memheap.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. * File : memheap.c
  8. *
  9. * Change Logs:
  10. * Date Author Notes
  11. * 2012-04-10 Bernard first implementation
  12. * 2012-10-16 Bernard add the mutex lock for heap object.
  13. * 2012-12-29 Bernard memheap can be used as system heap.
  14. * change mutex lock to semaphore lock.
  15. * 2013-04-10 Bernard add rt_memheap_realloc function.
  16. * 2013-05-24 Bernard fix the rt_memheap_realloc issue.
  17. * 2013-07-11 Grissiom fix the memory block splitting issue.
  18. * 2013-07-15 Grissiom optimize rt_memheap_realloc
  19. * 2021-06-03 Flybreak Fix the crash problem after opening Oz optimization on ac6.
  20. * 2023-03-01 Bernard Fix the alignment issue for minimal size
  21. */
  22. #include <rthw.h>
  23. #include <rtthread.h>
  24. #ifdef RT_USING_MEMHEAP
  25. #define DBG_TAG "kernel.memheap"
  26. #ifdef RT_DEBUG_MEMHEAP
  27. #define DBG_LVL DBG_LOG
  28. #else
  29. #define DBG_LVL DBG_WARNING
  30. #endif /* defined (RT_DEBUG_MEM) */
  31. #include <rtdbg.h>
  32. /* dynamic pool magic and mask */
  33. #define RT_MEMHEAP_MAGIC 0x1ea01ea0
  34. #define RT_MEMHEAP_MASK 0xFFFFFFFE
  35. #define RT_MEMHEAP_USED 0x01
  36. #define RT_MEMHEAP_FREED 0x00
  37. #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
  38. #define RT_MEMHEAP_MINIALLOC RT_ALIGN(12, RT_ALIGN_SIZE)
  39. #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
  40. #define MEMITEM_SIZE(item) ((rt_ubase_t)item->next - (rt_ubase_t)item - RT_MEMHEAP_SIZE)
  41. #define MEMITEM(ptr) (struct rt_memheap_item*)((rt_uint8_t*)ptr - RT_MEMHEAP_SIZE)
  42. static void _remove_next_ptr(volatile struct rt_memheap_item *next_ptr)
  43. {
  44. /* Fix the crash problem after opening Oz optimization on ac6 */
  45. /* Fix IAR compiler warning */
  46. next_ptr->next_free->prev_free = next_ptr->prev_free;
  47. next_ptr->prev_free->next_free = next_ptr->next_free;
  48. next_ptr->next->prev = next_ptr->prev;
  49. next_ptr->prev->next = next_ptr->next;
  50. }
  51. /**
  52. * @brief This function initializes a piece of memory called memheap.
  53. *
  54. * @note The initialized memory pool will be:
  55. * +-----------------------------------+--------------------------+
  56. * | whole freed memory block | Used Memory Block Tailer |
  57. * +-----------------------------------+--------------------------+
  58. *
  59. * block_list --> whole freed memory block
  60. *
  61. * The length of Used Memory Block Tailer is 0,
  62. * which is prevents block merging across list
  63. *
  64. * @param memheap is a pointer of the memheap object.
  65. *
  66. * @param name is the name of the memheap.
  67. *
  68. * @param start_addr is the start address of the memheap.
  69. *
  70. * @param size is the size of the memheap.
