sensor_cmd.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. */
  10. #include "sensor.h"
  11. #define DBG_TAG "sensor.cmd"
  12. #define DBG_LVL DBG_INFO
  13. #include <rtdbg.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. static rt_sem_t sensor_rx_sem = RT_NULL;
  17. static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data)
  18. {
  19. switch (sensor->info.type)
  20. {
  21. case RT_SENSOR_CLASS_ACCE:
  22. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mg, timestamp:%5d", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, sensor_data->timestamp);
  23. break;
  24. case RT_SENSOR_CLASS_GYRO:
  25. LOG_I("num:%3d, x:%8d, y:%8d, z:%8d dps, timestamp:%5d", num, sensor_data->data.gyro.x / 1000, sensor_data->data.gyro.y / 1000, sensor_data->data.gyro.z / 1000, sensor_data->timestamp);
  26. break;
  27. case RT_SENSOR_CLASS_MAG:
  28. LOG_I("num:%3d, x:%5d, y:%5d, z:%5d mGauss, timestamp:%5d", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, sensor_data->timestamp);
  29. break;
  30. case RT_SENSOR_CLASS_HUMI:
  31. LOG_I("num:%3d, humi:%3d.%d%%, timestamp:%5d", num, sensor_data->data.humi / 10, sensor_data->data.humi % 10, sensor_data->timestamp);
  32. break;
  33. case RT_SENSOR_CLASS_TEMP:
  34. LOG_I("num:%3d, temp:%3d.%dC, timestamp:%5d", num, sensor_data->data.temp / 10, sensor_data->data.temp % 10, sensor_data->timestamp);
  35. break;
  36. case RT_SENSOR_CLASS_BARO:
  37. LOG_I("num:%3d, press:%5d pa, timestamp:%5d", num, sensor_data->data.baro, sensor_data->timestamp);
  38. break;
  39. case RT_SENSOR_CLASS_STEP:
  40. LOG_I("num:%3d, step:%5d, timestamp:%5d", num, sensor_data->data.step, sensor_data->timestamp);
  41. break;
  42. case RT_SENSOR_CLASS_PROXIMITY:
  43. LOG_I("num:%3d, distance:%5d, timestamp:%5d", num, sensor_data->data.proximity, sensor_data->timestamp);
  44. break;
  45. case RT_SENSOR_CLASS_FORCE:
  46. LOG_I("num:%3d, force:%5d, timestamp:%5d", num, sensor_data->data.force, sensor_data->timestamp);
  47. break;
  48. default:
  49. break;
  50. }
  51. }
  52. static rt_err_t rx_callback(rt_device_t dev, rt_size_t size)
  53. {
  54. rt_sem_release(sensor_rx_sem);
  55. return 0;
  56. }
  57. static void sensor_fifo_rx_entry(void *parameter)
  58. {
  59. rt_device_t dev = parameter;
  60. rt_sensor_t sensor = parameter;
  61. struct rt_sensor_data *data = RT_NULL;
  62. struct rt_sensor_info info;
  63. rt_size_t res, i;
  64. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  65. data = rt_malloc(sizeof(struct rt_sensor_data) * info.fifo_max);
  66. if (data == RT_NULL)
  67. {
  68. LOG_E("Memory allocation failed!");
  69. }
  70. while (1)
  71. {
  72. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  73. res = rt_device_read(dev, 0, data, info.fifo_max);
  74. for (i = 0; i < res; i++)
  75. {
  76. sensor_show_data(i, sensor, &data[i]);
  77. }
  78. }
  79. }
  80. static void sensor_fifo(int argc, char **argv)
  81. {
  82. static rt_thread_t tid1 = RT_NULL;
  83. rt_device_t dev = RT_NULL;
  84. rt_sensor_t sensor;
  85. dev = rt_device_find(argv[1]);
  86. if (dev == RT_NULL)
  87. {
  88. LOG_E("Can't find device:%s", argv[1]);
  89. return;
  90. }
  91. sensor = (rt_sensor_t)dev;
  92. if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK)
  93. {
  94. LOG_E("open device failed!");
  95. return;
