drv_usart.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-10-30 SummerGift first version
  9. * 2020-03-16 SummerGift add device close feature
  10. * 2020-03-20 SummerGift fix bug caused by ORE
  11. * 2020-05-02 whj4674672 support stm32h7 uart dma
  12. * 2020-09-09 forest-rain support stm32wl uart
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include "board.h"
  16. #include "drv_usart.h"
  17. #include "drv_config.h"
  18. #ifdef RT_USING_SERIAL
  19. //#define DRV_DEBUG
  20. #define LOG_TAG "drv.usart"
  21. #include <drv_log.h>
  22. #if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
  23. !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
  24. !defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_LPUART1)
  25. #error "Please define at least one BSP_USING_UARTx"
  26. /* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
  27. #endif
  28. #ifdef RT_SERIAL_USING_DMA
  29. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
  30. #endif
  31. enum
  32. {
  33. #ifdef BSP_USING_UART1
  34. UART1_INDEX,
  35. #endif
  36. #ifdef BSP_USING_UART2
  37. UART2_INDEX,
  38. #endif
  39. #ifdef BSP_USING_UART3
  40. UART3_INDEX,
  41. #endif
  42. #ifdef BSP_USING_UART4
  43. UART4_INDEX,
  44. #endif
  45. #ifdef BSP_USING_UART5
  46. UART5_INDEX,
  47. #endif
  48. #ifdef BSP_USING_UART6
  49. UART6_INDEX,
  50. #endif
  51. #ifdef BSP_USING_UART7
  52. UART7_INDEX,
  53. #endif
  54. #ifdef BSP_USING_UART8
  55. UART8_INDEX,
  56. #endif
  57. #ifdef BSP_USING_LPUART1
  58. LPUART1_INDEX,
  59. #endif
  60. };
  61. static struct stm32_uart_config uart_config[] =
  62. {
  63. #ifdef BSP_USING_UART1
  64. UART1_CONFIG,
  65. #endif
  66. #ifdef BSP_USING_UART2
  67. UART2_CONFIG,
  68. #endif
  69. #ifdef BSP_USING_UART3
  70. UART3_CONFIG,
  71. #endif
  72. #ifdef BSP_USING_UART4
  73. UART4_CONFIG,
  74. #endif
  75. #ifdef BSP_USING_UART5
  76. UART5_CONFIG,
  77. #endif
  78. #ifdef BSP_USING_UART6
  79. UART6_CONFIG,
  80. #endif
  81. #ifdef BSP_USING_UART7
  82. UART7_CONFIG,
  83. #endif
  84. #ifdef BSP_USING_UART8
  85. UART8_CONFIG,
  86. #endif
  87. #ifdef BSP_USING_LPUART1
  88. LPUART1_CONFIG,
  89. #endif
  90. };
  91. static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
  92. static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
  93. {
  94. struct stm32_uart *uart;
  95. RT_ASSERT(serial != RT_NULL);
  96. RT_ASSERT(cfg != RT_NULL);
  97. uart = rt_container_of(serial, struct stm32_uart, serial);
  98. uart->handle.Instance = uart->config->Instance;
  99. uart->handle.Init.BaudRate = cfg->baud_rate;
  100. uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  101. uart->handle.Init.Mode = UART_MODE_TX_RX;
  102. uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
  103. switch (cfg->data_bits)
  104. {
  105. case DATA_BITS_8:
  106. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  107. break;
  108. case DATA_BITS_9:
  109. uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
  110. break;
  111. default:
  112. uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
  113. break;
  114. }
  115. switch (cfg->stop_bits)
  116. {
  117. case STOP_BITS_1:
  118. uart->handle.Init.StopBits = UART_STOPBITS_1;
  119. break;
  120. case STOP_BITS_2:
  121. uart->handle.Init.StopBits = UART_STOPBITS_2;
  122. break;
  123. default:
  124. uart->handle.Init.StopBits = UART_STOPBITS_1;
  125. break;
  126. }
  127. switch (cfg->parity)
  128. {
  129. case PARITY_NONE:
  130. uart->handle.Init.Parity = UART_PARITY_NONE;
  131. break;
  132. case PARITY_ODD:
  133. uart->handle.Init.Parity = UART_PARITY_ODD;
  134. break;
  135. case PARITY_EVEN:
  136. uart->handle.Init.Parity = UART_PARITY_EVEN;
  137. break;
  138. default:
  139. uart->handle.Init.Parity = UART_PARITY_NONE;
  140. break;
  141. }
  142. #ifdef RT_SERIAL_USING_DMA
  143. uart->dma_rx.last_index = 0;
  144. #endif