  71. *
  72. * @return RT_EOK
  73. */
  74. rt_err_t rt_memheap_init(struct rt_memheap *memheap,
  75. const char *name,
  76. void *start_addr,
  77. rt_size_t size)
  78. {
  79. struct rt_memheap_item *item;
  80. RT_ASSERT(memheap != RT_NULL);
  81. /* initialize pool object */
  82. rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
  83. memheap->start_addr = start_addr;
  84. memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
  85. memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
  86. memheap->max_used_size = memheap->pool_size - memheap->available_size;
  87. /* initialize the free list header */
  88. item = &(memheap->free_header);
  89. item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  90. item->pool_ptr = memheap;
  91. item->next = RT_NULL;
  92. item->prev = RT_NULL;
  93. item->next_free = item;
  94. item->prev_free = item;
  95. /* set the free list to free list header */
  96. memheap->free_list = item;
  97. /* initialize the first big memory block */
  98. item = (struct rt_memheap_item *)start_addr;
  99. item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  100. item->pool_ptr = memheap;
  101. item->next = RT_NULL;
  102. item->prev = RT_NULL;
  103. item->next_free = item;
  104. item->prev_free = item;
  105. #ifdef RT_USING_MEMTRACE
  106. rt_memset(item->owner_thread_name, ' ', sizeof(item->owner_thread_name));
  107. #endif /* RT_USING_MEMTRACE */
  108. item->next = (struct rt_memheap_item *)
  109. ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
  110. item->prev = item->next;
  111. /* block list header */
  112. memheap->block_list = item;
  113. /* place the big memory block to free list */
  114. item->next_free = memheap->free_list->next_free;
  115. item->prev_free = memheap->free_list;
  116. memheap->free_list->next_free->prev_free = item;
  117. memheap->free_list->next_free = item;
  118. /* move to the end of memory pool to build a small tailer block,
  119. * which prevents block merging
  120. */
  121. item = item->next;
  122. /* it's a used memory block */
  123. item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED);
  124. item->pool_ptr = memheap;
  125. item->next = (struct rt_memheap_item *)start_addr;
  126. item->prev = (struct rt_memheap_item *)start_addr;
  127. /* not in free list */
  128. item->next_free = item->prev_free = RT_NULL;
  129. /* initialize semaphore lock */
  130. rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_PRIO);
  131. memheap->locked = RT_FALSE;
  132. LOG_D("memory heap: start addr 0x%08x, size %d, free list header 0x%08x",
  133. start_addr, size, &(memheap->free_header));
  134. return RT_EOK;
  135. }
  136. RTM_EXPORT(rt_memheap_init);
  137. /**
  138. * @brief This function will remove a memheap from the system.
  139. *
  140. * @param heap is a pointer of memheap object.
  141. *
  142. * @return RT_EOK
  143. */
  144. rt_err_t rt_memheap_detach(struct rt_memheap *heap)
  145. {
  146. RT_ASSERT(heap);
  147. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  148. RT_ASSERT(rt_object_is_systemobject(&heap->parent));
  149. rt_sem_detach(&heap->lock);
  150. rt_object_detach(&(heap->parent));
  151. /* Return a successful completion. */
  152. return RT_EOK;
  153. }
  154. RTM_EXPORT(rt_memheap_detach);
  155. /**
  156. * @brief Allocate a block of memory with a minimum of 'size' bytes on memheap.
  157. *
  158. * @param heap is a pointer for memheap object.
  159. *
  160. * @param size is the minimum size of the requested block in bytes.
  161. *
  162. * @return the pointer to allocated memory or NULL if no free memory was found.
  163. */
  164. void *rt_memheap_alloc(struct rt_memheap *heap, rt_size_t size)
  165. {
  166. rt_err_t result;
  167. rt_size_t free_size;
  168. struct rt_memheap_item *header_ptr;
  169. RT_ASSERT(heap != RT_NULL);
  170. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  171. /* align allocated size */
  172. size = RT_ALIGN(size, RT_ALIGN_SIZE);
  173. if (size < RT_MEMHEAP_MINIALLOC)
  174. size = RT_MEMHEAP_MINIALLOC;
  175. LOG_D("allocate %d on heap:%8.*s",
  176. size, RT_NAME_MAX, heap->parent.name);
  177. if (size < heap->available_size)
  178. {
  179. /* search on free list */
  180. free_size = 0;
  181. /* lock memheap */
  182. if (heap->locked == RT_FALSE)
  183. {
  184. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  185. if (result != RT_EOK)
  186. {
  187. rt_set_errno(result);
  188. return RT_NULL;
  189. }
  190. }
  191. /* get the first free memory block */
  192. header_ptr = heap->free_list->next_free;
