp);
  254. break;
  255. case RT_SENSOR_TYPE_TEMP:
  256. LOG_I("num:%d, temp:%f%s, timestamp:%u", num, sensor_data->data.temp, unit_name, sensor_data->timestamp);
  257. break;
  258. case RT_SENSOR_TYPE_HUMI:
  259. LOG_I("num:%d, humi:%f%s, timestamp:%u", num, sensor_data->data.humi, unit_name, sensor_data->timestamp);
  260. break;
  261. case RT_SENSOR_TYPE_BARO:
  262. LOG_I("num:%d, press:%f%s, timestamp:%u", num, sensor_data->data.baro, unit_name, sensor_data->timestamp);
  263. break;
  264. case RT_SENSOR_TYPE_LIGHT:
  265. LOG_I("num:%d, light:%f%s, timestamp:%u", num, sensor_data->data.light, unit_name, sensor_data->timestamp);
  266. break;
  267. case RT_SENSOR_TYPE_PROXIMITY:
  268. case RT_SENSOR_TYPE_TOF:
  269. LOG_I("num:%d, distance:%f%s, timestamp:%u", num, sensor_data->data.proximity, unit_name, sensor_data->timestamp);
  270. break;
  271. case RT_SENSOR_TYPE_HR:
  272. LOG_I("num:%d, heart rate:%f%s, timestamp:%u", num, sensor_data->data.hr, unit_name, sensor_data->timestamp);
  273. break;
  274. case RT_SENSOR_TYPE_TVOC:
  275. LOG_I("num:%d, tvoc:%f%s, timestamp:%u", num, sensor_data->data.tvoc, unit_name, sensor_data->timestamp);
  276. break;
  277. case RT_SENSOR_TYPE_NOISE:
  278. LOG_I("num:%d, noise:%f%s, timestamp:%u", num, sensor_data->data.noise, unit_name, sensor_data->timestamp);
  279. break;
  280. case RT_SENSOR_TYPE_STEP:
  281. LOG_I("num:%d, step:%f%s, timestamp:%u", num, sensor_data->data.step, unit_name, sensor_data->timestamp);
  282. break;
  283. case RT_SENSOR_TYPE_FORCE:
  284. LOG_I("num:%d, force:%f%s, timestamp:%u", num, sensor_data->data.force, unit_name, sensor_data->timestamp);
  285. break;
  286. case RT_SENSOR_TYPE_DUST:
  287. LOG_I("num:%d, dust:%f%s, timestamp:%u", num, sensor_data->data.dust, unit_name, sensor_data->timestamp);
  288. break;
  289. case RT_SENSOR_TYPE_ECO2:
  290. LOG_I("num:%d, eco2:%f%s, timestamp:%u", num, sensor_data->data.eco2, unit_name, sensor_data->timestamp);
  291. break;
  292. case RT_SENSOR_TYPE_IAQ:
  293. LOG_I("num:%d, IAQ:%f%s, timestamp:%u", num, sensor_data->data.iaq, unit_name, sensor_data->timestamp);
  294. break;
  295. case RT_SENSOR_TYPE_ETOH:
  296. LOG_I("num:%d, EtOH:%f%s, timestamp:%u", num, sensor_data->data.etoh, unit_name, sensor_data->timestamp);
  297. break;
  298. case RT_SENSOR_TYPE_BP:
  299. LOG_I("num:%d, bp.sbp:%f, bp.dbp:%f %s, timestamp:%u", num, sensor_data->data.bp.sbp, sensor_data->data.bp.dbp, unit_name, sensor_data->timestamp);
  300. break;
  301. case RT_SENSOR_TYPE_NONE:
  302. default:
  303. LOG_E("Unknown type of sensor!");
  304. break;
  305. }
  306. }
  307. static const char* sensor_get_intf_name(rt_sensor_t sensor)
  308. {
  309. rt_uint8_t type = sensor->config.intf.type;
  310. if (type | RT_SENSOR_INTF_I2C)
  311. {
  312. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_I2C);
  313. }
  314. else if (type | RT_SENSOR_INTF_SPI)
  315. {
  316. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_SPI);
  317. }
  318. else if (type | RT_SENSOR_INTF_UART)
  319. {
  320. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_UART);
  321. }
  322. else if (type | RT_SENSOR_INTF_ONEWIRE)
  323. {
  324. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_ONEWIRE);
  325. }
  326. else if (type | RT_SENSOR_INTF_CAN)
  327. {
  328. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_CAN);
  329. }
  330. else if (type | RT_SENSOR_INTF_MODBUS)
  331. {
  332. return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_MODBUS);
  333. }
  334. else
  335. {
  336. return "";
  337. }
  338. }
  339. static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
  340. {
  341. rt_sem_release(sensor_rx_sem);
  342. return 0;
  343. }
  344. static void sensor_fifo_rx_entry(void *parameter)
  345. {
  346. rt_sensor_t sensor = (rt_sensor_t)parameter;
  347. struct rt_sensor_data *data = RT_NULL;