  145. if (HAL_UART_Init(&uart->handle) != HAL_OK)
  146. {
  147. return -RT_ERROR;
  148. }
  149. return RT_EOK;
  150. }
  151. static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
  152. {
  153. struct stm32_uart *uart;
  154. #ifdef RT_SERIAL_USING_DMA
  155. rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
  156. #endif
  157. RT_ASSERT(serial != RT_NULL);
  158. uart = rt_container_of(serial, struct stm32_uart, serial);
  159. switch (cmd)
  160. {
  161. /* disable interrupt */
  162. case RT_DEVICE_CTRL_CLR_INT:
  163. /* disable rx irq */
  164. NVIC_DisableIRQ(uart->config->irq_type);
  165. /* disable interrupt */
  166. __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
  167. #ifdef RT_SERIAL_USING_DMA
  168. /* disable DMA */
  169. if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
  170. {
  171. HAL_NVIC_DisableIRQ(uart->config->dma_rx->dma_irq);
  172. if (HAL_DMA_Abort(&(uart->dma_rx.handle)) != HAL_OK)
  173. {
  174. RT_ASSERT(0);
  175. }
  176. if (HAL_DMA_DeInit(&(uart->dma_rx.handle)) != HAL_OK)
  177. {
  178. RT_ASSERT(0);
  179. }
  180. }
  181. else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX)
  182. {
  183. HAL_NVIC_DisableIRQ(uart->config->dma_tx->dma_irq);
  184. if (HAL_DMA_DeInit(&(uart->dma_tx.handle)) != HAL_OK)
  185. {
  186. RT_ASSERT(0);
  187. }
  188. }
  189. #endif
  190. break;
  191. /* enable interrupt */
  192. case RT_DEVICE_CTRL_SET_INT:
  193. /* enable rx irq */
  194. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  195. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  196. /* enable interrupt */
  197. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
  198. break;
  199. #ifdef RT_SERIAL_USING_DMA
  200. case RT_DEVICE_CTRL_CONFIG:
  201. stm32_dma_config(serial, ctrl_arg);
  202. break;
  203. #endif
  204. case RT_DEVICE_CTRL_CLOSE:
  205. if (HAL_UART_DeInit(&(uart->handle)) != HAL_OK )
  206. {
  207. RT_ASSERT(0)
  208. }
  209. break;
  210. }
  211. return RT_EOK;
  212. }
  213. static int stm32_putc(struct rt_serial_device *serial, char c)
  214. {
  215. struct stm32_uart *uart;
  216. RT_ASSERT(serial != RT_NULL);
  217. uart = rt_container_of(serial, struct stm32_uart, serial);
  218. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  219. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  220. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \
  221. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  222. uart->handle.Instance->TDR = c;
  223. #else
  224. uart->handle.Instance->DR = c;
  225. #endif
  226. while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
  227. return 1;
  228. }
  229. static int stm32_getc(struct rt_serial_device *serial)
  230. {
  231. int ch;
  232. struct stm32_uart *uart;
  233. RT_ASSERT(serial != RT_NULL);
  234. uart = rt_container_of(serial, struct stm32_uart, serial);
  235. ch = -1;
  236. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  237. {
  238. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
  239. || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \
  240. || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)
  241. ch = uart->handle.Instance->RDR & 0xff;
  242. #else
  243. ch = uart->handle.Instance->DR & 0xff;
  244. #endif
  245. }
  246. return ch;
  247. }
  248. static rt_size_t stm32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
  249. {
  250. struct stm32_uart *uart;
  251. RT_ASSERT(serial != RT_NULL);
  252. RT_ASSERT(buf != RT_NULL);
  253. uart = rt_container_of(serial, struct stm32_uart, serial);
  254. if (size == 0)
  255. {
  256. return 0;
  257. }
  258. if (RT_SERIAL_DMA_TX == direction)
  259. {
  260. if (HAL_UART_Transmit_DMA(&uart->handle, buf, size) == HAL_OK)
  261. {
  262. return size;
  263. }
  264. else
  265. {
  266. return 0;
  267. }
  268. }
  269. return 0;
  270. }
  271. /**
  272. * Uart common interrupt process. This need add to uart ISR.
