| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426 |
- //*****************************************************************************
- //
- // am_hal_iom.c
- //! @file
- //!
- //! @brief Functions for interfacing with the IO Master module
- //!
- //! @addtogroup iom2 IO Master (SPI/I2C)
- //! @ingroup apollo2hal
- //! @{
- //
- //*****************************************************************************
- //*****************************************************************************
- //
- // Copyright (c) 2017, Ambiq Micro
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // 1. Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // 2. Redistributions in binary form must reproduce the above copyright
- // notice, this list of conditions and the following disclaimer in the
- // documentation and/or other materials provided with the distribution.
- //
- // 3. Neither the name of the copyright holder nor the names of its
- // contributors may be used to endorse or promote products derived from this
- // software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // This is part of revision 1.2.9 of the AmbiqSuite Development Package.
- //
- //*****************************************************************************
- #include <stdint.h>
- #include <stdbool.h>
- #include "am_mcu_apollo.h"
- #include "am_util_delay.h"
- #ifdef __IAR_SYSTEMS_ICC__
- #define AM_INSTR_CLZ(n) __CLZ(n)
- #else
- #define AM_INSTR_CLZ(n) __builtin_clz(n)
- #endif
- //! ASSERT(1) or Correct(0) invalid IOM R/W Thresholds.
- #ifndef AM_ASSERT_INVALID_THRESHOLD
- #define AM_ASSERT_INVALID_THRESHOLD (1)
- #endif
- //*****************************************************************************
- //
- // Forcing optimizations
- //
- // These pragmas must be enabled if we intend to use the IOM4 workaround with a
- // delay higher than 18-bits in the first word.
- //
- //*****************************************************************************
- //#ifdef __IAR_SYSTEMS_ICC__
- //#pragma optimize=3 s
- //#endif
- //
- //#ifdef __ARMCC_VERSION
- //#pragma O3
- //#endif
- //
- //#ifdef __GNUC__
- //#pragma GCC optimize ("O3")
- //#endif
- //*****************************************************************************
- //
- // Forward declarations.
- //
- //*****************************************************************************
- static void iom_workaround_loop(uint32_t ui32PadRegVal,
- volatile uint32_t *pui32PadReg,
- bool bRising);
- static uint32_t
- internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
- uint32_t ui32ChipSelect,
- uint32_t ui32NumBytes,
- uint32_t ui32Options);
- //*****************************************************************************
- //
- // IOM Buffer states.
- //
- //*****************************************************************************
- #define BUFFER_IDLE 0x0
- #define BUFFER_SENDING 0x1
- #define BUFFER_RECEIVING 0x2
- //*****************************************************************************
- //
- // Global state variables
- //
- //*****************************************************************************
- //
- // Save error status from ISR, particularly for use in I2C queue mode.
- //
- uint32_t g_iom_error_status = 0;
- //
- // Define a structure to map CE for IOM4 only.
- //
- typedef struct
- {
- uint8_t channel; // CE channel for SPI
- uint8_t pad; // GPIO Pad
- uint8_t funcsel; // FNCSEL value
- } IOMPad_t;
- // Define the mapping between SPI CEn, Pads, and FNCSEL values for all IOMs.
- const IOMPad_t g_IOMPads[] =
- {
- {0, 29, 6}, {0, 34, 6}, {1, 18, 4}, {1, 37, 5}, {2, 41, 6},
- {3, 17, 4}, {3, 45, 4}, {4, 10, 6}, {4, 46, 6}, {5, 9, 4},
- {5, 47, 6}, {6, 35, 4}, {7, 38, 6}
- };
- #define WORKAROUND_IOM 4
- #define WORKAROUND_IOM_MOSI_PIN 44
- #define WORKAROUND_IOM_MOSI_CFG AM_HAL_PIN_44_M4MOSI
- #define MAX_IOM_BITS 9
- #define IOM_OVERHEAD_FACTOR 2
- //*****************************************************************************
- //
- // Non-blocking buffer and buffer-management variables.
- //
- //*****************************************************************************
- typedef struct
- {
- uint32_t ui32State;
- uint32_t *pui32Data;
- uint32_t ui32BytesLeft;
- uint32_t ui32Options;
- void (*pfnCallback)(void);
- }
- am_hal_iom_nb_buffer;
- //
- // Global State to keep track if there is an ongoing transaction
- //
- volatile bool g_bIomBusy[AM_REG_IOMSTR_NUM_MODULES] = {0};
- am_hal_iom_nb_buffer g_psIOMBuffers[AM_REG_IOMSTR_NUM_MODULES];
- //*****************************************************************************
- //
- // Computed timeout.
- //
- // The IOM may not always respond to events (e.g., CMDCMP). This is a
- // timeout value in cycles to be used when waiting on status changes.
- //*****************************************************************************
- uint32_t ui32StatusTimeout[AM_REG_IOMSTR_NUM_MODULES];
- //*****************************************************************************
- //
- // Queue management variables.
- //
- //*****************************************************************************
- am_hal_queue_t g_psIOMQueue[AM_REG_IOMSTR_NUM_MODULES];
- //*****************************************************************************
- //
- // Default queue flush function
- //
- //*****************************************************************************
- am_hal_iom_queue_flush_t am_hal_iom_queue_flush = am_hal_iom_sleeping_queue_flush;
- //*****************************************************************************
- //
- // Power management structure.
- //
- //*****************************************************************************
- am_hal_iom_pwrsave_t am_hal_iom_pwrsave[AM_REG_IOMSTR_NUM_MODULES];
- //*****************************************************************************
- //
- // Static helper functions
- //
- //*****************************************************************************
- //*****************************************************************************
- // onebit()
- //*****************************************************************************
- //
- // A power of 2?
- // Return true if ui32Value has exactly 1 bit set, otherwise false.
- //
- static bool onebit(uint32_t ui32Value)
- {
- return ui32Value && !(ui32Value & (ui32Value - 1));
- }
- //*****************************************************************************
- // compute_freq()
- //*****************************************************************************
- //
- // Compute the interface frequency based on the given parameters
- //
- static uint32_t compute_freq(uint32_t ui32HFRCfreqHz,
- uint32_t ui32Fsel, uint32_t ui32Div3,
- uint32_t ui32DivEn, uint32_t ui32TotPer)
- {
- uint32_t ui32Denomfinal, ui32ClkFreq;
- ui32Denomfinal = ((1 << (ui32Fsel - 1)) * (1 + ui32Div3 * 2) * (1 + ui32DivEn * (ui32TotPer)));
- ui32ClkFreq = (ui32HFRCfreqHz) / ui32Denomfinal; // Compute the set frequency value
- ui32ClkFreq += (((ui32HFRCfreqHz) % ui32Denomfinal) > (ui32Denomfinal / 2)) ? 1 : 0;
- return ui32ClkFreq;
- }
- //*****************************************************************************
- // iom_calc_gpio()
- //
- // Calculate the IOM4 GPIO to assert.
- //
- //*****************************************************************************
- static uint32_t iom_calc_gpio(uint32_t ui32ChipSelect)
- {
- uint32_t index;
- uint8_t ui8PadRegVal, ui8FncSelVal;
- //
- // Figure out which GPIO we are using for the IOM
- //
- for ( index = 0; index < (sizeof(g_IOMPads) / sizeof(IOMPad_t)); index++ )
- {
- //
- // Is this one of the CEn that we are using?
- //
- if ( g_IOMPads[index].channel == ui32ChipSelect )
- {
- //
- // Get the PAD register value
- //
- ui8PadRegVal = ((AM_REGVAL(AM_HAL_GPIO_PADREG(g_IOMPads[index].pad))) &
- AM_HAL_GPIO_PADREG_M(g_IOMPads[index].pad)) >>
- AM_HAL_GPIO_PADREG_S(g_IOMPads[index].pad);
- //
- // Get the FNCSEL field value
- //
- ui8FncSelVal = (ui8PadRegVal & 0x38) >> 3;
- //
- // Is the FNCSEL filed for this pad set to the expected value?
- //
- if ( ui8FncSelVal == g_IOMPads[index].funcsel )
- {
- // This is the GPIO we need to use.
- return g_IOMPads[index].pad;
- }
- }
- }
- return 0xDEADBEEF;
- }
- //*****************************************************************************
- //
- // Checks to see if this processor is a Rev B0 device.
- //
- // This is needed for the B0 IOM workaround.
- //
- //*****************************************************************************
- bool
- isRevB0(void)
- {
- //
- // Check to make sure the major rev is B and the minor rev is zero.
- //
- if ( (AM_REG(MCUCTRL, CHIPREV) & 0xFF) == AM_REG_MCUCTRL_CHIPREV_REVMAJ_B )
- {
- return true;
- }
- else
- {
- return false;
- }
- }
- //*****************************************************************************
- //
- //! @brief Returns the proper settings for the CLKCFG register.
- //!
- //! @param ui32FreqHz - The desired interface frequency in Hz.
- //! ui32Phase - SPI phase (0 or 1). Can affect duty cycle.
- //!
- //! Given a desired serial interface clock frequency, this function computes
- //! the appropriate settings for the various fields in the CLKCFG register
- //! and returns the 32-bit value that should be written to that register.
- //! The actual interface frequency may be slightly lower than the specified
- //! frequency, but the actual frequency is also returned.
- //!
- //! @note A couple of criteria that this algorithm follow are:
- //! 1. For power savings, choose the highest FSEL possible.
- //! 2. For best duty cycle, use DIV3 when possible rather than DIVEN.
- //!
- //! An example of #1 is that both of the following CLKCFGs would result
- //! in a frequency of 428,571 Hz: 0x0E071400 and 0x1C0E1300.
- //! The former is chosen by the algorithm because it results in FSEL=4
- //! while the latter is FSEL=3.
- //!
- //! An example of #2 is that both of the following CLKCFGs would result
- //! in a frequency of 2,000,000 Hz: 0x02011400 and 0x00000C00.
- //! The latter is chosen by the algorithm because it results in use of DIV3
- //! rather than DIVEN.
- //!
- //! @return An unsigned 64-bit value.
- //! The lower 32-bits represent the value to use to set CLKCFG.
- //! The upper 32-bits represent the actual frequency (in Hz) that will result
- //! from setting CLKCFG with the lower 32-bits.
- //!
- //! 0 (64 bits) = error. Note that the caller must check the entire 64 bits.
- //! It is not an error if only the low 32-bits are 0 (this is a valid value).
- //! But the entire 64 bits returning 0 is an error.
- //!