  96. }
  97. if (sensor_rx_sem == RT_NULL)
  98. {
  99. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  100. }
  101. else
  102. {
  103. LOG_E("The thread is running, please reboot and try again");
  104. return;
  105. }
  106. tid1 = rt_thread_create("sen_rx_thread",
  107. sensor_fifo_rx_entry, sensor,
  108. 1024,
  109. 15, 5);
  110. if (tid1 != RT_NULL)
  111. rt_thread_startup(tid1);
  112. rt_device_set_rx_indicate(dev, rx_callback);
  113. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  114. }
  115. #ifdef FINSH_USING_MSH
  116. MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function);
  117. #endif
  118. static void sensor_irq_rx_entry(void *parameter)
  119. {
  120. rt_device_t dev = parameter;
  121. rt_sensor_t sensor = parameter;
  122. struct rt_sensor_data data;
  123. rt_size_t res, i = 0;
  124. while (1)
  125. {
  126. rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER);
  127. res = rt_device_read(dev, 0, &data, 1);
  128. if (res == 1)
  129. {
  130. sensor_show_data(i++, sensor, &data);
  131. }
  132. }
  133. }
  134. static void sensor_int(int argc, char **argv)
  135. {
  136. static rt_thread_t tid1 = RT_NULL;
  137. rt_device_t dev = RT_NULL;
  138. rt_sensor_t sensor;
  139. dev = rt_device_find(argv[1]);
  140. if (dev == RT_NULL)
  141. {
  142. LOG_E("Can't find device:%s", argv[1]);
  143. return;
  144. }
  145. sensor = (rt_sensor_t)dev;
  146. if (sensor_rx_sem == RT_NULL)
  147. {
  148. sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO);
  149. }
  150. else
  151. {
  152. LOG_E("The thread is running, please reboot and try again");
  153. return;
  154. }
  155. tid1 = rt_thread_create("sen_rx_thread",
  156. sensor_irq_rx_entry, sensor,
  157. 1024,
  158. 15, 5);
  159. if (tid1 != RT_NULL)
  160. rt_thread_startup(tid1);
  161. rt_device_set_rx_indicate(dev, rx_callback);
  162. if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK)
  163. {
  164. LOG_E("open device failed!");
  165. return;
  166. }
  167. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)20);
  168. }
  169. #ifdef FINSH_USING_MSH
  170. MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function);
  171. #endif
  172. static void sensor_polling(int argc, char **argv)
  173. {
  174. uint16_t num = 10;
  175. rt_device_t dev = RT_NULL;
  176. rt_sensor_t sensor;
  177. struct rt_sensor_data data;
  178. rt_size_t res, i;
  179. dev = rt_device_find(argv[1]);
  180. if (dev == RT_NULL)
  181. {
  182. LOG_E("Can't find device:%s", argv[1]);
  183. return;
  184. }
  185. if (argc > 2)
  186. num = atoi(argv[2]);
  187. sensor = (rt_sensor_t)dev;
  188. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  189. {
  190. LOG_E("open device failed!");
  191. return;
  192. }
  193. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)100);
  194. for (i = 0; i < num; i++)
  195. {
  196. res = rt_device_read(dev, 0, &data, 1);
  197. if (res != 1)
  198. {
  199. LOG_E("read data failed!size is %d", res);
  200. }
  201. else
  202. {
  203. sensor_show_data(i, sensor, &data);
  204. }
  205. rt_thread_mdelay(100);
  206. }
  207. rt_device_close(dev);
  208. }
  209. #ifdef FINSH_USING_MSH
  210. MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function);
  211. #endif
  212. static void sensor(int argc, char **argv)
  213. {