  273. *
  274. * @param serial serial device
  275. */
  276. static void uart_isr(struct rt_serial_device *serial)
  277. {
  278. struct stm32_uart *uart;
  279. #ifdef RT_SERIAL_USING_DMA
  280. rt_size_t recv_total_index, recv_len;
  281. rt_base_t level;
  282. #endif
  283. RT_ASSERT(serial != RT_NULL);
  284. uart = rt_container_of(serial, struct stm32_uart, serial);
  285. /* UART in mode Receiver -------------------------------------------------*/
  286. if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
  287. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
  288. {
  289. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
  290. }
  291. #ifdef RT_SERIAL_USING_DMA
  292. else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET)
  293. && (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
  294. {
  295. level = rt_hw_interrupt_disable();
  296. recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
  297. recv_len = recv_total_index - uart->dma_rx.last_index;
  298. uart->dma_rx.last_index = recv_total_index;
  299. rt_hw_interrupt_enable(level);
  300. if (recv_len)
  301. {
  302. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  303. }
  304. __HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
  305. }
  306. else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) &&
  307. (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TC) != RESET))
  308. {
  309. if ((serial->parent.open_flag & RT_DEVICE_FLAG_DMA_TX) != 0)
  310. {
  311. HAL_UART_IRQHandler(&(uart->handle));
  312. }
  313. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  314. }
  315. #endif
  316. else
  317. {
  318. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
  319. {
  320. __HAL_UART_CLEAR_OREFLAG(&uart->handle);
  321. }
  322. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
  323. {
  324. __HAL_UART_CLEAR_NEFLAG(&uart->handle);
  325. }
  326. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
  327. {
  328. __HAL_UART_CLEAR_FEFLAG(&uart->handle);
  329. }
  330. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
  331. {
  332. __HAL_UART_CLEAR_PEFLAG(&uart->handle);
  333. }
  334. #if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32WL) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \
  335. && !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0) && !defined(SOC_SERIES_STM32H7) \
  336. && !defined(SOC_SERIES_STM32G4) && !defined(SOC_SERIES_STM32MP1) && !defined(SOC_SERIES_STM32WB)
  337. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
  338. {
  339. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
  340. }
  341. #endif
  342. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
  343. {
  344. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
  345. }
  346. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
  347. {
  348. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
  349. }
  350. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) != RESET)
  351. {
  352. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
  353. }
  354. if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
  355. {
  356. UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
  357. }
  358. }
  359. }
  360. #ifdef RT_SERIAL_USING_DMA
  361. static void dma_isr(struct rt_serial_device *serial)
  362. {
  363. struct stm32_uart *uart;
  364. rt_size_t recv_total_index, recv_len;
  365. rt_base_t level;
  366. RT_ASSERT(serial != RT_NULL);
  367. uart = rt_container_of(serial, struct stm32_uart, serial);
  368. if ((__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_TC) != RESET) ||
  369. (__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_HT) != RESET))
  370. {
  371. level = rt_hw_interrupt_disable();
  372. recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
  373. if (recv_total_index == 0)
  374. {
  375. recv_len = serial->config.bufsz - uart->dma_rx.last_index;
  376. }
  377. else
  378. {
  379. recv_len = recv_total_index - uart->dma_rx.last_index;
  380. }
  381. uart->dma_rx.last_index = recv_total_index;
  382. rt_hw_interrupt_enable(level);
  383. if (recv_len)
  384. {
  385. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  386. }
  387. }
  388. }
  389. #endif
  390. #if defined(BSP_USING_UART1)
  391. void USART1_IRQHandler(void)
  392. {
  393. /* enter interrupt */
  394. rt_interrupt_enter();