- //*****************************************************************************
- static
- uint64_t iom_get_interface_clock_cfg(uint32_t ui32FreqHz, uint32_t ui32Phase )
- {
- uint32_t ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer, ui32LowPer;
- uint32_t ui32Denom, ui32v1, ui32Denomfinal, ui32ClkFreq, ui32ClkCfg;
- uint32_t ui32HFRCfreqHz;
- int32_t i32Div, i32N;
- if ( ui32FreqHz == 0 )
- {
- return 0;
- }
- //
- // Set the HFRC clock frequency.
- //
- ui32HFRCfreqHz = AM_HAL_CLKGEN_FREQ_MAX_HZ;
- //
- // Compute various parameters used for computing the optimal CLKCFG setting.
- //
- i32Div = (ui32HFRCfreqHz / ui32FreqHz) + ((ui32HFRCfreqHz % ui32FreqHz) ? 1 : 0); // Round up (ceiling)
- //
- // Compute N (count the number of LS zeros of Div) = ctz(Div) = log2(Div & (-Div))
- //
- i32N = 31 - AM_INSTR_CLZ((i32Div & (-i32Div)));
- if ( i32N > 6 )
- {
- i32N = 6;
- }
- ui32Div3 = ( (ui32FreqHz < (ui32HFRCfreqHz / 16384)) ||
- ( ((ui32FreqHz >= (ui32HFRCfreqHz / 3)) &&
- (ui32FreqHz <= ((ui32HFRCfreqHz / 2) - 1)) ) ) ) ? 1 : 0;
- ui32Denom = ( 1 << i32N ) * ( 1 + (ui32Div3 * 2) );
- ui32TotPer = i32Div / ui32Denom;
- ui32TotPer += (i32Div % ui32Denom) ? 1 : 0;
- ui32v1 = 31 - AM_INSTR_CLZ(ui32TotPer); // v1 = log2(TotPer)
- ui32Fsel = (ui32v1 > 7) ? ui32v1 + i32N - 7 : i32N;
- ui32Fsel++;
- if ( ui32Fsel > 7 )
- {
- //
- // This is an error, can't go that low.
- //
- return 0;
- }
- if ( ui32v1 > 7 )
- {
- ui32DivEn = ui32TotPer; // Save TotPer for the round up calculation
- ui32TotPer = ui32TotPer>>(ui32v1-7);
- ui32TotPer += ((ui32DivEn) % (1 << (ui32v1 - 7))) ? 1 : 0;
- }
- ui32DivEn = ( (ui32FreqHz >= (ui32HFRCfreqHz / 4)) ||
- ((1 << (ui32Fsel - 1)) == i32Div) ) ? 0 : 1;
- if (ui32Phase == 1)
- {
- ui32LowPer = (ui32TotPer - 2) / 2; // Longer high phase
- }
- else
- {
- ui32LowPer = (ui32TotPer - 1) / 2; // Longer low phase
- }
- ui32ClkCfg = AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
- AM_REG_IOMSTR_CLKCFG_DIV3(ui32Div3) |
- AM_REG_IOMSTR_CLKCFG_DIVEN(ui32DivEn) |
- AM_REG_IOMSTR_CLKCFG_LOWPER(ui32LowPer) |
- AM_REG_IOMSTR_CLKCFG_TOTPER(ui32TotPer - 1);
- //
- // Now, compute the actual frequency, which will be returned.
- //
- ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer - 1);
- //
- // Determine if the actual frequency is a power of 2 (MHz).
- //
- if ( (ui32ClkFreq % 250000) == 0 )
- {
- //
- // If the actual clock frequency is a power of 2 ranging from 250KHz up,
- // we can simplify the CLKCFG value using DIV3 (which also results in a
- // better duty cycle).
- //
- ui32Denomfinal = ui32ClkFreq / (uint32_t)250000;
- if ( onebit(ui32Denomfinal) )
- {
- //
- // These configurations can be simplified by using DIV3. Configs
- // using DIV3 have a 50% duty cycle, while those from DIVEN will
- // have a 66/33 duty cycle.
- //
- ui32TotPer = ui32LowPer = ui32DivEn = 0;
- ui32Div3 = 1;
- //
- // Now, compute the return values.
- //
- ui32ClkFreq = compute_freq(ui32HFRCfreqHz, ui32Fsel, ui32Div3, ui32DivEn, ui32TotPer);
- ui32ClkCfg = AM_REG_IOMSTR_CLKCFG_FSEL(ui32Fsel) |
- AM_REG_IOMSTR_CLKCFG_DIV3(1) |
- AM_REG_IOMSTR_CLKCFG_DIVEN(0) |
- AM_REG_IOMSTR_CLKCFG_LOWPER(0) |
- AM_REG_IOMSTR_CLKCFG_TOTPER(0);
- }
- }
- return ( ((uint64_t)ui32ClkFreq) << 32) | (uint64_t)ui32ClkCfg;
- } //iom_get_interface_clock_cfg()
- //*****************************************************************************
- //
- //! @brief Enable the IOM in the power control block.
- //!
- //! This function enables the desigated IOM module in the power control block.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_pwrctrl_enable(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to enable an IOM module that doesn't exist.");
- am_hal_pwrctrl_periph_enable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- }
- //*****************************************************************************
- //
- //! @brief Disable the IOM in the power control block.
- //!
- //! This function disables the desigated IOM module in the power control block.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_pwrctrl_disable(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to disable an IOM module that doesn't exist.");
- am_hal_pwrctrl_periph_disable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- }
- //*****************************************************************************
- //
- //! @brief Enables the IOM module
- //!
- //! @param ui32Module - The number of the IOM module to be enabled.
- //!
- //! This function enables the IOM module using the IFCEN bitfield in the
- //! IOMSTR_CFG register.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_enable(uint32_t ui32Module)
- {
- if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
- {
- AM_REGn(IOMSTR, ui32Module, CFG) |= AM_REG_IOMSTR_CFG_IFCEN(1);
- g_bIomBusy[ui32Module] = false;
- }
- }
- //*****************************************************************************
- //
- //! @brief Disables the IOM module.
- //!
- //! @param ui32Module - The number of the IOM module to be disabled.
- //!
- //! This function disables the IOM module using the IFCEN bitfield in the
- //! IOMSTR_CFG register.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_disable(uint32_t ui32Module)
- {
- if ( ui32Module < AM_REG_IOMSTR_NUM_MODULES )
- {
- //
- // Wait until the bus is idle.
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Disable the interface.
- //
- AM_REGn(IOMSTR, ui32Module, CFG) &= ~(AM_REG_IOMSTR_CFG_IFCEN(1));
- }
- }
- //*****************************************************************************
- //
- //! @brief Enable power to the selected IOM module.
- //!
- //! @param ui32Module - Module number for the IOM to be turned on.
- //!
- //! This function enables the power gate to the selected IOM module. It is
- //! intended to be used along with am_hal_iom_power_off_save(). Used together,
- //! these functions allow the caller to power IOM modules off to save
- //! additional power without losing important configuration information.
- //!
- //! The am_hal_iom_power_off_save() function will save IOM configuration
- //! register information to SRAM before powering off the selected IOM module.
- //! This function will re-enable the IOM module, and restore those
- //! configuration settings from SRAM.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_power_on_restore(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to enable an IOM module that doesn't exist.");
- //
- // Make sure this restore is a companion to a previous save call.
- //
- if ( am_hal_iom_pwrsave[ui32Module].bValid == 0 )
- {
- return;
- }
- //
- // Enable power to the selected IOM.
- //
- am_hal_pwrctrl_periph_enable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- //
- // Restore the IOM configuration registers from the structure in SRAM.
- //
- AM_REGn(IOMSTR, ui32Module, FIFOTHR) = am_hal_iom_pwrsave[ui32Module].FIFOTHR;
- AM_REGn(IOMSTR, ui32Module, CLKCFG) = am_hal_iom_pwrsave[ui32Module].CLKCFG;
- AM_REGn(IOMSTR, ui32Module, CFG) = am_hal_iom_pwrsave[ui32Module].CFG;
- AM_REGn(IOMSTR, ui32Module, INTEN) = am_hal_iom_pwrsave[ui32Module].INTEN;
- //
- // Indicates we have restored the configuration.
- //
- am_hal_iom_pwrsave[ui32Module].bValid = 0;
- }
- //*****************************************************************************
- //
- //! @brief Disable power to the selected IOM module.
- //!
- //! @param ui32Module - Module number for the IOM to be turned off.
- //!
- //! This function disables the power gate to the selected IOM module. It is
- //! intended to be used along with am_hal_iom_power_on_restore(). Used together,
- //! these functions allow the caller to power IOM modules off to save
- //! additional power without losing important configuration information.
- //!
- //! The am_hal_iom_power_off_save() function will save IOM configuration
- //! register information to SRAM before powering off the selected IOM module.
- //! The am_hal_iom_power_on_restore() function will re-enable the IOM module
- //! and restore those configuration settings from SRAM.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_power_off_save(uint32_t ui32Module)
- {
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to disable an IOM module that doesn't exist.");
- //
- // Save the IOM configuration registers to the structure in SRAM.
- //
- am_hal_iom_pwrsave[ui32Module].FIFOTHR = AM_REGn(IOMSTR, ui32Module, FIFOTHR);
- am_hal_iom_pwrsave[ui32Module].CLKCFG = AM_REGn(IOMSTR, ui32Module, CLKCFG);
- am_hal_iom_pwrsave[ui32Module].CFG = AM_REGn(IOMSTR, ui32Module, CFG);
- am_hal_iom_pwrsave[ui32Module].INTEN = AM_REGn(IOMSTR, ui32Module, INTEN);
- //
- // Indicates we have a valid saved configuration.
- //
- am_hal_iom_pwrsave[ui32Module].bValid = 1;
- //
- // Disable power to the selected IOM.
- //
- am_hal_pwrctrl_periph_disable(AM_HAL_PWRCTRL_IOM0 << ui32Module);
- }
- //
- //! Check and correct the IOM FIFO threshold.
- //
- #define MAX_RW_THRESHOLD (AM_HAL_IOM_MAX_FIFO_SIZE - 4)
- #define MIN_RW_THRESHOLD (4)
- #if (AM_ASSERT_INVALID_THRESHOLD == 0)
- static uint8_t check_iom_threshold(const uint8_t iom_threshold)
- {
- uint8_t corrected_threshold = iom_threshold;
- if ( corrected_threshold < MIN_RW_THRESHOLD )
- {
- corrected_threshold = MIN_RW_THRESHOLD;
- }
- if ( corrected_threshold > MAX_RW_THRESHOLD )
- {
- corrected_threshold = MAX_RW_THRESHOLD;
- }
- return corrected_threshold;
- }
- #endif
- //*****************************************************************************
- //
- //! @brief Sets module-wide configuration options for the IOM module.