  193. while (header_ptr != heap->free_list && free_size < size)
  194. {
  195. /* get current freed memory block size */
  196. free_size = MEMITEM_SIZE(header_ptr);
  197. if (free_size < size)
  198. {
  199. /* move to next free memory block */
  200. header_ptr = header_ptr->next_free;
  201. }
  202. }
  203. /* determine if the memory is available. */
  204. if (free_size >= size)
  205. {
  206. /* a block that satisfies the request has been found. */
  207. /* determine if the block needs to be split. */
  208. if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
  209. {
  210. struct rt_memheap_item *new_ptr;
  211. /* split the block. */
  212. new_ptr = (struct rt_memheap_item *)
  213. (((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
  214. LOG_D("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
  215. header_ptr,
  216. header_ptr->next,
  217. header_ptr->prev,
  218. new_ptr);
  219. /* mark the new block as a memory block and freed. */
  220. new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  221. /* put the pool pointer into the new block. */
  222. new_ptr->pool_ptr = heap;
  223. #ifdef RT_USING_MEMTRACE
  224. rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name));
  225. #endif /* RT_USING_MEMTRACE */
  226. /* break down the block list */
  227. new_ptr->prev = header_ptr;
  228. new_ptr->next = header_ptr->next;
  229. header_ptr->next->prev = new_ptr;
  230. header_ptr->next = new_ptr;
  231. /* remove header ptr from free list */
  232. header_ptr->next_free->prev_free = header_ptr->prev_free;
  233. header_ptr->prev_free->next_free = header_ptr->next_free;
  234. header_ptr->next_free = RT_NULL;
  235. header_ptr->prev_free = RT_NULL;
  236. /* insert new_ptr to free list */
  237. new_ptr->next_free = heap->free_list->next_free;
  238. new_ptr->prev_free = heap->free_list;
  239. heap->free_list->next_free->prev_free = new_ptr;
  240. heap->free_list->next_free = new_ptr;
  241. LOG_D("new ptr: next_free 0x%08x, prev_free 0x%08x",
  242. new_ptr->next_free,
  243. new_ptr->prev_free);
  244. /* decrement the available byte count. */
  245. heap->available_size = heap->available_size -
  246. size -
  247. RT_MEMHEAP_SIZE;
  248. if (heap->pool_size - heap->available_size > heap->max_used_size)
  249. heap->max_used_size = heap->pool_size - heap->available_size;
  250. }
  251. else
  252. {
  253. /* decrement the entire free size from the available bytes count. */
  254. heap->available_size = heap->available_size - free_size;
  255. if (heap->pool_size - heap->available_size > heap->max_used_size)
  256. heap->max_used_size = heap->pool_size - heap->available_size;
  257. /* remove header_ptr from free list */
  258. LOG_D("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
  259. header_ptr,
  260. header_ptr->next_free,
  261. header_ptr->prev_free);
  262. header_ptr->next_free->prev_free = header_ptr->prev_free;
  263. header_ptr->prev_free->next_free = header_ptr->next_free;
  264. header_ptr->next_free = RT_NULL;
  265. header_ptr->prev_free = RT_NULL;
  266. }
  267. /* Mark the allocated block as not available. */
  268. header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED);
  269. #ifdef RT_USING_MEMTRACE
  270. if (rt_thread_self())
  271. rt_memcpy(header_ptr->owner_thread_name, rt_thread_self()->parent.name, sizeof(header_ptr->owner_thread_name));
  272. else
  273. rt_memcpy(header_ptr->owner_thread_name, "NONE", sizeof(header_ptr->owner_thread_name));
  274. #endif /* RT_USING_MEMTRACE */
  275. if (heap->locked == RT_FALSE)
  276. {
  277. /* release lock */
  278. rt_sem_release(&(heap->lock));
  279. }
  280. /* Return a memory address to the caller. */
  281. LOG_D("alloc mem: memory[0x%08x], heap[0x%08x], size: %d",
  282. (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE),
  283. header_ptr,
  284. size);
  285. return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE);
  286. }
  287. if (heap->locked == RT_FALSE)
  288. {
  289. /* release lock */
  290. rt_sem_release(&(heap->lock));
  291. }
  292. }
  293. LOG_D("allocate memory: failed");
  294. /* Return the completion status. */
  295. return RT_NULL;
  296. }
  297. RTM_EXPORT(rt_memheap_alloc);
  298. /**
  299. * @brief This function will change the size of previously allocated memory block.
  300. *
  301. * @param heap is a pointer to the memheap object, which will reallocate
  302. * memory from the block
  303. *
  304. * @param ptr is a pointer to start address of memory.
  305. *
  306. * @param newsize is the required new size.
  307. *
  308. * @return the changed memory block address.