  395. uart_isr(&(uart_obj[UART1_INDEX].serial));
  396. /* leave interrupt */
  397. rt_interrupt_leave();
  398. }
  399. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
  400. void UART1_DMA_RX_IRQHandler(void)
  401. {
  402. /* enter interrupt */
  403. rt_interrupt_enter();
  404. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_rx.handle);
  405. /* leave interrupt */
  406. rt_interrupt_leave();
  407. }
  408. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
  409. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA)
  410. void UART1_DMA_TX_IRQHandler(void)
  411. {
  412. /* enter interrupt */
  413. rt_interrupt_enter();
  414. HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_tx.handle);
  415. /* leave interrupt */
  416. rt_interrupt_leave();
  417. }
  418. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) */
  419. #endif /* BSP_USING_UART1 */
  420. #if defined(BSP_USING_UART2)
  421. void USART2_IRQHandler(void)
  422. {
  423. /* enter interrupt */
  424. rt_interrupt_enter();
  425. uart_isr(&(uart_obj[UART2_INDEX].serial));
  426. /* leave interrupt */
  427. rt_interrupt_leave();
  428. }
  429. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA)
  430. void UART2_DMA_RX_IRQHandler(void)
  431. {
  432. /* enter interrupt */
  433. rt_interrupt_enter();
  434. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_rx.handle);
  435. /* leave interrupt */
  436. rt_interrupt_leave();
  437. }
  438. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA) */
  439. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA)
  440. void UART2_DMA_TX_IRQHandler(void)
  441. {
  442. /* enter interrupt */
  443. rt_interrupt_enter();
  444. HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma_tx.handle);
  445. /* leave interrupt */
  446. rt_interrupt_leave();
  447. }
  448. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_TX_USING_DMA) */
  449. #endif /* BSP_USING_UART2 */
  450. #if defined(BSP_USING_UART3)
  451. void USART3_IRQHandler(void)
  452. {
  453. /* enter interrupt */
  454. rt_interrupt_enter();
  455. uart_isr(&(uart_obj[UART3_INDEX].serial));
  456. /* leave interrupt */
  457. rt_interrupt_leave();
  458. }
  459. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_RX_USING_DMA)
  460. void UART3_DMA_RX_IRQHandler(void)
  461. {
  462. /* enter interrupt */
  463. rt_interrupt_enter();
  464. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_rx.handle);
  465. /* leave interrupt */
  466. rt_interrupt_leave();
  467. }
  468. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART3_RX_USING_DMA) */
  469. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_TX_USING_DMA)
  470. void UART3_DMA_TX_IRQHandler(void)
  471. {
  472. /* enter interrupt */
  473. rt_interrupt_enter();
  474. HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma_tx.handle);
  475. /* leave interrupt */
  476. rt_interrupt_leave();
  477. }
  478. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART3_TX_USING_DMA) */
  479. #endif /* BSP_USING_UART3*/
  480. #if defined(BSP_USING_UART4)
  481. void UART4_IRQHandler(void)
  482. {
  483. /* enter interrupt */
  484. rt_interrupt_enter();
  485. uart_isr(&(uart_obj[UART4_INDEX].serial));
  486. /* leave interrupt */
  487. rt_interrupt_leave();
  488. }
  489. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_RX_USING_DMA)
  490. void UART4_DMA_RX_IRQHandler(void)
  491. {
  492. /* enter interrupt */
  493. rt_interrupt_enter();
  494. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_rx.handle);
  495. /* leave interrupt */
  496. rt_interrupt_leave();
  497. }
  498. #endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART4_RX_USING_DMA) */
  499. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_TX_USING_DMA)
  500. void UART4_DMA_TX_IRQHandler(void)
  501. {
  502. /* enter interrupt */
  503. rt_interrupt_enter();
  504. HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma_tx.handle);
  505. /* leave interrupt */
  506. rt_interrupt_leave();
  507. }
  508. #endif /* defined(BSP_UART_USING_DMA_TX) && defined(BSP_UART4_TX_USING_DMA) */
  509. #endif /* BSP_USING_UART4*/
  510. #if defined(BSP_USING_UART5)
  511. void UART5_IRQHandler(void)
  512. {
  513. /* enter interrupt */
  514. rt_interrupt_enter();
  515. uart_isr(&(uart_obj[UART5_INDEX].serial));