- //!
- //! @param ui32Module - The instance number for the module to be configured
- //! (zero or one)
- //!
- //! @param psConfig - Pointer to an IOM configuration structure.
- //!
- //! This function is used to set the interface mode (SPI or I2C), clock
- //! frequency, SPI format (when relevant), and FIFO read/write interrupt
- //! thresholds for the IO master. For more information on specific
- //! configuration options, please see the documentation for the configuration
- //! structure.
- //!
- //! @note The IOM module should be disabled before configuring or
- //! re-configuring. This function will not re-enable the module when it
- //! completes. Call the am_hal_iom_enable function when the module is
- //! configured and ready to use.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_config(uint32_t ui32Module, const am_hal_iom_config_t *psConfig)
- {
- uint32_t ui32Config, ui32ClkCfg;
- //
- // Start by checking the interface mode (I2C or SPI), and writing it to the
- // configuration word.
- //
- ui32Config = psConfig->ui32InterfaceMode;
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Check the SPI format, and OR in the bits for SPHA (clock phase) and SPOL
- // (polarity). These shouldn't have any effect in I2C mode, so it should be
- // ok to write them without checking exactly which mode we're in.
- //
- if ( psConfig->bSPHA )
- {
- ui32Config |= AM_REG_IOMSTR_CFG_SPHA(1);
- }
- if ( psConfig->bSPOL )
- {
- ui32Config |= AM_REG_IOMSTR_CFG_SPOL(1);
- }
- // Set the STARTRD based on the interface speed
- // For all I2C frequencies and SPI frequencies below 16 MHz, the STARTRD
- // field should be set to 0 to minimize the potential of the IO transfer
- // holding off a bus access to the FIFO. For SPI frequencies of 16 MHz
- // or 24 MHz, the STARTRD field must be set to a value of 2 to insure
- // enough time for the IO preread.
- if ( psConfig->ui32ClockFrequency >= 16000000UL)
- {
- ui32Config |= AM_REG_IOMSTR_CFG_STARTRD(2);
- }
- //
- // Write the resulting configuration word to the IO master CFG register for
- // the module number we were provided.
- //
- AM_REGn(IOMSTR, ui32Module, CFG) = ui32Config;
- //
- // Write the FIFO write and read thresholds to the appropriate registers.
- //
- #if (AM_ASSERT_INVALID_THRESHOLD == 1)
- am_hal_debug_assert_msg(
- (psConfig->ui8WriteThreshold <= MAX_RW_THRESHOLD), "IOM write threshold too big.");
- am_hal_debug_assert_msg(
- (psConfig->ui8ReadThreshold <= MAX_RW_THRESHOLD), "IOM read threshold too big.");
- am_hal_debug_assert_msg(
- (psConfig->ui8WriteThreshold >= MIN_RW_THRESHOLD), "IOM write threshold too small.");
- am_hal_debug_assert_msg(
- (psConfig->ui8ReadThreshold >= MIN_RW_THRESHOLD), "IOM read threshold too small.");
- AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
- (AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(psConfig->ui8WriteThreshold) |
- AM_REG_IOMSTR_FIFOTHR_FIFORTHR(psConfig->ui8ReadThreshold));
- #elif (AM_ASSERT_INVALID_THRESHOLD == 0)
- AM_REGn(IOMSTR, ui32Module, FIFOTHR) =
- (AM_REG_IOMSTR_FIFOTHR_FIFOWTHR(check_iom_threshold(psConfig->ui8WriteThreshold)) |
- AM_REG_IOMSTR_FIFOTHR_FIFORTHR(check_iom_threshold(psConfig->ui8ReadThreshold)));
- #else
- #error AM_ASSERT_INVALID_THRESHOLD must be 0 or 1.
- #endif
- //
- // An exception occurs in the LOWPER computation when setting an interface
- // frequency (such as a divide by 5 frequency) which results in a 60/40
- // duty cycle. The 60% cycle must occur in the appropriate half-period,
- // as only one of the half-periods is active, depending on which phase
- // is being selected.
- // If SPHA=0 the low period must be 60%. If SPHA=1 high period must be 60%.
- // Note that the predetermined frequency parameters use the formula
- // lowper = (totper-1)/2, which results in a 60% low period.
- //
- ui32ClkCfg = iom_get_interface_clock_cfg(psConfig->ui32ClockFrequency,
- psConfig->bSPHA );
- if ( ui32ClkCfg )
- {
- AM_REGn(IOMSTR, ui32Module, CLKCFG) = (uint32_t)ui32ClkCfg;
- }
-
- //
- // Compute the status timeout value.
- //
- ui32StatusTimeout[ui32Module] = MAX_IOM_BITS * AM_HAL_IOM_MAX_FIFO_SIZE *
- IOM_OVERHEAD_FACTOR * (am_hal_clkgen_sysclk_get() / psConfig->ui32ClockFrequency);
- }
- //*****************************************************************************
- //
- //! @brief Returns the actual currently configured interface frequency in Hz.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_frequency_get(uint32_t ui32ClkCfg)
- {
- uint32_t ui32Freq;
- ui32Freq = compute_freq(AM_HAL_CLKGEN_FREQ_MAX_HZ,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_FSEL_M) >> AM_REG_IOMSTR_CLKCFG_FSEL_S,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_DIV3_M) >> AM_REG_IOMSTR_CLKCFG_DIV3_S,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_DIVEN_M) >> AM_REG_IOMSTR_CLKCFG_DIVEN_S,
- (ui32ClkCfg & AM_REG_IOMSTR_CLKCFG_TOTPER_M)>> AM_REG_IOMSTR_CLKCFG_TOTPER_S);
- return ui32Freq;
- }
- //*****************************************************************************
- //
- // Helper function for the B0 workaround.
- //
- //*****************************************************************************
- static uint32_t
- iom_get_workaround_fsel(uint32_t maxFreq)
- {
- uint32_t ui32Freq, ui32Fsel;
- uint32_t ui32ClkCfg = AM_REGn(IOMSTR, 4, CLKCFG);
- //
- // Starting with the current clock configuration parameters, find a value
- // of FSEL that will bring our total frequency down to or below maxFreq.
- //
- for ( ui32Fsel = 1; ui32Fsel < 8; ui32Fsel++ )
- {
- ui32Freq = compute_freq(AM_HAL_CLKGEN_FREQ_MAX_HZ, ui32Fsel,
- AM_BFX(IOMSTR, CLKCFG, DIV3, ui32ClkCfg),
- AM_BFX(IOMSTR, CLKCFG, DIVEN, ui32ClkCfg),
- AM_BFX(IOMSTR, CLKCFG, TOTPER, ui32ClkCfg));
- if ( ui32Freq <= maxFreq && ui32Freq != 0 )
- {
- //
- // Return the new FSEL
- //
- return ui32Fsel;
- }
- }
- //
- // Couldn't find an appropriate frequency. This should be impossible
- // because there should always be a value of FSEL that brings the final IOM
- // frequency below 500 KHz.
- //
- am_hal_debug_assert_msg(false, "Could find a valid frequency. Should never get here.");
- return maxFreq;
- }
- // Separating this piece of code in separate function to keep the impact of
- // rest of the code to mimimal because of stack usage
- static void
- internal_iom_workaround_critical(uint32_t ui32Command,
- volatile uint32_t *pui32CSPadreg,
- uint32_t ui32CSPadregVal,
- uint32_t ui32DelayTime,
- uint32_t ui32ClkCfg,
- uint32_t ui32LowClkCfg,
- bool bRising)
- {
- uint32_t ui32Critical = 0;
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Start the write on the bus.
- //
- AM_REGn(IOMSTR, WORKAROUND_IOM, CMD) = ui32Command;
- //
- // Slow down the clock, and run the workaround loop. The workaround
- // loop runs an edge-detector on MOSI, and triggers a falling edge on
- // chip-enable on the first bit of our real data.
- //
- ((void (*)(uint32_t)) 0x0800009d)(ui32DelayTime);
- // Switch to Low Freq
- AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32LowClkCfg;
- iom_workaround_loop(ui32CSPadregVal, pui32CSPadreg, bRising);
- //
- // Restore the clock frequency and the normal MOSI pin function.
- //
- AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32ClkCfg;
- am_hal_gpio_pin_config(WORKAROUND_IOM_MOSI_PIN, WORKAROUND_IOM_MOSI_CFG);
- //
- // End the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- //*****************************************************************************
- //
- //! @brief Workaround for an Apollo2 Rev B0 issue.
- //!
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! Some Apollo2 Rev B0 devices have an issue where the first byte of a SPI
- //! write transaction can have some of its bits changed from ones to zeroes. In
- //! order to get around this issue, we artificially pad the SPI write data with
- //! additional bytes, and manually control the CS pin for the beginning of the
- //! SPI frame so that the receiving device will ignore the bytes of padding
- //! that we added.
- //!
- //! This function acts as a helper function to higher-level spi APIs. It
- //! performs the functions of am_hal_iom_fifo_write() and
- //! am_hal_iom_spi_cmd_run() to get a SPI write started on the bus, including
- //! all of the necessary workaround behavior.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_workaround_word_write(uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32IOMGPIO = 0xDEADBEEF;
- volatile uint32_t *pui32CSPadreg = 0;
- uint32_t ui32CSPadregVal = 0;
- uint32_t ui32ClkCfg = 0;
- uint32_t ui32HiClkCfg, ui32LowClkCfg;
- bool bRising = 0;
- uint32_t ui32HiFreq = 0, ui32NormalFreq = 0;
- uint32_t ui32DelayTime = 0;
- uint32_t ui32LowFsel = 0;
- uint32_t ui32HiFsel = 0;
- uint32_t ui32FirstWord = 0;
- uint32_t ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, WORKAROUND_IOM, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- uint32_t ui32Command;
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- // Note: This is a little shorter than usual, since the workaround
- // consumes an extra byte at the beginning of the transfer.
- //
- am_hal_debug_assert_msg(ui32NumBytes <= 4091, "SPI transfer too big.");
- //
- // Create a "dummy" word to add on to the beginning of the transfer
- // that will guarantee a transition between the first word and the
- // second on the bus.
- //
- // For raw transactions, this is straightforward. For transactions
- // preceded by an offset, we'll add the offset in to the "dummy" word
- // to preserve data alignment later.