  348. rt_size_t res, i;
  349. data = (struct rt_sensor_data *)rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  350. if (data == RT_NULL)
  351. {
  352. LOG_E("Memory allocation failed!");
  353. }
  354. while (1)
  355. {
  356. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  357. res = rt_device_read((rt_device_t)sensor, 0, data, sensor->info.fifo_max);
  358. for (i = 0; i < res; i++)
  359. {
  360. sensor_show_data(i, sensor, &data[i]);
  361. }
  362. }
  363. }
  364. static void sensor_fifo(int argc, char **argv)
  365. {
  366. static rt_thread_t tid1 = RT_NULL;
  367. rt_device_t dev = RT_NULL;
  368. rt_sensor_t sensor;
  369. dev = rt_device_find(argv[1]);
  370. if (dev == RT_NULL)
  371. {
  372. LOG_E("Can't find device:%s", argv[1]);
  373. return;
  374. }
  375. sensor = (rt_sensor_t)dev;
  376. if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
  377. {
  378. LOG_E("open device failed!");
  379. return;
  380. }
  381. if (sensor_rx_sem == RT_NULL)
  382. {
  383. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  384. }
  385. else
  386. {
  387. LOG_E("The thread is running, please reboot and try again");
  388. return;
  389. }
  390. tid1 = rt_thread_create("sen_rx_thread",
  391. sensor_fifo_rx_entry, sensor,
  392. 1024,
  393. 15, 5);
  394. if (tid1 != RT_NULL)
  395. rt_thread_startup(tid1);
  396. rt_device_set_rx_indicate(dev, rx_callback);
  397. }
  398. #ifdef RT_USING_FINSH
  399. MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
  400. #endif
  401. static void sensor_irq_rx_entry(void *parameter)
  402. {
  403. rt_device_t dev = (rt_device_t)parameter;
  404. rt_sensor_t sensor = (rt_sensor_t)parameter;
  405. struct rt_sensor_data data;
  406. rt_size_t res, i = 0;
  407. while (1)
  408. {
  409. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  410. res = rt_device_read(dev, 0, &data, 1);
  411. if (res == 1)
  412. {
  413. sensor_show_data(i++, sensor, &data);
  414. }
  415. }
  416. }
  417. static void sensor_int(int argc, char **argv)
  418. {
  419. static rt_thread_t tid1 = RT_NULL;
  420. rt_device_t dev = RT_NULL;
  421. rt_sensor_t sensor;
  422. dev = rt_device_find(argv[1]);
  423. if (dev == RT_NULL)
  424. {
  425. LOG_E("Can't find device:%s", argv[1]);
  426. return;
  427. }
  428. sensor = (rt_sensor_t)dev;
  429. if (sensor_rx_sem == RT_NULL)
  430. {
  431. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  432. }
  433. else
  434. {
  435. LOG_E("The thread is running, please reboot and try again");
  436. return;
  437. }
  438. tid1 = rt_thread_create("sen_rx_thread",
  439. sensor_irq_rx_entry, sensor,
  440. 1024,
  441. 15, 5);
  442. if (tid1 != RT_NULL)
  443. rt_thread_startup(tid1);
  444. rt_device_set_rx_indicate(dev, rx_callback);
  445. if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
  446. {
  447. LOG_E("open device failed!");
  448. return;
  449. }
  450. }
  451. #ifdef RT_USING_FINSH
  452. MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
  453. #endif
  454. static void sensor_polling(int argc, char **argv)
  455. {
  456. rt_uint16_t num = 10;
  457. rt_device_t dev = RT_NULL;
  458. rt_sensor_t sensor;
  459. struct rt_sensor_data data;
  460. rt_size_t res, i;
  461. rt_int32_t delay;
  462. rt_err_t result;
  463. dev = rt_device_find(argv[1]);
  464. if (dev == RT_NULL)
  465. {
  466. LOG_E("Can't find device:%s", argv[1]);
  467. return;
  468. }
  469. if (argc > 2)
  470. num = atoi(argv[2]);
  471. sensor = (rt_sensor_t)dev;
  472. delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100;
  473. result = rt_device_open(dev, RT_DEVICE_FLAG_RDONLY);
  474. if (result != RT_EOK)
  475. {
  476. LOG_E("open device failed! error code : %d", result);
  477. return;
  478. }
  479. for (i = 0; i < num; i++)
  480. {
  481. res = rt_device_read(dev, 0, &data, 1);