  214. static rt_device_t dev = RT_NULL;
  215. struct rt_sensor_data data;
  216. rt_size_t res, i;
  217. /* If the number of arguments less than 2 */
  218. if (argc < 2)
  219. {
  220. rt_kprintf("\n");
  221. rt_kprintf("sensor [OPTION] [PARAM]\n");
  222. rt_kprintf(" probe <dev_name> Probe sensor by given name\n");
  223. rt_kprintf(" info Get sensor info\n");
  224. rt_kprintf(" sr <var> Set range to var\n");
  225. rt_kprintf(" sm <var> Set work mode to var\n");
  226. rt_kprintf(" sp <var> Set power mode to var\n");
  227. rt_kprintf(" sodr <var> Set output date rate to var\n");
  228. rt_kprintf(" read [num] Read [num] times sensor\n");
  229. rt_kprintf(" num default 5\n");
  230. return ;
  231. }
  232. else if (!strcmp(argv[1], "info"))
  233. {
  234. struct rt_sensor_info info;
  235. rt_device_control(dev, RT_SENSOR_CTRL_GET_INFO, &info);
  236. rt_kprintf("vendor :%d\n", info.vendor);
  237. rt_kprintf("model :%s\n", info.model);
  238. rt_kprintf("unit :%d\n", info.unit);
  239. rt_kprintf("range_max :%d\n", info.range_max);
  240. rt_kprintf("range_min :%d\n", info.range_min);
  241. rt_kprintf("period_min:%d\n", info.period_min);
  242. rt_kprintf("fifo_max :%d\n", info.fifo_max);
  243. }
  244. else if (!strcmp(argv[1], "read"))
  245. {
  246. uint16_t num = 5;
  247. if (dev == RT_NULL)
  248. {
  249. LOG_W("Please probe sensor device first!");
  250. return ;
  251. }
  252. if (argc == 3)
  253. {
  254. num = atoi(argv[2]);
  255. }
  256. for (i = 0; i < num; i++)
  257. {
  258. res = rt_device_read(dev, 0, &data, 1);
  259. if (res != 1)
  260. {
  261. LOG_E("read data failed!size is %d", res);
  262. }
  263. else
  264. {
  265. sensor_show_data(i, (rt_sensor_t)dev, &data);
  266. }
  267. rt_thread_mdelay(100);
  268. }
  269. }
  270. else if (argc == 3)
  271. {
  272. if (!strcmp(argv[1], "probe"))
  273. {
  274. rt_uint8_t reg = 0xFF;
  275. if (dev)
  276. {
  277. rt_device_close(dev);
  278. }
  279. dev = rt_device_find(argv[2]);
  280. if (dev == RT_NULL)
  281. {
  282. LOG_E("Can't find device:%s", argv[1]);
  283. return;
  284. }
  285. if (rt_device_open(dev, RT_DEVICE_FLAG_RDWR) != RT_EOK)
  286. {
  287. LOG_E("open device failed!");
  288. return;
  289. }
  290. rt_device_control(dev, RT_SENSOR_CTRL_GET_ID, &reg);
  291. LOG_I("device id: 0x%x!", reg);
  292. }
  293. else if (dev == RT_NULL)
  294. {
  295. LOG_W("Please probe sensor first!");
  296. return ;
  297. }
  298. else if (!strcmp(argv[1], "sr"))
  299. {
  300. rt_device_control(dev, RT_SENSOR_CTRL_SET_RANGE, (void *)atoi(argv[2]));
  301. }
  302. else if (!strcmp(argv[1], "sm"))
  303. {
  304. rt_device_control(dev, RT_SENSOR_CTRL_SET_MODE, (void *)atoi(argv[2]));
  305. }
  306. else if (!strcmp(argv[1], "sp"))
  307. {
  308. rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER, (void *)atoi(argv[2]));
  309. }
  310. else if (!strcmp(argv[1], "sodr"))
  311. {
  312. rt_device_control(dev, RT_SENSOR_CTRL_SET_ODR, (void *)atoi(argv[2]));
  313. }
  314. else
  315. {
  316. LOG_W("Unknown command, please enter 'sensor' get help information!");
  317. }
  318. }
  319. else
  320. {
  321. LOG_W("Unknown command, please enter 'sensor' get help information!");
  322. }
  323. }
  324. #ifdef FINSH_USING_MSH
  325. MSH_CMD_EXPORT(sensor, sensor test function);
  326. #endif