- //
- // The workaround uses a critical section for precision
- // To minimize the time in critical section, we raise the SPI frequency
- // to the max possible for the initial preamble to be clocked out
- // then we switch to a 'reasonably' slow frequency to be able to reliably
- // catch the rising or falling edge by polling. Then we switch back to
- // configured frequency
- //
- // We want to slow down the clock to help us count edges more
- // accurately. Save it first, then slow it down. Also, we will
- // pre-calculate a delay for when we need to restore the SPI settings.
- //
- ui32ClkCfg = AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG);
- // Get the largest speed we can configure within our rated speed of 16MHz
- ui32HiFsel = iom_get_workaround_fsel(16000000);
- ui32HiClkCfg = ((ui32ClkCfg & (~AM_REG_IOMSTR_CLKCFG_FSEL_M)) |
- AM_BFV(IOMSTR, CLKCFG, FSEL, ui32HiFsel));
- // Switch to Hi Freq
- // Need to make sure we wait long enough for the hi clock to be effective
- // Delay 2 cycles based on previous frequency
- ui32NormalFreq = am_hal_iom_frequency_get(ui32ClkCfg);
- AM_REGn(IOMSTR, WORKAROUND_IOM, CLKCFG) = ui32HiClkCfg;
- ui32DelayTime = ((2 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32NormalFreq * 3));
- ((void (*)(uint32_t)) 0x0800009d)(ui32DelayTime);
- //
- // Remember what frequency we'll be running at.during Hi Phase
- //
- ui32HiFreq = am_hal_iom_frequency_get(ui32HiClkCfg);
- //
- // Validate return value to prevent DIVBY0 errors.
- //
- am_hal_debug_assert_msg(ui32HiFreq > 0, "Invalid Hi Frequency for IOM.");
- // Get a reasonably slow speed (~1MHz) we can safely poll for the transition
- ui32LowFsel = iom_get_workaround_fsel(1000000);
- ui32LowClkCfg = ((ui32ClkCfg & (~AM_REG_IOMSTR_CLKCFG_FSEL_M)) |
- AM_BFV(IOMSTR, CLKCFG, FSEL, ui32LowFsel));
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- //
- // The transition we care for is on 33rd bit.
- // Prepare to delay 27 bits past the start of the transaction
- // before getting into polling - to leave some
- // margin for compiler related variations
- //
- ui32DelayTime = ((27 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32HiFreq * 3));
- if ( pui32Data[0] & 0x80 )
- {
- ui32FirstWord = 0x00000000;
- bRising = true;
- }
- else
- {
- ui32FirstWord = 0xFFFFFF00;
- bRising = false;
- }
- }
- else
- {
- //
- // The transition we care for is on 25th bit.
- // Prepare to delay 19 bits past the start of the transaction
- // before getting into polling - to leave some
- // margin for compiler related variations
- //
- ui32DelayTime = ((19 * AM_HAL_CLKGEN_FREQ_MAX_HZ) / (ui32HiFreq * 3));
- ui32FirstWord = ((ui32Options & 0xFF00) << 16);
- if ( ui32FirstWord & 0x80000000 )
- {
- bRising = true;
- }
- else
- {
- ui32FirstWord |= 0x00FFFF00;
- bRising = false;
- }
- }
- //
- // Now that weve taken care of the offset byte, we can run the
- // transaction in RAW mode.
- //
- ui32Options |= AM_HAL_IOM_RAW;
- ui32NumBytes += 4;
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- am_hal_iom_fifo_write(WORKAROUND_IOM, &ui32FirstWord, 4);
- am_hal_iom_fifo_write(WORKAROUND_IOM, pui32Data, ui32TransferSize - 4);
- //
- // Calculate the GPIO to be controlled until the initial shift is
- // complete. Make sure we get a valid value.
- //
- ui32IOMGPIO = iom_calc_gpio(ui32ChipSelect);
- am_hal_debug_assert(0xDEADBEEF != ui32IOMGPIO);
- //
- // Save the locations and values of the CS pin configuration
- // information.
- //
- pui32CSPadreg = (volatile uint32_t *)AM_HAL_GPIO_PADREG(ui32IOMGPIO);
- ui32CSPadregVal = *pui32CSPadreg;
- //
- // Switch CS to a GPIO.
- //
- am_hal_gpio_out_bit_set(ui32IOMGPIO);
- am_hal_gpio_pin_config(ui32IOMGPIO, AM_HAL_GPIO_OUTPUT);
- //
- // Enable the input buffer on MOSI.
- //
- am_hal_gpio_pin_config(WORKAROUND_IOM_MOSI_PIN, WORKAROUND_IOM_MOSI_CFG | AM_HAL_PIN_DIR_INPUT);
- //
- // Write the GPIO PADKEY register to allow the workaround loop to
- // reconfigure chip enable.
- //
- AM_REGn(GPIO, 0, PADKEY) = AM_REG_GPIO_PADKEY_KEYVAL;
- // Preconstruct the command - to save on calculations inside critical section
- ui32Command = internal_am_hal_iom_spi_cmd_construct(AM_HAL_IOM_WRITE,
- ui32ChipSelect, ui32NumBytes, ui32Options);
- internal_iom_workaround_critical(ui32Command,
- pui32CSPadreg, ui32CSPadregVal,
- ui32DelayTime, ui32ClkCfg,
- ui32LowClkCfg, bRising);
- //
- // Update the pointer and data counter.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += (ui32TransferSize - 4) >> 2;
- }
- //*****************************************************************************
- //
- //! @brief Implement an iterative spin loop.
- //!
- //! @param ui32Iterations - Number of iterations to delay.
- //!
- //! Use this function to implement a CPU busy waiting spin. For Apollo, this
- //! delay can be used for timing purposes since for Apollo, each iteration will
- //! take 3 cycles.
- //!
- //! @return None.
- //
- //*****************************************************************************
- #if defined(__GNUC_STDC_INLINE__)
- static void __attribute__((naked))
- iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
- bool bRising)
- {
- //
- // Check to see if this is a "rising edge" or "falling edge" detector.
- //
- __asm(" cbz r2, falling_edge");
- //
- // Read GPIO pin 44, and loop until it's HIGH.
- //
- __asm("rising_edge:");
- __asm(" ldr r2, =0x40010084");
- __asm("rising_check_mosi:");
- __asm(" ldr r3, [r2]");
- __asm(" ands r3, r3, #0x1000");
- __asm(" beq rising_check_mosi");
- //
- // Write the PADREG Value to the PADREG register.
- //
- __asm(" str r0, [r1]");
- __asm(" bx lr");
- //
- // Read GPIO pin 44, and loop until it's LOW.
- //
- __asm("falling_edge:");
- __asm(" ldr r2, =0x40010084");
- __asm("falling_check_mosi:");
- __asm(" ldr r3, [r2]");
- __asm(" ands r3, r3, #0x1000");
- __asm(" bne falling_check_mosi");
- //
- // Write the PADREG Value to the PADREG register.
- //
- __asm(" str r0, [r1]");
- __asm(" bx lr");
- }
- #endif
- #ifdef keil
- __asm static void
- iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
- bool bRising)
- {
- //
- // Check to see if this is a "rising edge" or "falling edge" detector.
- //
- cbz r2, falling_edge
- //
- // Read GPIO pin 44, and loop until it's HIGH.
- //
- rising_edge
- ldr r2, =0x40010084
- rising_check_mosi
- ldr r3, [r2]
- ands r3, r3, #0x1000
- beq rising_check_mosi
- //
- // Write the PADREG Value to the PADREG register.
- //
- str r0, [r1]
- bx lr
- //
- // Read GPIO pin 44, and loop until it's LOW.
- //
- falling_edge
- ldr r2, =0x40010084
- falling_check_mosi
- ldr r3, [r2]
- ands r3, r3, #0x1000
- bne falling_check_mosi
- //
- // Write the PADREG Value to the PADREG register.
- //
- str r0, [r1]
- bx lr
- nop
- }
- #endif
- #ifdef iar
- static void
- iom_workaround_loop(uint32_t ui32PadRegVal, volatile uint32_t *pui32PadReg,
- bool bRising)
- {
- //
- // Check to see if this is a "rising edge" or "falling edge" detector.
- //
- asm(
- " cbz r2, falling_edge\n"
- //
- // Read GPIO pin 44, and loop until it's HIGH.
- //
- "rising_edge:\n"
- " mov32 r2, #0x40010084\n"
- "rising_check_mosi:\n"
- " ldr r3, [r2]\n"
- " ands r3, r3, #0x1000\n"
- " beq rising_check_mosi\n"
- //
- // Write the PADREG Value to the PADREG register.
- //
- " str r0, [r1]\n"
- " bx lr\n"
- //
- // Read GPIO pin 44, and loop until it's LOW.
- //
- "falling_edge:\n"
- " mov32 r2, #0x40010084\n"
- "falling_check_mosi:\n"
- " ldr r3, [r2]\n"
- " ands r3, r3, #0x1000\n"
- " bne falling_check_mosi\n"
- //
- // Write the PADREG Value to the PADREG register.
- //
- " str r0, [r1]\n"
- " bx lr"
- );
- }
- #endif
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the SPI interface.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI writes to a selected SPI device.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- //
- // Validate parameters
- //
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to use an IOM module that doesn't exist.");
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- am_hal_iom_queue_spi_write(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, 0);
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- //
- // At this point, we've completed the transaction, and we can return.
- //
- return;
- }
- else
- {
- //
- // Otherwise, we'll just do a polled transaction.
- //
- am_hal_iom_spi_write_nq(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- }
- }
- //*****************************************************************************
- //
- //! @brief Perform simple SPI read operations.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs simple SPI read operations. The caller is
- //! responsible for ensuring that the receive buffer is large enough to hold
- //! the requested amount of data.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- //
- // Validate parameters
- //
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to use an IOM module that doesn't exist.");
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- am_hal_iom_queue_spi_read(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, 0);
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- //
- // At this point, we've completed the transaction, and we can return.
- //
- return;
- }
- else
- {
- //
- // Otherwise, just perform a polled transaction.
- //
- am_hal_iom_spi_read_nq(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- }
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the SPI interface (without queuing)
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI writes to a selected SPI device.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @return None.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_spi_write_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32SpaceInFifo;
- uint32_t ui32IntConfig;
- uint32_t ui32MaxFifoSize;
- uint32_t ui32Status = 1;
- //
- // Validate parameters
- //
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to use an IOM module that doesn't exist.");
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Wait until any earlier transactions have completed.
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- // Clear CMDCMP status
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- //
- // If we're on a B0 part, and we're using IOM4, our first byte coule be
- // corrupted, so we need to send a dummy word with chip-select held high to
- // get that first byte out of the way.