  516. /* leave interrupt */
  517. rt_interrupt_leave();
  518. }
  519. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA)
  520. void UART5_DMA_RX_IRQHandler(void)
  521. {
  522. /* enter interrupt */
  523. rt_interrupt_enter();
  524. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_rx.handle);
  525. /* leave interrupt */
  526. rt_interrupt_leave();
  527. }
  528. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA) */
  529. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA)
  530. void UART5_DMA_TX_IRQHandler(void)
  531. {
  532. /* enter interrupt */
  533. rt_interrupt_enter();
  534. HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma_tx.handle);
  535. /* leave interrupt */
  536. rt_interrupt_leave();
  537. }
  538. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_TX_USING_DMA) */
  539. #endif /* BSP_USING_UART5*/
  540. #if defined(BSP_USING_UART6)
  541. void USART6_IRQHandler(void)
  542. {
  543. /* enter interrupt */
  544. rt_interrupt_enter();
  545. uart_isr(&(uart_obj[UART6_INDEX].serial));
  546. /* leave interrupt */
  547. rt_interrupt_leave();
  548. }
  549. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA)
  550. void UART6_DMA_RX_IRQHandler(void)
  551. {
  552. /* enter interrupt */
  553. rt_interrupt_enter();
  554. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_rx.handle);
  555. /* leave interrupt */
  556. rt_interrupt_leave();
  557. }
  558. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_RX_USING_DMA) */
  559. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA)
  560. void UART6_DMA_TX_IRQHandler(void)
  561. {
  562. /* enter interrupt */
  563. rt_interrupt_enter();
  564. HAL_DMA_IRQHandler(&uart_obj[UART6_INDEX].dma_tx.handle);
  565. /* leave interrupt */
  566. rt_interrupt_leave();
  567. }
  568. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART6_TX_USING_DMA) */
  569. #endif /* BSP_USING_UART6*/
  570. #if defined(BSP_USING_UART7)
  571. void UART7_IRQHandler(void)
  572. {
  573. /* enter interrupt */
  574. rt_interrupt_enter();
  575. uart_isr(&(uart_obj[UART7_INDEX].serial));
  576. /* leave interrupt */
  577. rt_interrupt_leave();
  578. }
  579. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA)
  580. void UART7_DMA_RX_IRQHandler(void)
  581. {
  582. /* enter interrupt */
  583. rt_interrupt_enter();
  584. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_rx.handle);
  585. /* leave interrupt */
  586. rt_interrupt_leave();
  587. }
  588. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_RX_USING_DMA) */
  589. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA)
  590. void UART7_DMA_TX_IRQHandler(void)
  591. {
  592. /* enter interrupt */
  593. rt_interrupt_enter();
  594. HAL_DMA_IRQHandler(&uart_obj[UART7_INDEX].dma_tx.handle);
  595. /* leave interrupt */
  596. rt_interrupt_leave();
  597. }
  598. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART7_TX_USING_DMA) */
  599. #endif /* BSP_USING_UART7*/
  600. #if defined(BSP_USING_UART8)
  601. void UART8_IRQHandler(void)
  602. {
  603. /* enter interrupt */
  604. rt_interrupt_enter();
  605. uart_isr(&(uart_obj[UART8_INDEX].serial));
  606. /* leave interrupt */
  607. rt_interrupt_leave();
  608. }
  609. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA)
  610. void UART8_DMA_RX_IRQHandler(void)
  611. {
  612. /* enter interrupt */
  613. rt_interrupt_enter();
  614. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_rx.handle);
  615. /* leave interrupt */
  616. rt_interrupt_leave();
  617. }
  618. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_RX_USING_DMA) */
  619. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA)
  620. void UART8_DMA_TX_IRQHandler(void)
  621. {
  622. /* enter interrupt */
  623. rt_interrupt_enter();
  624. HAL_DMA_IRQHandler(&uart_obj[UART8_INDEX].dma_tx.handle);
  625. /* leave interrupt */
  626. rt_interrupt_leave();
  627. }
  628. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART8_TX_USING_DMA) */
  629. #endif /* BSP_USING_UART8*/
  630. #if defined(BSP_USING_LPUART1)
  631. void LPUART1_IRQHandler(void)
  632. {
  633. /* enter interrupt */
  634. rt_interrupt_enter();
  635. uart_isr(&(uart_obj[LPUART1_INDEX].serial));
  636. /* leave interrupt */
  637. rt_interrupt_leave();
  638. }
  639. #if defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA)