  309. */
  310. void *rt_memheap_realloc(struct rt_memheap *heap, void *ptr, rt_size_t newsize)
  311. {
  312. rt_err_t result;
  313. rt_size_t oldsize;
  314. struct rt_memheap_item *header_ptr;
  315. struct rt_memheap_item *new_ptr;
  316. RT_ASSERT(heap);
  317. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  318. if (newsize == 0)
  319. {
  320. rt_memheap_free(ptr);
  321. return RT_NULL;
  322. }
  323. /* align allocated size */
  324. newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
  325. if (newsize < RT_MEMHEAP_MINIALLOC)
  326. newsize = RT_MEMHEAP_MINIALLOC;
  327. if (ptr == RT_NULL)
  328. {
  329. return rt_memheap_alloc(heap, newsize);
  330. }
  331. /* get memory block header and get the size of memory block */
  332. header_ptr = (struct rt_memheap_item *)
  333. ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
  334. oldsize = MEMITEM_SIZE(header_ptr);
  335. /* re-allocate memory */
  336. if (newsize > oldsize)
  337. {
  338. void *new_ptr;
  339. volatile struct rt_memheap_item *next_ptr;
  340. if (heap->locked == RT_FALSE)
  341. {
  342. /* lock memheap */
  343. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  344. if (result != RT_EOK)
  345. {
  346. rt_set_errno(result);
  347. return RT_NULL;
  348. }
  349. }
  350. next_ptr = header_ptr->next;
  351. /* header_ptr should not be the tail */
  352. RT_ASSERT(next_ptr > header_ptr);
  353. /* check whether the following free space is enough to expand */
  354. if (!RT_MEMHEAP_IS_USED(next_ptr))
  355. {
  356. rt_int32_t nextsize;
  357. nextsize = MEMITEM_SIZE(next_ptr);
  358. RT_ASSERT(next_ptr > 0);
  359. /* Here is the ASCII art of the situation that we can make use of
  360. * the next free node without alloc/memcpy, |*| is the control
  361. * block:
  362. *
  363. * oldsize free node
  364. * |*|-----------|*|----------------------|*|
  365. * newsize >= minialloc
  366. * |*|----------------|*|-----------------|*|
  367. */
  368. if (nextsize + oldsize > newsize + RT_MEMHEAP_MINIALLOC)
  369. {
  370. /* decrement the entire free size from the available bytes count. */
  371. heap->available_size = heap->available_size - (newsize - oldsize);
  372. if (heap->pool_size - heap->available_size > heap->max_used_size)
  373. heap->max_used_size = heap->pool_size - heap->available_size;
  374. /* remove next_ptr from free list */
  375. LOG_D("remove block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
  376. next_ptr,
  377. next_ptr->next_free,
  378. next_ptr->prev_free);
  379. _remove_next_ptr(next_ptr);
  380. /* build a new one on the right place */
  381. next_ptr = (struct rt_memheap_item *)((char *)ptr + newsize);
  382. LOG_D("new free block: block[0x%08x] nextm[0x%08x] prevm[0x%08x]",
  383. next_ptr,
  384. next_ptr->next,
  385. next_ptr->prev);
  386. /* mark the new block as a memory block and freed. */
  387. next_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  388. /* put the pool pointer into the new block. */
  389. next_ptr->pool_ptr = heap;
  390. #ifdef RT_USING_MEMTRACE
  391. rt_memset((void *)next_ptr->owner_thread_name, ' ', sizeof(next_ptr->owner_thread_name));
  392. #endif /* RT_USING_MEMTRACE */
  393. next_ptr->prev = header_ptr;
  394. next_ptr->next = header_ptr->next;
  395. header_ptr->next->prev = (struct rt_memheap_item *)next_ptr;
  396. header_ptr->next = (struct rt_memheap_item *)next_ptr;
  397. /* insert next_ptr to free list */
  398. next_ptr->next_free = heap->free_list->next_free;
  399. next_ptr->prev_free = heap->free_list;
  400. heap->free_list->next_free->prev_free = (struct rt_memheap_item *)next_ptr;