- //
- // That operation is tricky and detailed, so we'll call a function to do it
- // for us.
- //
- if ( WORKAROUND_IOM == ui32Module && isRevB0() )
- {
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- //
- // The workaround function is going to a partial transfer for us, but
- // we have to keep our own data-tracking variables updated. Here, we're
- // subtracting 4 bytes from the effective transfer size to account for
- // the 4 bytes of "dummy" word that we sent instead of the actual data.
- //
- ui32TransferSize = (ui32NumBytes <= (ui32MaxFifoSize - 4) ? ui32NumBytes :
- (ui32MaxFifoSize - 4));
- }
- else
- {
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- //
- // write our first word to the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Start the write on the bus.
- //
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- }
- //
- // Update the pointer and data counter.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- //
- // Keep looping until we're out of bytes to send or command complete (error).
- //
- while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
- {
- //
- // This will always return a multiple of four.
- //
- ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
- if ( ui32NumBytes <= ui32SpaceInFifo )
- {
- //
- // If the entire message will fit in the fifo, prepare to copy
- // everything.
- //
- ui32TransferSize = ui32NumBytes;
- }
- else
- {
- //
- // If only a portion of the message will fit in the fifo, prepare
- // to copy the largest number of 4-byte blocks possible.
- //
- ui32TransferSize = ui32SpaceInFifo & ~(0x3);
- }
- //
- // Write this chunk to the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Update the data pointer and bytes-left count.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- }
- //
- // Make sure CMDCMP was raised with standard timeout
- //
- ui32Status = am_util_wait_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- //
- // Re-enable IOM interrupts. Make sure CMDCMP is cleared
- //
- AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- am_hal_debug_assert_msg(ui32Status == 1,"IOM CMDCMP was not seen");
-
- //
- // Return the status (0 = timeout; 1 = success)
- //
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform simple SPI read operations (without queuing).
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs simple SPI read operations. The caller is
- //! responsible for ensuring that the receive buffer is large enough to hold
- //! the requested amount of data.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return None.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_spi_read_nq(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32BytesInFifo;
- uint32_t ui32IntConfig;
- uint32_t bCmdCmp = false;
- uint32_t ui32Status = 1;
- //
- // Validate parameters
- //
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to use an IOM module that doesn't exist.");
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
- //
- // Wait until the bus is idle, then start the requested READ transfer on
- // the physical interface.
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- //
- // Disable IOM interrupts as we'll be polling
- //
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- //
- // Clear CMDCMP status
- //
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- //
- // If we're on a B0 part, and we're using IOM4, our first byte coule be
- // corrupted, so we need to send a dummy word with chip-select held high to
- // get that first byte out of the way. This is only true for spi reads with
- // OFFSET values.
- //
- // That operation is tricky and detailed, so we'll call a function to do it
- // for us.
- //
- if ( (WORKAROUND_IOM == ui32Module) && !(ui32Options & AM_HAL_IOM_RAW) &&
- isRevB0() )
- {
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data, 0,
- ui32Options | AM_HAL_IOM_CS_LOW);
- //
- // The workaround will send our offset for us, so we can run a RAW
- // command after.
- //
- ui32Options |= AM_HAL_IOM_RAW;
- //
- // Wait for the dummy word to go out over the bus.
- //
- // Make sure the command complete has also been raised
- ui32Status = am_util_wait_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
-
-
- // Clear CMDCMP status
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- }
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- //
- // Start a loop to catch the Rx data.
- //
- while ( ui32NumBytes )
- {
- ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
- if ( ui32BytesInFifo >= ui32NumBytes )
- {
- //
- // If the fifo contains our entire message, just copy the whole
- // thing out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
- ui32NumBytes = 0;
- }
- else if ( ui32BytesInFifo >= 4 )
- {
- //
- // If the fifo has at least one 32-bit word in it, copy whole
- // words out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
- ui32NumBytes -= ui32BytesInFifo & ~0x3;
- pui32Data += ui32BytesInFifo >> 2;
- }
- if ( bCmdCmp == true )
- {
- //
- // No more data expected. Get out of the loop
- //
- break;
- }
- bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
- }
- //
- // Make sure CMDCMP was raised,
- //
- ui32Status = am_util_wait_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- //
- // Re-enable IOM interrupts. Make sure CMDCMP is cleared
- //
- AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
- am_hal_debug_assert_msg(ui32Status == 1,"IOM CMDCMP was not seen");
-
- //
- // Return the status (0 = timeout; 1 = success)
- //
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking write to the SPI interface.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs SPI writes to the selected SPI device.
- //!
- //! This function call is a non-blocking implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. The
- //! caller will need to make sure that \e am_hal_iom_int_service() is called
- //! for IOM FIFO interrupt events and "command complete" interrupt events. The
- //! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
- //! call the \e pfnCallback function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_spi_write_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32MaxFifoSize;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- //
- g_bIomBusy[ui32Module] = true;
- //
- // Clear CMDCMP status
- //
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- //
- // Check to see if we need to do the workaround.
- //
- if ( WORKAROUND_IOM == ui32Module && isRevB0() )
- {
- //
- // Figure out how many bytes we can write to the FIFO immediately,
- // accounting for the extra word from the workaround.
- //
- ui32TransferSize = (ui32NumBytes <= (ui32MaxFifoSize - 4) ? ui32NumBytes :
- (ui32MaxFifoSize - 4));
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data + (ui32TransferSize / 4);
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes - ui32TransferSize;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
- //
- // Start the write on the bus using the workaround. This includes both
- // the command write and the first fifo write, so we won't need to do
- // either of those things manually.
- //
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options);
- }
- else
- {
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
- {
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
- //
- // Update the pointer and the byte counter based on the portion of
- // the transfer we just sent to the fifo.
- //
- g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
- g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
- //
- // Start the write on the bus.
- //
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
- }
- }
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking SPI read.
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32ChipSelect - Chip select number of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs SPI reads to a selected SPI device.
- //!
- //! This function call is a non-blocking implementation. It will start the SPI
- //! transaction on the bus and store a pointer for the destination for the read
- //! data, but it will not wait for the SPI transaction to finish. The caller
- //! will need to make sure that \e am_hal_iom_int_service() is called for IOM
- //! FIFO interrupt events and "command complete" interrupt events. The \e
- //! am_hal_iom_int_service() function will empty the FIFO as necessary,
- //! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
- //! function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return None.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_spi_read_nb(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32IntConfig;
- uint32_t ui32Status = 1;
-
- //
- // Validate parameters
- //
- am_hal_debug_assert_msg(ui32Module < AM_REG_IOMSTR_NUM_MODULES,
- "Trying to use an IOM module that doesn't exist.");
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 4096, "SPI transfer too big.");
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- //
- g_bIomBusy[ui32Module] = true;
- //
- // Clear CMDCMP status
- //
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- //
- // If we're on a B0 part, and we're using IOM4, our first byte coule be
- // corrupted, so we need to send a dummy word with chip-select held high to
- // get that first byte out of the way. This is only true for spi reads with
- // OFFSET values.
- //
- // That operation is tricky and detailed, so we'll call a function to do it
- // for us.
- //
- if ( (WORKAROUND_IOM == ui32Module) && !(ui32Options & AM_HAL_IOM_RAW) &&
- isRevB0() )
- {
- //
- // We might mess up the interrupt handler behavior if we allow this
- // polled transaction to complete with interrupts enabled. We'll
- // briefly turn them off here.
- //
- ui32IntConfig = AM_REGn(IOMSTR, 4, INTEN);
- AM_REGn(IOMSTR, 4, INTEN) = 0;
- am_hal_iom_workaround_word_write(ui32ChipSelect, pui32Data,
- 0, ui32Options | AM_HAL_IOM_CS_LOW);
- //
- // The workaround will send our offset for us, so we can run a RAW
- // command after.
- //
- ui32Options |= AM_HAL_IOM_RAW;
- //
- // Wait for the dummy word to go out over the bus.
- //
- // Make sure the command complete has also been raised
- ui32Status = am_util_wait_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- //
- // Re-mark IOM as busy
- //
- g_bIomBusy[ui32Module] = true;
- //
- // Re-enable IOM interrupts. Make sure CMDCMP is cleared
- //
- AM_REGn(IOMSTR, 4, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
- AM_REGn(IOMSTR, 4, INTEN) = ui32IntConfig;
- }
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- g_psIOMBuffers[ui32Module].ui32Options = ui32Options;
- //
- // Start the read transaction on the bus.
- //
- am_hal_iom_spi_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32ChipSelect,
- ui32NumBytes, ui32Options);
-
- am_hal_debug_assert_msg(ui32Status == 1,"IOM CMDCMP was not seen");
-
- return ui32Status;
- }
- static uint32_t
- internal_am_hal_iom_spi_cmd_construct(uint32_t ui32Operation,
- uint32_t ui32ChipSelect,
- uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32Command;
- //
- // Start building the command from the operation parameter.
- //
- ui32Command = ui32Operation;
- //
- // Set the transfer length (the length field is split, so this requires
- // some swizzling).
- //
- ui32Command |= ((ui32NumBytes & 0xF00) << 15);
- ui32Command |= (ui32NumBytes & 0xFF);
- //
- // Set the chip select number.
- //
- ui32Command |= ((ui32ChipSelect << 16) & 0x00070000);
- //
- // Finally, OR in the rest of the options. This mask should make sure that
- // erroneous option values won't interfere with the other transfer
- // parameters.
- //
- ui32Command |= ui32Options & 0x5C00FF00;
- return ui32Command;
- }
- //*****************************************************************************
- //
- //! @brief Runs a SPI "command" through the IO master.
- //!
- //! @param ui32Operation - SPI action to be performed.
- //!
- //! @param psDevice - Structure containing information about the slave device.
- //!
- //! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
- //! this command.
- //!
- //! @param ui32Options - Additional SPI options to apply to this command.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_spi_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
- uint32_t ui32ChipSelect, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32Command;
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- ui32Command = internal_am_hal_iom_spi_cmd_construct(ui32Operation,
- ui32ChipSelect, ui32NumBytes, ui32Options);
- //
- // Write the complete command word to the IOM command register.
- //
- AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the I2C interface (without queuing)
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs I2C writes to a selected I2C device.
- //!
- //! This function call is a blocking implementation. It will write as much
- //! data to the FIFO as possible immediately, and then refill the FIFO as data
- //! is transmiitted.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui32Data array.
- //!
