sensor.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. */
  10. #include "sensor.h"
  11. #define DBG_TAG "sensor"
  12. #define DBG_LVL DBG_INFO
  13. #include <rtdbg.h>
  14. #include <string.h>
  15. static char *const sensor_name_str[] =
  16. {
  17. "none",
  18. "acce_", /* Accelerometer */
  19. "gyro_", /* Gyroscope */
  20. "mag_", /* Magnetometer */
  21. "temp_", /* Temperature */
  22. "humi_", /* Relative Humidity */
  23. "baro_", /* Barometer */
  24. "li_", /* Ambient light */
  25. "pr_", /* Proximity */
  26. "hr_", /* Heart Rate */
  27. "tvoc_", /* TVOC Level */
  28. "noi_", /* Noise Loudness */
  29. "step_", /* Step sensor */
  30. "forc_", /* Force sensor */
  31. "dust_", /* Dust sensor */
  32. "eco2_" /* eCO2 sensor */
  33. };
  34. /* Sensor interrupt correlation function */
  35. /*
  36. * Sensor interrupt handler function
  37. */
  38. void rt_sensor_cb(rt_sensor_t sen)
  39. {
  40. if (sen->parent.rx_indicate == RT_NULL)
  41. {
  42. return;
  43. }
  44. if (sen->irq_handle != RT_NULL)
  45. {
  46. sen->irq_handle(sen);
  47. }
  48. /* The buffer is not empty. Read the data in the buffer first */
  49. if (sen->data_len > 0)
  50. {
  51. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  52. }
  53. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  54. {
  55. /* The interrupt mode only produces one data at a time */
  56. sen->parent.rx_indicate(&sen->parent, 1);
  57. }
  58. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  59. {
  60. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  61. }
  62. }
  63. /* ISR for sensor interrupt */
  64. static void irq_callback(void *args)
  65. {
  66. rt_sensor_t sensor = (rt_sensor_t)args;
  67. rt_uint8_t i;
  68. if (sensor->module)
  69. {
  70. /* Invoke a callback for all sensors in the module */
  71. for (i = 0; i < sensor->module->sen_num; i++)
  72. {
  73. rt_sensor_cb(sensor->module->sen[i]);
  74. }
  75. }
  76. else
  77. {
  78. rt_sensor_cb(sensor);
  79. }
  80. }
  81. /* Sensor interrupt initialization function */
  82. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  83. {
  84. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  85. {
  86. return -RT_EINVAL;
  87. }
  88. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  89. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  90. {
  91. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  92. }
  93. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  94. {
  95. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  96. }
  97. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  98. {
  99. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  100. }
  101. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  102. LOG_I("interrupt init success");
  103. return 0;
  104. }
  105. /* RT-Thread Device Interface */
  106. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  107. {
  108. rt_sensor_t sensor = (rt_sensor_t)dev;
  109. RT_ASSERT(dev != RT_NULL);
  110. rt_err_t res = RT_EOK;
  111. if (sensor->module)
  112. {
  113. /* take the module mutex */
  114. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  115. }
  116. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  117. {
  118. /* Allocate memory for the sensor buffer */
  119. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  120. if (sensor->data_buf == RT_NULL)
  121. {
  122. res = -RT_ENOMEM;
  123. goto __exit;
  124. }
  125. }
  126. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  127. {
  128. if (sensor->ops->control != RT_NULL)
  129. {
  130. /* If polling mode is supported, configure it to polling mode */
  131. sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
  132. }
  133. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  134. }
  135. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  136. {
  137. if (sensor->ops->control != RT_NULL)
  138. {
  139. /* If interrupt mode is supported, configure it to interrupt mode */
  140. sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT);
  141. }
  142. /* Initialization sensor interrupt */
  143. rt_sensor_irq_init(sensor);
  144. sensor->config.mode = RT_SENSOR_MODE_INT;
  145. }
  146. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  147. {
  148. if (sensor->ops->control != RT_NULL)
  149. {
  150. /* If fifo mode is supported, configure it to fifo mode */
  151. sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO);
  152. }
  153. /* Initialization sensor interrupt */
  154. rt_sensor_irq_init(sensor);
  155. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  156. }
  157. else
  158. {
  159. res = -RT_EINVAL;
  160. goto __exit;
  161. }
  162. /* Configure power mode to normal mode */
  163. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  164. {
  165. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  166. }
  167. __exit:
  168. if (sensor->module)
  169. {
  170. /* release the module mutex */
  171. rt_mutex_release(sensor->module->lock);
  172. }
  173. return res;
  174. }
  175. static rt_err_t rt_sensor_close(rt_device_t dev)
  176. {
  177. rt_sensor_t sensor = (rt_sensor_t)dev;
  178. int i;
  179. RT_ASSERT(dev != RT_NULL);
  180. if (sensor->module)
  181. {
  182. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  183. }
  184. /* Configure power mode to power down mode */
  185. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  186. {
  187. sensor->config.power = RT_SENSOR_POWER_DOWN;
  188. }
  189. /* Sensor disable interrupt */
  190. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  191. {
  192. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  193. }