  401. heap->free_list->next_free = (struct rt_memheap_item *)next_ptr;
  402. LOG_D("new ptr: next_free 0x%08x, prev_free 0x%08x",
  403. next_ptr->next_free,
  404. next_ptr->prev_free);
  405. if (heap->locked == RT_FALSE)
  406. {
  407. /* release lock */
  408. rt_sem_release(&(heap->lock));
  409. }
  410. return ptr;
  411. }
  412. }
  413. if (heap->locked == RT_FALSE)
  414. {
  415. /* release lock */
  416. rt_sem_release(&(heap->lock));
  417. }
  418. /* re-allocate a memory block */
  419. new_ptr = (void *)rt_memheap_alloc(heap, newsize);
  420. if (new_ptr != RT_NULL)
  421. {
  422. rt_memcpy(new_ptr, ptr, oldsize < newsize ? oldsize : newsize);
  423. rt_memheap_free(ptr);
  424. }
  425. return new_ptr;
  426. }
  427. /* don't split when there is less than one node space left */
  428. if (newsize + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC >= oldsize)
  429. return ptr;
  430. if (heap->locked == RT_FALSE)
  431. {
  432. /* lock memheap */
  433. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  434. if (result != RT_EOK)
  435. {
  436. rt_set_errno(result);
  437. return RT_NULL;
  438. }
  439. }
  440. /* split the block. */
  441. new_ptr = (struct rt_memheap_item *)
  442. (((rt_uint8_t *)header_ptr) + newsize + RT_MEMHEAP_SIZE);
  443. LOG_D("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
  444. header_ptr,
  445. header_ptr->next,
  446. header_ptr->prev,
  447. new_ptr);
  448. /* mark the new block as a memory block and freed. */
  449. new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  450. /* put the pool pointer into the new block. */
  451. new_ptr->pool_ptr = heap;
  452. #ifdef RT_USING_MEMTRACE
  453. rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name));
  454. #endif /* RT_USING_MEMTRACE */
  455. /* break down the block list */
  456. new_ptr->prev = header_ptr;
  457. new_ptr->next = header_ptr->next;
  458. header_ptr->next->prev = new_ptr;
  459. header_ptr->next = new_ptr;
  460. /* determine if the block can be merged with the next neighbor. */
  461. if (!RT_MEMHEAP_IS_USED(new_ptr->next))
  462. {
  463. struct rt_memheap_item *free_ptr;
  464. /* merge block with next neighbor. */
  465. free_ptr = new_ptr->next;
  466. heap->available_size = heap->available_size - MEMITEM_SIZE(free_ptr);
  467. LOG_D("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
  468. header_ptr, header_ptr->next_free, header_ptr->prev_free);
  469. free_ptr->next->prev = new_ptr;
  470. new_ptr->next = free_ptr->next;
  471. /* remove free ptr from free list */
  472. free_ptr->next_free->prev_free = free_ptr->prev_free;
  473. free_ptr->prev_free->next_free = free_ptr->next_free;
  474. }
  475. /* insert the split block to free list */
  476. new_ptr->next_free = heap->free_list->next_free;
  477. new_ptr->prev_free = heap->free_list;
  478. heap->free_list->next_free->prev_free = new_ptr;
  479. heap->free_list->next_free = new_ptr;
  480. LOG_D("new free ptr: next_free 0x%08x, prev_free 0x%08x",
  481. new_ptr->next_free,
  482. new_ptr->prev_free);
  483. /* increment the available byte count. */
  484. heap->available_size = heap->available_size + MEMITEM_SIZE(new_ptr);
  485. if (heap->locked == RT_FALSE)
  486. {
  487. /* release lock */
  488. rt_sem_release(&(heap->lock));
  489. }
  490. /* return the old memory block */
  491. return ptr;
  492. }
  493. RTM_EXPORT(rt_memheap_realloc);
  494. /**
  495. * @brief This function will release the allocated memory block by
  496. * rt_malloc. The released memory block is taken back to system heap.
  497. *
  498. * @param ptr the address of memory which will be released.