  482. if (res != 1)
  483. {
  484. LOG_E("read data failed!size is %d", res);
  485. }
  486. else
  487. {
  488. sensor_show_data(i, sensor, &data);
  489. }
  490. rt_thread_mdelay(delay);
  491. }
  492. rt_device_close(dev);
  493. }
  494. #ifdef RT_USING_FINSH
  495. MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
  496. #endif
  497. static void sensor(int argc, char **argv)
  498. {
  499. static rt_device_t dev = RT_NULL;
  500. struct rt_sensor_data data;
  501. rt_sensor_t sensor;
  502. rt_size_t res, i;
  503. rt_int32_t delay;
  504. /* If the number of arguments less than 2 */
  505. if (argc < 2)
  506. {
  507. rt_kprintf("\n");
  508. rt_kprintf("sensor [OPTION] [PARAM]\n");
  509. rt_kprintf(" probe <dev_name> probe sensor by given name\n");
  510. rt_kprintf(" info get sensor information\n");
  511. rt_kprintf(" read [num] read [num] times sensor (default 5)\n");
  512. return ;
  513. }
  514. else if (!strcmp(argv[1], "info"))
  515. {
  516. if (dev == RT_NULL)
  517. {
  518. LOG_W("Please probe sensor device first!");
  519. return ;
  520. }
  521. sensor = (rt_sensor_t)dev;
  522. rt_kprintf("name :%s\n", sensor->info.name);
  523. rt_kprintf("type: :%s\n", sensor_get_type_name(&sensor->info));
  524. rt_kprintf("vendor :%s\n", sensor_get_vendor_name(&sensor->info));
  525. rt_kprintf("interface :%s\n", sensor_get_intf_name(sensor));
  526. rt_kprintf("unit :%s\n", sensor_get_unit_name(&sensor->info));
  527. rt_kprintf("fetch data:%s\n", sensor_get_fetch_mode_name(&sensor->info));
  528. rt_kprintf("power :%s\n", sensor_get_power_mode_name(&sensor->info));
  529. rt_kprintf("accuracy :%s\n", sensor_get_accuracy_mode_name(&sensor->info));
  530. rt_kprintf("range max :%f\n", sensor->info.scale.range_max);
  531. rt_kprintf("range min :%f\n", sensor->info.scale.range_min);
  532. rt_kprintf("resolution:%f\n", sensor->info.accuracy.resolution);
  533. rt_kprintf("error :%f\n", sensor->info.accuracy.error);
  534. rt_kprintf("acquire min:%fms\n", sensor->info.acquire_min);
  535. rt_kprintf("fifo max :%d\n", sensor->info.fifo_max);
  536. }
  537. else if (!strcmp(argv[1], "read"))
  538. {
  539. rt_uint16_t num = 5;
  540. if (dev == RT_NULL)
  541. {
  542. LOG_W("Please probe sensor device first!");
  543. return ;
  544. }
  545. if (argc == 3)
  546. {
  547. num = atoi(argv[2]);
  548. }
  549. sensor = (rt_sensor_t)dev;
  550. delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100;
  551. for (i = 0; i < num; i++)
  552. {
  553. res = rt_device_read(dev, 0, &data, 1);
  554. if (res != 1)
  555. {
  556. LOG_E("read data failed!size is %d", res);
  557. }
  558. else
  559. {
  560. sensor_show_data(i, sensor, &data);
  561. }
  562. rt_thread_mdelay(delay);
  563. }
  564. }
  565. else if (argc == 3)
  566. {
  567. if (!strcmp(argv[1], "probe"))
  568. {
  569. rt_uint8_t reg = 0xFF;
  570. rt_device_t new_dev;
  571. new_dev = rt_device_find(argv[2]);
  572. if (new_dev == RT_NULL)
  573. {
  574. LOG_E("Can't find device:%s", argv[2]);
  575. return;
  576. }
  577. if (rt_device_open(new_dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  578. {
  579. LOG_E("open device failed!");
  580. return;
  581. }
  582. if (rt_device_control(new_dev, RT_SENSOR_CTRL_GET_ID, &reg) == RT_EOK)
  583. {
  584. LOG_I("Sensor Chip ID: %#x", reg);
  585. }
  586. if (dev)
  587. {
  588. rt_device_close(dev);
  589. }
  590. dev = new_dev;
  591. }
  592. else if (dev == RT_NULL)
  593. {
  594. LOG_W("Please probe sensor first!");
  595. return ;
  596. }
  597. else
  598. {
  599. LOG_W("Unknown command, please enter 'sensor' get help information!");
  600. }
  601. }
  602. else
  603. {
  604. LOG_W("Unknown command, please enter 'sensor' get help information!");
  605. }
  606. }
  607. #ifdef RT_USING_FINSH
  608. MSH_CMD_EXPORT(sensor, sensor test function);
  609. #endif