  640. void LPUART1_DMA_RX_IRQHandler(void)
  641. {
  642. /* enter interrupt */
  643. rt_interrupt_enter();
  644. HAL_DMA_IRQHandler(&uart_obj[LPUART1_INDEX].dma_rx.handle);
  645. /* leave interrupt */
  646. rt_interrupt_leave();
  647. }
  648. #endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA) */
  649. #endif /* BSP_USING_LPUART1*/
  650. static void stm32_uart_get_dma_config(void)
  651. {
  652. #ifdef BSP_USING_UART1
  653. uart_obj[UART1_INDEX].uart_dma_flag = 0;
  654. #ifdef BSP_UART1_RX_USING_DMA
  655. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  656. static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG;
  657. uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
  658. #endif
  659. #ifdef BSP_UART1_TX_USING_DMA
  660. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  661. static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG;
  662. uart_config[UART1_INDEX].dma_tx = &uart1_dma_tx;
  663. #endif
  664. #endif
  665. #ifdef BSP_USING_UART2
  666. uart_obj[UART2_INDEX].uart_dma_flag = 0;
  667. #ifdef BSP_UART2_RX_USING_DMA
  668. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  669. static struct dma_config uart2_dma_rx = UART2_DMA_RX_CONFIG;
  670. uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
  671. #endif
  672. #ifdef BSP_UART2_TX_USING_DMA
  673. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  674. static struct dma_config uart2_dma_tx = UART2_DMA_TX_CONFIG;
  675. uart_config[UART2_INDEX].dma_tx = &uart2_dma_tx;
  676. #endif
  677. #endif
  678. #ifdef BSP_USING_UART3
  679. uart_obj[UART3_INDEX].uart_dma_flag = 0;
  680. #ifdef BSP_UART3_RX_USING_DMA
  681. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  682. static struct dma_config uart3_dma_rx = UART3_DMA_RX_CONFIG;
  683. uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
  684. #endif
  685. #ifdef BSP_UART3_TX_USING_DMA
  686. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  687. static struct dma_config uart3_dma_tx = UART3_DMA_TX_CONFIG;
  688. uart_config[UART3_INDEX].dma_tx = &uart3_dma_tx;
  689. #endif
  690. #endif
  691. #ifdef BSP_USING_UART4
  692. uart_obj[UART4_INDEX].uart_dma_flag = 0;
  693. #ifdef BSP_UART4_RX_USING_DMA
  694. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  695. static struct dma_config uart4_dma_rx = UART4_DMA_RX_CONFIG;
  696. uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
  697. #endif
  698. #ifdef BSP_UART4_TX_USING_DMA
  699. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  700. static struct dma_config uart4_dma_tx = UART4_DMA_TX_CONFIG;
  701. uart_config[UART4_INDEX].dma_tx = &uart4_dma_tx;
  702. #endif
  703. #endif
  704. #ifdef BSP_USING_UART5
  705. uart_obj[UART5_INDEX].uart_dma_flag = 0;
  706. #ifdef BSP_UART5_RX_USING_DMA
  707. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  708. static struct dma_config uart5_dma_rx = UART5_DMA_RX_CONFIG;
  709. uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
  710. #endif
  711. #ifdef BSP_UART5_TX_USING_DMA
  712. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  713. static struct dma_config uart5_dma_tx = UART5_DMA_TX_CONFIG;
  714. uart_config[UART5_INDEX].dma_tx = &uart5_dma_tx;
  715. #endif
  716. #endif
  717. #ifdef BSP_USING_UART6
  718. uart_obj[UART6_INDEX].uart_dma_flag = 0;
  719. #ifdef BSP_UART6_RX_USING_DMA
  720. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  721. static struct dma_config uart6_dma_rx = UART6_DMA_RX_CONFIG;
  722. uart_config[UART6_INDEX].dma_rx = &uart6_dma_rx;
  723. #endif
  724. #ifdef BSP_UART6_TX_USING_DMA
  725. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  726. static struct dma_config uart6_dma_tx = UART6_DMA_TX_CONFIG;
  727. uart_config[UART6_INDEX].dma_tx = &uart6_dma_tx;
  728. #endif
  729. #endif
  730. }
  731. #ifdef RT_SERIAL_USING_DMA
  732. static void stm32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
  733. {
  734. struct rt_serial_rx_fifo *rx_fifo;
  735. DMA_HandleTypeDef *DMA_Handle;
  736. struct dma_config *dma_config;
  737. struct stm32_uart *uart;
  738. RT_ASSERT(serial != RT_NULL);
  739. uart = rt_container_of(serial, struct stm32_uart, serial);
  740. if (RT_DEVICE_FLAG_DMA_RX == flag)
  741. {
  742. DMA_Handle = &uart->dma_rx.handle;
  743. dma_config = uart->config->dma_rx;
  744. }