  499. */
  500. void rt_memheap_free(void *ptr)
  501. {
  502. rt_err_t result;
  503. struct rt_memheap *heap;
  504. struct rt_memheap_item *header_ptr, *new_ptr;
  505. rt_bool_t insert_header;
  506. /* NULL check */
  507. if (ptr == RT_NULL) return;
  508. /* set initial status as OK */
  509. insert_header = RT_TRUE;
  510. new_ptr = RT_NULL;
  511. header_ptr = (struct rt_memheap_item *)
  512. ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
  513. LOG_D("free memory: memory[0x%08x], block[0x%08x]",
  514. ptr, header_ptr);
  515. /* check magic */
  516. if (header_ptr->magic != (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED) ||
  517. (header_ptr->next->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC)
  518. {
  519. LOG_D("bad magic:0x%08x @ memheap",
  520. header_ptr->magic);
  521. RT_ASSERT(header_ptr->magic == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED));
  522. /* check whether this block of memory has been over-written. */
  523. RT_ASSERT((header_ptr->next->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
  524. }
  525. /* get pool ptr */
  526. heap = header_ptr->pool_ptr;
  527. RT_ASSERT(heap);
  528. RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
  529. if (heap->locked == RT_FALSE)
  530. {
  531. /* lock memheap */
  532. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  533. if (result != RT_EOK)
  534. {
  535. rt_set_errno(result);
  536. return ;
  537. }
  538. }
  539. /* Mark the memory as available. */
  540. header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
  541. /* Adjust the available number of bytes. */
  542. heap->available_size += MEMITEM_SIZE(header_ptr);
  543. /* Determine if the block can be merged with the previous neighbor. */
  544. if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
  545. {
  546. LOG_D("merge: left node 0x%08x",
  547. header_ptr->prev);
  548. /* adjust the available number of bytes. */
  549. heap->available_size += RT_MEMHEAP_SIZE;
  550. /* yes, merge block with previous neighbor. */
  551. (header_ptr->prev)->next = header_ptr->next;
  552. (header_ptr->next)->prev = header_ptr->prev;
  553. /* move header pointer to previous. */
  554. header_ptr = header_ptr->prev;
  555. /* don't insert header to free list */
  556. insert_header = RT_FALSE;
  557. }
  558. /* determine if the block can be merged with the next neighbor. */
  559. if (!RT_MEMHEAP_IS_USED(header_ptr->next))
  560. {
  561. /* adjust the available number of bytes. */
  562. heap->available_size += RT_MEMHEAP_SIZE;
  563. /* merge block with next neighbor. */
  564. new_ptr = header_ptr->next;
  565. LOG_D("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
  566. new_ptr, new_ptr->next_free, new_ptr->prev_free);
  567. new_ptr->next->prev = header_ptr;
  568. header_ptr->next = new_ptr->next;
  569. /* remove new ptr from free list */
  570. new_ptr->next_free->prev_free = new_ptr->prev_free;
  571. new_ptr->prev_free->next_free = new_ptr->next_free;
  572. }
  573. if (insert_header)
  574. {
  575. struct rt_memheap_item *n = heap->free_list->next_free;;
  576. #if defined(RT_MEMHEAP_BEST_MODE)
  577. rt_size_t blk_size = MEMITEM_SIZE(header_ptr);
  578. for (;n != heap->free_list; n = n->next_free)
  579. {
  580. rt_size_t m = MEMITEM_SIZE(n);
  581. if (blk_size <= m)
  582. {
  583. break;
  584. }
  585. }
  586. #endif
  587. /* no left merge, insert to free list */
  588. header_ptr->next_free = n;
  589. header_ptr->prev_free = n->prev_free;
  590. n->prev_free->next_free = header_ptr;
  591. n->prev_free = header_ptr;
  592. LOG_D("insert to free list: next_free 0x%08x, prev_free 0x%08x",
  593. header_ptr->next_free, header_ptr->prev_free);
  594. }
  595. #ifdef RT_USING_MEMTRACE
  596. rt_memset(header_ptr->owner_thread_name, ' ', sizeof(header_ptr->owner_thread_name));
  597. #endif /* RT_USING_MEMTRACE */
  598. if (heap->locked == RT_FALSE)
  599. {
  600. /* release lock */
  601. rt_sem_release(&(heap->lock));
  602. }
  603. }
  604. RTM_EXPORT(rt_memheap_free);
  605. /**
  606. * @brief This function will caculate the total memory, the used memory, and
  607. * the max used memory.
  608. *
  609. * @param heap is a pointer to the memheap object, which will reallocate
  610. * memory from the block
  611. *
  612. * @param total is a pointer to get the total size of the memory.
  613. *
  614. * @param used is a pointer to get the size of memory used.
  615. *
  616. * @param max_used is a pointer to get the maximum memory used.