  194. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
  195. {
  196. for (i = 0; i < sensor->module->sen_num; i ++)
  197. {
  198. if (sensor->module->sen[i]->parent.ref_count > 0)
  199. goto __exit;
  200. }
  201. /* Free memory for the sensor buffer */
  202. for (i = 0; i < sensor->module->sen_num; i ++)
  203. {
  204. if (sensor->module->sen[i]->data_buf != RT_NULL)
  205. {
  206. rt_free(sensor->module->sen[i]->data_buf);
  207. sensor->module->sen[i]->data_buf = RT_NULL;
  208. }
  209. }
  210. }
  211. __exit:
  212. if (sensor->module)
  213. {
  214. rt_mutex_release(sensor->module->lock);
  215. }
  216. return RT_EOK;
  217. }
  218. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  219. {
  220. rt_sensor_t sensor = (rt_sensor_t)dev;
  221. rt_size_t result = 0;
  222. RT_ASSERT(dev != RT_NULL);
  223. if (buf == NULL || len == 0)
  224. {
  225. return 0;
  226. }
  227. if (sensor->module)
  228. {
  229. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  230. }
  231. /* The buffer is not empty. Read the data in the buffer first */
  232. if (sensor->data_len > 0)
  233. {
  234. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  235. {
  236. len = sensor->data_len / sizeof(struct rt_sensor_data);
  237. }
  238. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  239. /* Clear the buffer */
  240. sensor->data_len = 0;
  241. result = len;
  242. }
  243. else
  244. {
  245. /* If the buffer is empty read the data */
  246. result = sensor->ops->fetch_data(sensor, buf, len);
  247. }
  248. if (sensor->module)
  249. {
  250. rt_mutex_release(sensor->module->lock);
  251. }
  252. return result;
  253. }
  254. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  255. {
  256. rt_sensor_t sensor = (rt_sensor_t)dev;
  257. rt_err_t result = RT_EOK;
  258. RT_ASSERT(dev != RT_NULL);
  259. if (sensor->module)
  260. {
  261. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  262. }
  263. switch (cmd)
  264. {
  265. case RT_SENSOR_CTRL_GET_ID:
  266. if (args)
  267. {
  268. sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
  269. }
  270. break;
  271. case RT_SENSOR_CTRL_GET_INFO:
  272. if (args)
  273. {
  274. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  275. }
  276. break;
  277. case RT_SENSOR_CTRL_SET_RANGE:
  278. /* Configuration measurement range */
  279. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  280. if (result == RT_EOK)
  281. {
  282. sensor->config.range = (rt_int32_t)args;
  283. LOG_D("set range %d", sensor->config.range);
  284. }
  285. break;
  286. case RT_SENSOR_CTRL_SET_ODR:
  287. /* Configuration data output rate */
  288. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  289. if (result == RT_EOK)
  290. {
  291. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  292. LOG_D("set odr %d", sensor->config.odr);
  293. }
  294. break;
  295. case RT_SENSOR_CTRL_SET_POWER:
  296. /* Configuration sensor power mode */
  297. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  298. if (result == RT_EOK)
  299. {
  300. sensor->config.power = (rt_uint32_t)args & 0xFF;
  301. LOG_D("set power mode code:", sensor->config.power);
  302. }
  303. break;
  304. case RT_SENSOR_CTRL_SELF_TEST:
  305. /* Device self-test */
  306. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  307. break;
  308. default:
  309. return -RT_ERROR;
  310. }
  311. if (sensor->module)
  312. {
  313. rt_mutex_release(sensor->module->lock);
  314. }
  315. return result;
  316. }
  317. #ifdef RT_USING_DEVICE_OPS
  318. const static struct rt_device_ops rt_sensor_ops =
  319. {
  320. RT_NULL,
  321. rt_sensor_open,
  322. rt_sensor_close,
  323. rt_sensor_read,
  324. RT_NULL,
  325. rt_sensor_control
  326. };
  327. #endif
  328. /*
  329. * sensor register
  330. */
  331. int rt_hw_sensor_register(rt_sensor_t sensor,
  332. const char *name,
  333. rt_uint32_t flag,
  334. void *data)
  335. {
  336. rt_int8_t result;
  337. rt_device_t device;
  338. RT_ASSERT(sensor != RT_NULL);
  339. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  340. /* Add a type name for the sensor device */
  341. sensor_name = sensor_name_str[sensor->info.type];
  342. device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  343. if (device_name == RT_NULL)
  344. {
  345. LOG_E("device_name calloc failed!");
  346. return -RT_ERROR;
  347. }
  348. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  349. strcat(device_name, name);
  350. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  351. {
  352. /* Create a mutex lock for the module */
  353. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  354. if (sensor->module->lock == RT_NULL)
  355. {
  356. rt_free(device_name);
  357. return -RT_ERROR;
  358. }
  359. }
  360. device = &sensor->parent;
  361. #ifdef RT_USING_DEVICE_OPS
  362. device->ops = &rt_sensor_ops;
  363. #else
  364. device->init = RT_NULL;
  365. device->open = rt_sensor_open;
  366. device->close = rt_sensor_close;
  367. device->read = rt_sensor_read;
  368. device->write = RT_NULL;
  369. device->control = rt_sensor_control;
  370. #endif
  371. device->type = RT_Device_Class_Sensor;
  372. device->rx_indicate = RT_NULL;
  373. device->tx_complete = RT_NULL;
  374. device->user_data = data;
  375. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  376. if (result != RT_EOK)
  377. {
  378. rt_free(device_name);
  379. LOG_E("rt_sensor register err code: %d", result);
  380. return result;
  381. }
  382. rt_free(device_name);
  383. LOG_I("rt_sensor init success");
  384. return RT_EOK;
  385. }