  745. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  746. {
  747. DMA_Handle = &uart->dma_tx.handle;
  748. dma_config = uart->config->dma_tx;
  749. }
  750. LOG_D("%s dma config start", uart->config->name);
  751. {
  752. rt_uint32_t tmpreg = 0x00U;
  753. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
  754. || defined(SOC_SERIES_STM32L0)
  755. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  756. SET_BIT(RCC->AHBENR, dma_config->dma_rcc);
  757. tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc);
  758. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \
  759. || defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB)
  760. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  761. SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  762. tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
  763. #elif defined(SOC_SERIES_STM32MP1)
  764. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  765. SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  766. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
  767. #endif
  768. #if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1)
  769. /* enable DMAMUX clock for L4+ and G4 */
  770. __HAL_RCC_DMAMUX1_CLK_ENABLE();
  771. #elif defined(SOC_SERIES_STM32MP1)
  772. __HAL_RCC_DMAMUX_CLK_ENABLE();
  773. #endif
  774. UNUSED(tmpreg); /* To avoid compiler warnings */
  775. }
  776. if (RT_DEVICE_FLAG_DMA_RX == flag)
  777. {
  778. __HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma_rx.handle);
  779. }
  780. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  781. {
  782. __HAL_LINKDMA(&(uart->handle), hdmatx, uart->dma_tx.handle);
  783. }
  784. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)
  785. DMA_Handle->Instance = dma_config->Instance;
  786. #elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  787. DMA_Handle->Instance = dma_config->Instance;
  788. DMA_Handle->Init.Channel = dma_config->channel;
  789. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\
  790. || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  791. DMA_Handle->Instance = dma_config->Instance;
  792. DMA_Handle->Init.Request = dma_config->request;
  793. #endif
  794. DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE;
  795. DMA_Handle->Init.MemInc = DMA_MINC_ENABLE;
  796. DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  797. DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  798. if (RT_DEVICE_FLAG_DMA_RX == flag)
  799. {
  800. DMA_Handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
  801. DMA_Handle->Init.Mode = DMA_CIRCULAR;
  802. }
  803. else if (RT_DEVICE_FLAG_DMA_TX == flag)
  804. {
  805. DMA_Handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
  806. DMA_Handle->Init.Mode = DMA_NORMAL;
  807. }
  808. DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM;
  809. #if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  810. DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  811. #endif
  812. if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK)
  813. {
  814. RT_ASSERT(0);
  815. }
  816. if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
  817. {
  818. RT_ASSERT(0);
  819. }
  820. /* enable interrupt */
  821. if (flag == RT_DEVICE_FLAG_DMA_RX)
  822. {
  823. rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  824. /* Start DMA transfer */
  825. if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.bufsz) != HAL_OK)
  826. {
  827. /* Transfer error in reception process */
  828. RT_ASSERT(0);
  829. }
  830. CLEAR_BIT(uart->handle.Instance->CR3, USART_CR3_EIE);
  831. __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
  832. }
  833. /* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */
  834. HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0);
  835. HAL_NVIC_EnableIRQ(dma_config->dma_irq);
  836. HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
  837. HAL_NVIC_EnableIRQ(uart->config->irq_type);
  838. LOG_D("%s dma %s instance: %x", uart->config->name, flag == RT_DEVICE_FLAG_DMA_RX ? "RX" : "TX", DMA_Handle->Instance);
  839. LOG_D("%s dma config done", uart->config->name);
  840. }
  841. /**
  842. * @brief UART error callbacks
  843. * @param huart: UART handle
  844. * @note This example shows a simple way to report transfer error, and you can
  845. * add your own implementation.