- //! @return None.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_i2c_write_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32SpaceInFifo;
- uint32_t ui32IntConfig;
- uint32_t ui32MaxFifoSize;
- uint32_t ui32Status = 1;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return.
- //
- return 0;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Wait until any earlier transactions have completed.
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- //
- // Clear CMDCMP status
- //
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Start the write on the bus.
- //
- am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- //
- // Update the pointer and data counter.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- //
- // Keep looping until we're out of bytes to send or command complete (error).
- //
- while ( ui32NumBytes && !AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP) )
- {
- //
- // This will always return a multiple of four.
- //
- ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
- if ( ui32NumBytes <= ui32SpaceInFifo )
- {
- //
- // If the entire message will fit in the fifo, prepare to copy
- // everything.
- //
- ui32TransferSize = ui32NumBytes;
- }
- else
- {
- //
- // If only a portion of the message will fit in the fifo, prepare
- // to copy the largest number of 4-byte blocks possible.
- //
- ui32TransferSize = ui32SpaceInFifo;
- }
- //
- // Write this chunk to the fifo.
- //
- am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize);
- //
- // Update the data pointer and bytes-left count.
- //
- ui32NumBytes -= ui32TransferSize;
- pui32Data += ui32TransferSize >> 2;
- }
- //
- // Make sure CMDCMP was raised,
- //
- ui32Status = am_util_wait_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- //
- // Re-enable IOM interrupts. Make sure CMDCMP is cleared
- //
- AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
-
- am_hal_debug_assert_msg(ui32Status == 1,"IOM CMDCMP was not seen");
-
- //
- // Return the status (0 = timeout; 1 = success)
- //
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform simple I2C read operations (without queuing).
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs an I2C read to a selected I2C device.
- //!
- //! This function call is a blocking implementation. It will read as much
- //! data from the FIFO as possible immediately, and then re-read the FIFO as more
- //! data is available.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return None.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_i2c_read_nq(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32BytesInFifo;
- uint32_t ui32IntConfig;
- uint32_t bCmdCmp = false;
- uint32_t ui32Status = 1;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return.
- //
- return 0;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Disable interrupts so that we don't get any undesired interrupts.
- //
- ui32IntConfig = AM_REGn(IOMSTR, ui32Module, INTEN);
- AM_REGn(IOMSTR, ui32Module, INTEN) = 0;
- //
- // Clear CMDCMP status
- //
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- //
- // Start a loop to catch the Rx data.
- //
- while ( ui32NumBytes )
- {
- ui32BytesInFifo = am_hal_iom_fifo_full_slots(ui32Module);
- if ( ui32BytesInFifo >= ui32NumBytes )
- {
- //
- // If the fifo contains our entire message, just copy the whole
- // thing out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32NumBytes);
- ui32NumBytes = 0;
- }
- else if ( ui32BytesInFifo >= 4 )
- {
- //
- // If the fifo has at least one 32-bit word in it, copy whole
- // words out.
- //
- am_hal_iom_fifo_read(ui32Module, pui32Data, ui32BytesInFifo & ~0x3);
- ui32NumBytes -= ui32BytesInFifo & ~0x3;
- pui32Data += ui32BytesInFifo >> 2;
- }
- if ( bCmdCmp == true )
- {
- // No more data expected - exit out of loop
- break;
- }
- bCmdCmp = AM_BFRn(IOMSTR, ui32Module, INTSTAT, CMDCMP);
- }
- //
- // Make sure CMDCMP was raised,
- //
- ui32Status = am_util_wait_status_change(ui32StatusTimeout[ui32Module],
- AM_REG_IOMSTRn(ui32Module) + AM_REG_IOMSTR_INTSTAT_O,
- AM_REG_IOMSTR_INTEN_CMDCMP_M, AM_REG_IOMSTR_INTEN_CMDCMP_M);
- //
- // Re-enable IOM interrupts. Make sure CMDCMP is cleared
- //
- AM_REGn(IOMSTR, ui32Module, INTCLR) = (ui32IntConfig | AM_REG_IOMSTR_INTSTAT_CMDCMP_M);
- AM_REGn(IOMSTR, ui32Module, INTEN) = ui32IntConfig;
-
- am_hal_debug_assert_msg(ui32Status == 1,"IOM CMDCMP was not seen");
-
- //
- // Return the status (0 = timeout; 1 = success)
- //
- return ui32Status;
- }
- //*****************************************************************************
- //
- //! @brief Perform a simple write to the I2C interface.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C bus address for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional options
- //!
- //! Performs a write to the I2C interface using the provided parameters.
- //!
- //! See the "Command Options" section for parameters that may be ORed together
- //! and used in the \b ui32Options parameter.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return.
- //
- return;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- am_hal_iom_queue_i2c_write(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, 0);
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- //
- // At this point, we've completed the transaction, and we can return.
- //
- return;
- }
- else
- {
- //
- // Otherwise, we'll just do a polled transaction.
- //
- am_hal_iom_i2c_write_nq(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options);
- }
- }
- //*****************************************************************************
- //
- //! @brief Perform simple I2C read operations.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C bus address for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs simple I2C read operations. The caller is
- //! responsible for ensuring that the receive buffer is large enough to hold
- //! the requested amount of data. If \e bPolled is true, this function will
- //! block until all of the requested data has been received and placed in the
- //! user-supplied buffer. Otherwise, the function will execute the I2C read
- //! command and return immediately. The user-supplied buffer will be filled
- //! with the received I2C data as it comes in over the physical interface, and
- //! the "command complete" interrupt bit will become active once the entire
- //! message is available.
- //!
- //! See the "Command Options" section for parameters that may be ORed together
- //! and used in the \b ui32Options parameter.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // Return.
- //
- return;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
- //
- // Check to see if queues have been enabled. If they are, we'll actually
- // switch to the queued interface.
- //
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- //
- // If the queue is on, go ahead and add this transaction to the queue.
- //
- am_hal_iom_queue_i2c_read(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, 0);
- //
- // Wait until the transaction actually clears.
- //
- am_hal_iom_queue_flush(ui32Module);
- //
- // At this point, we've completed the transaction, and we can return.
- //
- return;
- }
- else
- {
- //
- // Otherwise, just perform a polled transaction.
- //
- am_hal_iom_i2c_read_nq(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options);
- }
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking write to the I2C interface.
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional I2C transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs I2C writes to a selected I2C device.
- //!
- //! This function call is a non-blocking implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. The
- //! caller will need to make sure that \e am_hal_iom_int_service() is called
- //! for IOM FIFO interrupt events and "command complete" interrupt events. The
- //! \e am_hal_iom_int_service() function will refill the FIFO as necessary and
- //! call the \e pfnCallback function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui32Data array.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_i2c_write_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32TransferSize;
- uint32_t ui32MaxFifoSize;
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- am_hal_i2c_bit_bang_send(ui32BusAddress << 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // The I2C bit-bang interface is actually a blocking transfer, and it
- // doesn't trigger the interrupt handler, so we have to call the
- // callback function manually.
- //
- if ( pfnCallback )
- {
- pfnCallback();
- }
- //
- // Return.
- //
- return;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ?
- AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Figure out how many bytes we can write to the FIFO immediately.
- //
- ui32TransferSize = (ui32NumBytes <= ui32MaxFifoSize ? ui32NumBytes :
- ui32MaxFifoSize);
- //
- // Wait until any earlier transactions have completed, and then write our
- // first word to the fifo.
- //
- am_hal_iom_poll_complete(ui32Module);
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- g_bIomBusy[ui32Module] = true;
- //
- // Clear CMDCMP status
- //
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- if ( am_hal_iom_fifo_write(ui32Module, pui32Data, ui32TransferSize) > 0 )
- {
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_SENDING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- //
- // Update the pointer and the byte counter based on the portion of the
- // transfer we just sent to the fifo.
- //
- g_psIOMBuffers[ui32Module].ui32BytesLeft -= ui32TransferSize;
- g_psIOMBuffers[ui32Module].pui32Data += (ui32TransferSize / 4);
- //
- // Start the write on the bus.
- //
- am_hal_iom_i2c_cmd_run(AM_HAL_IOM_WRITE, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- }
- }
- //*****************************************************************************
- //
- //! @brief Perform a non-blocking I2C read.
- //!
- //! @param ui32Module - Module number for the IOM.
- //! @param ui32ChipSelect - I2C address of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //! @param pfnCallback - Function to call when the transaction completes.
- //!
- //! This function performs an I2C read to a selected I2C device.
- //!
- //! This function call is a non-blocking implementation. It will start the I2C
- //! transaction on the bus and store a pointer for the destination for the read
- //! data, but it will not wait for the I2C transaction to finish. The caller
- //! will need to make sure that \e am_hal_iom_int_service() is called for IOM
- //! FIFO interrupt events and "command complete" interrupt events. The \e
- //! am_hal_iom_int_service() function will empty the FIFO as necessary,
- //! transfer the data to the \e pui32Data buffer, and call the \e pfnCallback
- //! function when the transaction is finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_i2c_read_nb(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options,
- am_hal_iom_callback_t pfnCallback)
- {
- //
- // Validate parameters
- //
- if ( ui32Module > AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Redirect to the bit-bang interface if the module number matches the
- // software I2C module.
- //
- if ( ui32Module == AM_HAL_IOM_I2CBB_MODULE )
- {
- if ( ui32Options & AM_HAL_IOM_RAW )
- {
- am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data, 0, false,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- else
- {
- am_hal_i2c_bit_bang_receive((ui32BusAddress << 1) | 1, ui32NumBytes,
- (uint8_t *)pui32Data,
- ((ui32Options & 0xFF00) >> 8),
- true,
- (ui32Options & AM_HAL_IOM_NO_STOP));
- }
- //
- // The I2C bit-bang interface is actually a blocking transfer, and it
- // doesn't trigger the interrupt handler, so we have to call the
- // callback function manually.
- //
- if ( pfnCallback )
- {
- pfnCallback();
- }
- //
- // Return.
- //
- return;
- }
- //
- // Make sure the transfer isn't too long for the hardware to support.
- //
- am_hal_debug_assert_msg(ui32NumBytes < 256, "I2C transfer too big.");
- //
- // Wait until the bus is idle
- //
- am_hal_iom_poll_complete(ui32Module);
- //
- // Need to mark IOM busy to avoid another transaction to be scheduled.
- // This is to take care of a race condition in Queue mode, where the IDLE
- // set is not a guarantee that the CMDCMP has been received
- //
- g_bIomBusy[ui32Module] = true;
- //
- // Clear CMDCMP status
- //
- AM_BFWn(IOMSTR, ui32Module, INTCLR, CMDCMP, 1);
- //
- // Prepare the global IOM buffer structure.