  617. */
  618. void rt_memheap_info(struct rt_memheap *heap,
  619. rt_size_t *total,
  620. rt_size_t *used,
  621. rt_size_t *max_used)
  622. {
  623. rt_err_t result;
  624. if (heap->locked == RT_FALSE)
  625. {
  626. /* lock memheap */
  627. result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
  628. if (result != RT_EOK)
  629. {
  630. rt_set_errno(result);
  631. return;
  632. }
  633. }
  634. if (total != RT_NULL)
  635. *total = heap->pool_size;
  636. if (used != RT_NULL)
  637. *used = heap->pool_size - heap->available_size;
  638. if (max_used != RT_NULL)
  639. *max_used = heap->max_used_size;
  640. if (heap->locked == RT_FALSE)
  641. {
  642. /* release lock */
  643. rt_sem_release(&(heap->lock));
  644. }
  645. }
  646. #ifdef RT_USING_MEMHEAP_AS_HEAP
  647. /*
  648. * rt_malloc port function
  649. */
  650. void *_memheap_alloc(struct rt_memheap *heap, rt_size_t size)
  651. {
  652. void *ptr;
  653. /* try to allocate in system heap */
  654. ptr = rt_memheap_alloc(heap, size);
  655. #ifdef RT_USING_MEMHEAP_AUTO_BINDING
  656. if (ptr == RT_NULL)
  657. {
  658. struct rt_object *object;
  659. struct rt_list_node *node;
  660. struct rt_memheap *_heap;
  661. struct rt_object_information *information;
  662. /* try to allocate on other memory heap */
  663. information = rt_object_get_information(RT_Object_Class_MemHeap);
  664. RT_ASSERT(information != RT_NULL);
  665. for (node = information->object_list.next;
  666. node != &(information->object_list);
  667. node = node->next)
  668. {
  669. object = rt_list_entry(node, struct rt_object, list);
  670. _heap = (struct rt_memheap *)object;
  671. /* not allocate in the default system heap */
  672. if (heap == _heap)
  673. continue;
  674. ptr = rt_memheap_alloc(_heap, size);
  675. if (ptr != RT_NULL)
  676. break;
  677. }
  678. }
  679. #endif /* RT_USING_MEMHEAP_AUTO_BINDING */
  680. return ptr;
  681. }
  682. /*
  683. * rt_free port function
  684. */
  685. void _memheap_free(void *rmem)
  686. {
  687. rt_memheap_free(rmem);
  688. }
  689. /*
  690. * rt_realloc port function
  691. */
  692. void *_memheap_realloc(struct rt_memheap *heap, void *rmem, rt_size_t newsize)
  693. {
  694. void *new_ptr;
  695. struct rt_memheap_item *header_ptr;
  696. if (rmem == RT_NULL)
  697. return _memheap_alloc(heap, newsize);
  698. if (newsize == 0)
  699. {
  700. _memheap_free(rmem);
  701. return RT_NULL;
  702. }
  703. /* get old memory item */
  704. header_ptr = (struct rt_memheap_item *)
  705. ((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE);
  706. new_ptr = rt_memheap_realloc(header_ptr->pool_ptr, rmem, newsize);
  707. if (new_ptr == RT_NULL && newsize != 0)
  708. {
  709. /* allocate memory block from other memheap */
  710. new_ptr = _memheap_alloc(heap, newsize);
  711. if (new_ptr != RT_NULL && rmem != RT_NULL)
  712. {
  713. rt_size_t oldsize;
  714. /* get the size of old memory block */
  715. oldsize = MEMITEM_SIZE(header_ptr);
  716. if (newsize > oldsize)
  717. rt_memcpy(new_ptr, rmem, oldsize);
  718. else
  719. rt_memcpy(new_ptr, rmem, newsize);
  720. _memheap_free(rmem);
  721. }
  722. }
  723. return new_ptr;
  724. }
  725. #endif
  726. #ifdef RT_USING_MEMTRACE
  727. int memheapcheck(int argc, char *argv[])
  728. {
  729. struct rt_object_information *info;
  730. struct rt_list_node *list;
  731. struct rt_memheap *heap;
  732. struct rt_list_node *node;
  733. struct rt_memheap_item *item;
  734. rt_bool_t has_bad = RT_FALSE;
  735. rt_base_t level;
  736. char *name;
  737. name = argc > 1 ? argv[1] : RT_NULL;
  738. level = rt_hw_interrupt_disable();
  739. info = rt_object_get_information(RT_Object_Class_MemHeap);
  740. list = &info->object_list;
  741. for (node = list->next; node != list; node = node->next)
  742. {
  743. heap = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list);
  744. /* find the specified object */