  846. * @retval None
  847. */
  848. void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
  849. {
  850. RT_ASSERT(huart != NULL);
  851. struct stm32_uart *uart = (struct stm32_uart *)huart;
  852. LOG_D("%s: %s %d\n", __FUNCTION__, uart->config->name, huart->ErrorCode);
  853. UNUSED(uart);
  854. }
  855. /**
  856. * @brief Rx Transfer completed callback
  857. * @param huart: UART handle
  858. * @note This example shows a simple way to report end of DMA Rx transfer, and
  859. * you can add your own implementation.
  860. * @retval None
  861. */
  862. void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
  863. {
  864. struct stm32_uart *uart;
  865. RT_ASSERT(huart != NULL);
  866. uart = (struct stm32_uart *)huart;
  867. dma_isr(&uart->serial);
  868. }
  869. /**
  870. * @brief Rx Half transfer completed callback
  871. * @param huart: UART handle
  872. * @note This example shows a simple way to report end of DMA Rx Half transfer,
  873. * and you can add your own implementation.
  874. * @retval None
  875. */
  876. void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
  877. {
  878. struct stm32_uart *uart;
  879. RT_ASSERT(huart != NULL);
  880. uart = (struct stm32_uart *)huart;
  881. dma_isr(&uart->serial);
  882. }
  883. static void _dma_tx_complete(struct rt_serial_device *serial)
  884. {
  885. struct stm32_uart *uart;
  886. rt_size_t trans_total_index;
  887. rt_base_t level;
  888. RT_ASSERT(serial != RT_NULL);
  889. uart = rt_container_of(serial, struct stm32_uart, serial);
  890. level = rt_hw_interrupt_disable();
  891. trans_total_index = __HAL_DMA_GET_COUNTER(&(uart->dma_tx.handle));
  892. rt_hw_interrupt_enable(level);
  893. if (trans_total_index == 0)
  894. {
  895. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
  896. }
  897. }
  898. /**
  899. * @brief HAL_UART_TxCpltCallback
  900. * @param huart: UART handle
  901. * @note This callback can be called by two functions, first in UART_EndTransmit_IT when
  902. * UART Tx complete and second in UART_DMATransmitCplt function in DMA Circular mode.
  903. * @retval None
  904. */
  905. void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
  906. {
  907. struct stm32_uart *uart;
  908. RT_ASSERT(huart != NULL);
  909. uart = (struct stm32_uart *)huart;
  910. _dma_tx_complete(&uart->serial);
  911. }
  912. #endif /* RT_SERIAL_USING_DMA */
  913. static const struct rt_uart_ops stm32_uart_ops =
  914. {
  915. .configure = stm32_configure,
  916. .control = stm32_control,
  917. .putc = stm32_putc,
  918. .getc = stm32_getc,
  919. .dma_transmit = stm32_dma_transmit
  920. };
  921. int rt_hw_usart_init(void)
  922. {
  923. rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);
  924. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  925. rt_err_t result = 0;
  926. stm32_uart_get_dma_config();
  927. for (int i = 0; i < obj_num; i++)
  928. {
  929. /* init UART object */
  930. uart_obj[i].config = &uart_config[i];
  931. uart_obj[i].serial.ops = &stm32_uart_ops;
  932. uart_obj[i].serial.config = config;
  933. /* register UART device */
  934. result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
  935. RT_DEVICE_FLAG_RDWR
  936. | RT_DEVICE_FLAG_INT_RX
  937. | RT_DEVICE_FLAG_INT_TX
  938. | uart_obj[i].uart_dma_flag
  939. , NULL);
  940. RT_ASSERT(result == RT_EOK);
  941. }
  942. return result;
  943. }
  944. #endif /* RT_USING_SERIAL */