- //
- g_psIOMBuffers[ui32Module].ui32State = BUFFER_RECEIVING;
- g_psIOMBuffers[ui32Module].pui32Data = pui32Data;
- g_psIOMBuffers[ui32Module].ui32BytesLeft = ui32NumBytes;
- g_psIOMBuffers[ui32Module].pfnCallback = pfnCallback;
- //
- // Start the read transaction on the bus.
- //
- am_hal_iom_i2c_cmd_run(AM_HAL_IOM_READ, ui32Module, ui32BusAddress,
- ui32NumBytes, ui32Options);
- }
- //*****************************************************************************
- //
- //! @brief Runs a I2C "command" through the IO master.
- //!
- //! @param ui32Operation - I2C action to be performed. This should either be
- //! AM_HAL_IOM_WRITE or AM_HAL_IOM_READ.
- //! @param psDevice - Structure containing information about the slave device.
- //! @param ui32NumBytes - Number of bytes to move (transmit or receive) with
- //! this command.
- //! @param ui32Options - Additional I2C options to apply to this command.
- //!
- //! This function may be used along with am_hal_iom_fifo_write and
- //! am_hal_iom_fifo_read to perform more complex I2C reads and writes. This
- //! function
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_i2c_cmd_run(uint32_t ui32Operation, uint32_t ui32Module,
- uint32_t ui32BusAddress, uint32_t ui32NumBytes,
- uint32_t ui32Options)
- {
- uint32_t ui32Command;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Start building the command from the operation parameter.
- //
- ui32Command = ui32Operation;
- //
- // Set the transfer length.
- //
- ui32Command |= (ui32NumBytes & 0xFF);
- //
- // Set the chip select number.
- //
- ui32Command |= ((ui32BusAddress << 16) & 0x03FF0000);
- //
- // Finally, OR in the rest of the options. This mask should make sure that
- // erroneous option values won't interfere with the other transfer
- // parameters.
- //
- ui32Command |= (ui32Options & 0x5C00FF00);
- //
- // Write the complete command word to the IOM command register.
- //
- AM_REGn(IOMSTR, ui32Module, CMD) = ui32Command;
- }
- //*****************************************************************************
- //
- //! @brief Sets the repeat count for the next IOM command.
- //!
- //! @param ui32Module is the IOM module number.
- //! @param ui32CmdCount is the number of times the next command should be
- //! executed.
- //!
- //! @note This function is not compatible with the am_hal_iom_spi_read/write()
- //! or am_hal_iom_i2c_read/write() functions. Instead, you will need to use the
- //! am_hal_iom_fifo_read/write() functions and the am_hal_iom_spi/i2c_cmd_run()
- //! functions.
- //!
- //! Example usage:
- //! @code
- //!
- //! //
- //! // Create a buffer and add 3 bytes of data to it.
- //! //
- //! am_hal_iom_buffer(3) psBuffer;
- //! psBuffer.bytes[0] = 's';
- //! psBuffer.bytes[1] = 'p';
- //! psBuffer.bytes[2] = 'i';
- //!
- //! //
- //! // Send three different bytes to the same SPI register on a remote device.
- //! //
- //! am_hal_iom_fifo_write(ui32Module, psBuffer.words, 3);
- //!
- //! am_hal_command_repeat_set(ui32Module, 3);
- //!
- //! am_hal_iom_spi_cmd_run(AM_HAL_IOM_WRITE, psDevice, 1,
- //! AM_HAL_IOM_OFFSET(0x5));
- //!
- //! //
- //! // The sequence "0x5, 's', 0x5, 'p', 0x5, 'i'" should be written to the SPI
- //! // bus.
- //! //
- //!
- //! @endcode
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_command_repeat_set(uint32_t ui32Module, uint32_t ui32CmdCount)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, CMDRPT) = ui32CmdCount;
- }
- //*****************************************************************************
- //
- //! @brief Writes data to the IOM FIFO.
- //!
- //! @param ui32Module - Selects the IOM module to use (zero or one).
- //! @param pui32Data - Pointer to an array of the data to be written.
- //! @param ui32NumBytes - Number of BYTES to copy into the FIFO.
- //!
- //! This function copies data from the array \e pui32Data into the IOM FIFO.
- //! This prepares the data to eventually be sent as SPI or I2C data by an IOM
- //! "command".
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //!
- //! @note This function may be used to write partial or complete SPI or I2C
- //! messages into the IOM FIFO. When writing partial messages to the FIFO, make
- //! sure that the number of bytes written is a multiple of four. Only the last
- //! 'part' of a message may consist of a number of bytes that is not a multiple
- //! of four. If this rule is not followed, the IOM will not be able to send
- //! these bytes correctly.
- //!
- //! @return Number of bytes actually written to the FIFO.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_fifo_write(uint32_t ui32Module, uint32_t *pui32Data,
- uint32_t ui32NumBytes)
- {
- uint32_t ui32Index;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- //
- // Make sure we check the number of bytes we're writing to the FIFO.
- //
- am_hal_debug_assert_msg((am_hal_iom_fifo_empty_slots(ui32Module) >= ui32NumBytes),
- "The fifo couldn't fit the requested number of bytes");
- //
- // Loop over the words in the array until we have the correct number of
- // bytes.
- //
- for ( ui32Index = 0; (4 * ui32Index) < ui32NumBytes; ui32Index++ )
- {
- //
- // Write the word to the FIFO.
- //
- AM_REGn(IOMSTR, ui32Module, FIFO) = pui32Data[ui32Index];
- }
- return ui32NumBytes;
- }
- //*****************************************************************************
- //
- //! @brief Reads data from the IOM FIFO.
- //!
- //! @param ui32Module - Selects the IOM module to use (zero or one).
- //! @param pui32Data - Pointer to an array where the FIFO data will be copied.
- //! @param ui32NumBytes - Number of bytes to copy into array.
- //!
- //! This function copies data from the IOM FIFO into the array \e pui32Data.
- //! This is how input data from SPI or I2C transactions may be retrieved.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This function will pack the individual bytes from the physical interface
- //! into 32-bit words, which are then placed into the \e pui32Data array. Only
- //! the first \e ui32NumBytes bytes in this array will contain valid data.
- //!
- //! @return Number of bytes read from the fifo.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_fifo_read(uint32_t ui32Module, uint32_t *pui32Data,
- uint32_t ui32NumBytes)
- {
- am_hal_iom_buffer(4) sTempBuffer;
- uint32_t i, j, ui32NumWords, ui32Leftovers;
- uint8_t *pui8Data;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- //
- // Make sure we check the number of bytes we're reading from the FIFO.
- //
- am_hal_debug_assert_msg((am_hal_iom_fifo_full_slots(ui32Module) >= ui32NumBytes),
- "The fifo doesn't contain the requested number of bytes.");
- //
- // Figure out how many whole words we're reading from the fifo, and how
- // many bytes will be left over when we're done.
- //
- ui32NumWords = ui32NumBytes / 4;
- ui32Leftovers = ui32NumBytes - (ui32NumWords * 4);
- //
- // Copy out as many full words as we can.
- //
- for ( i = 0; i < ui32NumWords; i++ )
- {
- //
- // Copy data out of the FIFO, one word at a time.
- //
- pui32Data[i] = AM_REGn(IOMSTR, ui32Module, FIFO);
- }
- //
- // If there were leftovers, we'll copy them carefully. Pull the last word
- // from the fifo (there should only be one) into a temporary buffer. Also,
- // create an 8-bit pointer to help us copy the remaining bytes one at a
- // time.
- //
- // Note: If the data buffer we were given was truly a word pointer like the
- // definition requests, we wouldn't need to do this. It's possible to call
- // this function with a re-cast or packed pointer instead though. If that
- // happens, we want to be careful not to overwrite any data that might be
- // sitting just past the end of the destination array.
- //
- if ( ui32Leftovers )
- {
- sTempBuffer.words[0] = AM_REGn(IOMSTR, ui32Module, FIFO);
- pui8Data = (uint8_t *) (&pui32Data[i]);
- //
- // If we had leftover bytes, copy them out one byte at a time.
- //
- for ( j = 0; j < ui32Leftovers; j++ )
- {
- pui8Data[j] = sTempBuffer.bytes[j];
- }
- }
- return ui32NumBytes;
- }
- //*****************************************************************************
- //
- //! @brief Check amount of empty space in the IOM fifo.
- //!
- //! @param ui32Module - Module number of the IOM whose fifo should be checked.
- //!
- //! Returns the number of bytes that could be written to the IOM fifo without
- //! causing an overflow.
- //!
- //! @return Amount of space available in the fifo (in bytes).
- //
- //*****************************************************************************
- uint8_t
- am_hal_iom_fifo_empty_slots(uint32_t ui32Module)
- {
- uint32_t ui32MaxFifoSize;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- ui32MaxFifoSize = ((0 == AM_BFRn(IOMSTR, ui32Module, CFG, FULLDUP)) ? AM_HAL_IOM_MAX_FIFO_SIZE : AM_HAL_IOM_MAX_FIFO_SIZE / 2);
- //
- // Calculate the FIFO Remaining from the FIFO size. This will be different
- // depending on whether the IOM is configured for half-duplex or
- // full-duplex.
- //
- return (ui32MaxFifoSize - AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ)) & (~0x3);
- }
- //*****************************************************************************
- //
- //! @brief Check to see how much data is in the IOM fifo.
- //!
- //! @param ui32Module - Module number of the IOM whose fifo should be checked.
- //!
- //! Returns the number of bytes of data that are currently in the IOM fifo.
- //!
- //! @return Number of bytes in the fifo.
- //
- //*****************************************************************************
- uint8_t
- am_hal_iom_fifo_full_slots(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return AM_BFRn(IOMSTR, ui32Module, FIFOPTR, FIFOSIZ);
- }
- //*****************************************************************************
- //
- //! @brief Wait for the current IOM command to complete.
- //!
- //! @param ui32Module - The module number of the IOM to use.
- //!
- //! This function polls until the IOM bus becomes idle.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_poll_complete(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Poll on the IDLE bit in the status register.
- //
- while ( g_bIomBusy[ui32Module] );
- }
- //*****************************************************************************
- //
- //! @brief Returns the contents of the IOM status register.
- //!
- //! @param ui32Module IOM instance to check the status of.
- //!
- //! This function is just a wrapper around the IOM status register.
- //!