  745. if (name != RT_NULL && rt_strncmp(name, heap->parent.name, RT_NAME_MAX) != 0)
  746. continue;
  747. /* check memheap */
  748. for (item = heap->block_list; item->next != heap->block_list; item = item->next)
  749. {
  750. /* check magic */
  751. if (!((item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED) ||
  752. (item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)))
  753. {
  754. has_bad = RT_TRUE;
  755. break;
  756. }
  757. /* check pool_ptr */
  758. if (heap != item->pool_ptr)
  759. {
  760. has_bad = RT_TRUE;
  761. break;
  762. }
  763. /* check next and prev */
  764. if (!((rt_ubase_t)item->next <= (rt_ubase_t)((rt_ubase_t)heap->start_addr + heap->pool_size) &&
  765. (rt_ubase_t)item->prev >= (rt_ubase_t)heap->start_addr) &&
  766. (rt_ubase_t)item->next == RT_ALIGN((rt_ubase_t)item->next, RT_ALIGN_SIZE) &&
  767. (rt_ubase_t)item->prev == RT_ALIGN((rt_ubase_t)item->prev, RT_ALIGN_SIZE))
  768. {
  769. has_bad = RT_TRUE;
  770. break;
  771. }
  772. /* check item */
  773. if (item->next == item->next->prev)
  774. {
  775. has_bad = RT_TRUE;
  776. break;
  777. }
  778. }
  779. }
  780. rt_hw_interrupt_enable(level);
  781. if (has_bad)
  782. {
  783. rt_kprintf("Memory block wrong:\n");
  784. rt_kprintf("name: %s\n", heap->parent.name);
  785. rt_kprintf("item: 0x%p\n", item);
  786. }
  787. return 0;
  788. }
  789. MSH_CMD_EXPORT(memheapcheck, check memory for memheap);
  790. int memheaptrace(int argc, char *argv[])
  791. {
  792. struct rt_object_information *info;
  793. struct rt_list_node *list;
  794. struct rt_memheap *mh;
  795. struct rt_list_node *node;
  796. char *name;
  797. name = argc > 1 ? argv[1] : RT_NULL;
  798. info = rt_object_get_information(RT_Object_Class_MemHeap);
  799. list = &info->object_list;
  800. for (node = list->next; node != list; node = node->next)
  801. {
  802. struct rt_memheap_item *header_ptr;
  803. long block_size;
  804. mh = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list);
  805. /* find the specified object */
  806. if (name != RT_NULL && rt_strncmp(name, mh->parent.name, RT_NAME_MAX) != 0)
  807. continue;
  808. /* memheap dump */
  809. rt_kprintf("\nmemory heap address:\n");
  810. rt_kprintf("name : %s\n", mh->parent.name);
  811. rt_kprintf("heap_ptr: 0x%p\n", mh->start_addr);
  812. rt_kprintf("free : 0x%08x\n", mh->available_size);
  813. rt_kprintf("max_used: 0x%08x\n", mh->max_used_size);
  814. rt_kprintf("size : 0x%08x\n", mh->pool_size);
  815. rt_kprintf("\n--memory used information --\n");
  816. /* memheap item */
  817. for (header_ptr = mh->block_list;
  818. header_ptr->next != mh->block_list;
  819. header_ptr = header_ptr->next)
  820. {
  821. if ((header_ptr->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC)
  822. {
  823. rt_kprintf("[0x%p - incorrect magic: 0x%08x\n",
  824. header_ptr, header_ptr->magic);
  825. break;
  826. }
  827. /* get current memory block size */
  828. block_size = MEMITEM_SIZE(header_ptr);
  829. if (block_size < 0)
  830. break;
  831. rt_kprintf("[0x%p - ", header_ptr);
  832. if (block_size < 1024)
  833. rt_kprintf("%5d", block_size);
  834. else if (block_size < 1024 * 1024)
  835. rt_kprintf("%4dK", block_size / 1024);
  836. else if (block_size < 1024 * 1024 * 100)
  837. rt_kprintf("%2d.%dM", block_size / (1024 * 1024), (block_size % (1024 * 1024) * 10) / (1024 * 1024));
  838. else
  839. rt_kprintf("%4dM", block_size / (1024 * 1024));
  840. /* dump thread name */
  841. rt_kprintf("] %c%c%c%c\n",
  842. header_ptr->owner_thread_name[0],
  843. header_ptr->owner_thread_name[1],
  844. header_ptr->owner_thread_name[2],
  845. header_ptr->owner_thread_name[3]);
  846. }
  847. }
  848. return 0;
  849. }
  850. #ifdef RT_USING_FINSH
  851. #include <finsh.h>
  852. MSH_CMD_EXPORT(memheaptrace, dump memory trace for memheap);
  853. #endif /* RT_USING_FINSH */
  854. #endif /* RT_USING_MEMTRACE */
  855. #endif /* RT_USING_MEMHEAP */