- //! @return 32-bit contents of IOM status register.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_status_get(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return AM_REGn(IOMSTR, ui32Module, STATUS);
- }
- //*****************************************************************************
- //
- //! @brief Returns current error state of the IOM.
- //!
- //! @param ui32Module IOM instance to check the status of.
- //!
- //! This function returns status indicating whether the IOM has incurred any
- //! errors or not.
- //!
- //! @return 0 if all is well.
- //! Otherwise error status as a bitmask of:
- //! AM_HAL_IOM_ERR_INVALID_MODULE
- //! AM_HAL_IOM_INT_ARB Another master initiated an operation
- //! simultaenously and the IOM lost. Or
- //! the IOM started an operation but found
- //! SDA already low.
- //! AM_HAL_IOM_INT_START A START from another master detected.
- //! SW must wait for STOP before continuing.
- //! AM_HAL_IOM_INT_ICMD Attempt to issue a CMD while another
- //! CMD was already in progress, or issue a
- //! non-zero-len write CMD with empty FIFO.
- //! AM_HAL_IOM_INT_IACC Attempt to read the FIFO on a write. Or
- //! an attempt to write the FIFO on a read.
- //! AM_HAL_IOM_INT_NAK Expected ACK from slave not received.
- //! AM_HAL_IOM_INT_FOVFL Attempt to write the FIFO while full
- //! (FIFOSIZ > 124).
- //! AM_HAL_IOM_INT_FUNDFL Attempt to read FIFO when empty (that is
- //! FIFOSIZ < 4).
- //! Note - see the datasheet text for full explanations of the INT errs.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_error_status_get(uint32_t ui32Module)
- {
- uint32_t ui32intstat = 0;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- //
- // AM_HAL_IOM_ERR_INVALID_MODULE is defined as an unused interrupt bit.
- //
- return AM_HAL_IOM_ERR_INVALID_MODULE;
- }
- if ( AM_REGn(IOMSTR, ui32Module, STATUS) & AM_REG_IOMSTR_STATUS_ERR_ERROR )
- {
- //
- // The IOM is currently indicating an error condition.
- // Let's figure out what is going on.
- //
- ui32intstat = AM_REGn(IOMSTR, ui32Module, INTSTAT);
- //
- // Filter out non-error bits.
- //
- ui32intstat &= AM_REG_IOMSTR_INTSTAT_ARB_M |
- AM_REG_IOMSTR_INTSTAT_START_M |
- AM_REG_IOMSTR_INTSTAT_ICMD_M |
- AM_REG_IOMSTR_INTSTAT_IACC_M |
- AM_REG_IOMSTR_INTSTAT_NAK_M |
- AM_REG_IOMSTR_INTSTAT_FOVFL_M |
- AM_REG_IOMSTR_INTSTAT_FUNDFL_M;
- }
- return ui32intstat;
- }
- //*****************************************************************************
- //
- //! @brief Service interrupts from the IOM.
- //!
- //! @param ui32Status is the IOM interrupt status as returned from
- //! am_hal_iom_int_status_get()
- //!
- //! This function performs the necessary operations to facilitate non-blocking
- //! IOM writes and reads.
- //!
- //! @return None.
- //
- //*****************************************************************************
- void
- am_hal_iom_int_service(uint32_t ui32Module, uint32_t ui32Status)
- {
- am_hal_iom_nb_buffer *psBuffer;
- uint32_t ui32NumBytes;
- uint32_t ui32SpaceInFifo;
- uint32_t thresh;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Find the buffer information for the chosen IOM module.
- //
- psBuffer = &g_psIOMBuffers[ui32Module];
- //
- // Figure out what type of interrupt this was.
- //
- if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
- {
- //
- // Need to mark IOM Free
- //
- g_bIomBusy[ui32Module] = false;
- //
- // If we're not in the middle of a non-blocking call right now, there's
- // nothing for this routine to do.
- //
- if ( psBuffer->ui32State == BUFFER_IDLE )
- {
- return;
- }
- //
- // If a command just completed, we need to transfer all available data.
- //
- if ( psBuffer->ui32State == BUFFER_RECEIVING )
- {
- //
- // If we were receiving, we need to copy any remaining data out of
- // the IOM FIFO before calling the callback.
- //
- ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module);
- am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
- }
- //
- // A command complete event also means that we've already transferred
- // all of the data we need, so we can mark the data buffer as IDLE.
- //
- psBuffer->ui32State = BUFFER_IDLE;
- //
- // If we have a callback, call it now.
- //
- if ( psBuffer->pfnCallback )
- {
- psBuffer->pfnCallback();
- }
- }
- else if ( ui32Status & AM_HAL_IOM_INT_THR )
- {
- //
- // If we're not in the middle of a non-blocking call right now, there's
- // nothing for this routine to do.
- //
- if ( psBuffer->ui32State == BUFFER_IDLE )
- {
- return;
- }
- //
- // If we received a threshold event in the middle of a command, we need
- // to transfer data.
- //
- if ( psBuffer->ui32State == BUFFER_SENDING )
- {
- thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFOWTHR);
- do
- {
- ui32SpaceInFifo = am_hal_iom_fifo_empty_slots(ui32Module);
- //
- // Figure out how much data we can send.
- //
- if ( psBuffer->ui32BytesLeft <= ui32SpaceInFifo )
- {
- //
- // If the whole transfer will fit in the fifo, send it all.
- //
- ui32NumBytes = psBuffer->ui32BytesLeft;
- }
- else
- {
- //
- // If the transfer won't fit in the fifo completely, send as
- // much as we can (rounded down to a multiple of four bytes).
- //
- ui32NumBytes = ui32SpaceInFifo;
- }
- //
- // Perform the transfer.
- //
- am_hal_iom_fifo_write(ui32Module, psBuffer->pui32Data, ui32NumBytes);
- // Clear any spurious THR interrupt that might have got raised
- // while we were adding data to FIFO
- AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
- //
- // Update the pointer and the byte counter.
- //
- psBuffer->ui32BytesLeft -= ui32NumBytes;
- psBuffer->pui32Data += (ui32NumBytes / 4);
- if ( 0 == psBuffer->ui32BytesLeft )
- {
- //
- // Done with this transaction
- //
- break;
- }
- } while ( am_hal_iom_fifo_full_slots(ui32Module) <= thresh );
- }
- else
- {
- thresh = AM_BFRn(IOMSTR, ui32Module, FIFOTHR, FIFORTHR);
- while ( (ui32NumBytes = am_hal_iom_fifo_full_slots(ui32Module)) >= thresh )
- {
- //
- // If we get here, we're in the middle of a read. Transfer as much
- // data as possible out of the FIFO and into our buffer.
- //
- if ( ui32NumBytes == psBuffer->ui32BytesLeft )
- {
- //
- // If the fifo contains our entire message, just copy the whole
- // thing out.
- //
- am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data,
- psBuffer->ui32BytesLeft);
- break;
- }
- else if ( ui32NumBytes >= 4 )
- {
- //
- // If the fifo has at least one 32-bit word in it, copy out the
- // biggest block we can.
- //
- ui32NumBytes = (ui32NumBytes & (~0x3));
- am_hal_iom_fifo_read(ui32Module, psBuffer->pui32Data, ui32NumBytes);
- //
- // Update the pointer and the byte counter.
- //
- psBuffer->ui32BytesLeft -= ui32NumBytes;
- psBuffer->pui32Data += (ui32NumBytes / 4);
- // Clear any spurious THR interrupt that might have got raised
- // while we were reading the data from FIFO
- AM_BFWn(IOMSTR, ui32Module, INTCLR, THR, 1);
- }
- }
- }
- }
- }
- //*****************************************************************************
- //
- //! @brief Initialize the IOM queue system.
- //!
- //! @param ui32Module - IOM module to be initialized for queue transfers.
- //! @param psQueueMemory - Memory to be used for queueing IOM transfers.
- //! @param ui32QueueMemSize - Size of the queue memory.
- //!
- //! This function prepares the selected IOM interface for use with the IOM
- //! queue system. The IOM queue system allows the caller to start multiple IOM
- //! transfers in a non-blocking way. In order to do this, the HAL requires some
- //! amount of memory dedicated to keeping track of IOM transactions before they
- //! can be sent to the hardware registers. This function tells the HAL what
- //! memory it should use for this purpose. For more information on the IOM
- //! queue interface, please see the documentation for
- //! am_hal_iom_queue_spi_write().
- //!
- //! @note This function only needs to be called once (per module), but it must
- //! be called before any other am_hal_iom_queue function.
- //!
- //! @note Each IOM module will need its own working space. If you intend to use
- //! the queueing mechanism with more than one IOM module, you will need to
- //! provide separate queue memory for each module.
- //!
- //! Example usage:
- //!
- //! @code
- //!
- //! //
- //! // Declare an array to be used for IOM queue transactions. This array will
- //! // be big enough to handle 32 IOM transactions.
- //! //
- //! am_hal_iom_queue_entry_t g_psQueueMemory[32];
- //!
- //! //
- //! // Attach the IOM0 queue system to the memory we just allocated.
- //! //
- //! am_hal_iom_queue_init(0, g_psQueueMemory, sizeof(g_psQueueMemory));
- //!
- //! @endcode
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_init(uint32_t ui32Module, am_hal_iom_queue_entry_t *psQueueMemory,
- uint32_t ui32QueueMemSize)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_queue_init(&g_psIOMQueue[ui32Module], psQueueMemory,
- sizeof(am_hal_iom_queue_entry_t), ui32QueueMemSize);
- }
- //*****************************************************************************
- //
- //! @brief Check to see how many transactions are in the queue.
- //!
- //! @param ui32Module Module number for the queue to check
- //!
- //! This function will check to see how many transactions are in the IOM queue
- //! for the selected IOM module.
- //!
- //! @return Number of transactions in the queue.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_queue_length_get(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return am_hal_queue_data_left(&g_psIOMQueue[ui32Module]);
- }
- //*****************************************************************************
- //
- //! @brief Executes the next operation in the IOM queue.
- //!
- //! @param ui32ModuleNum - Module number for the IOM to use.
- //!
- //! This function checks the IOM queue to see if there are any remaining
- //! transactions. If so, it will start the next available transaction in a
- //! non-blocking way.
- //!
- //! @note This function is called automatically by am_hal_iom_queue_service().
- //! You should not call this function standalone in a normal application.
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_start_next_msg(uint32_t ui32Module)
- {
- am_hal_iom_queue_entry_t sIOMTransaction = {0};
- uint32_t ui32ChipSelect;
- uint32_t *pui32Data;
- uint32_t ui32NumBytes;
- uint32_t ui32Options;
- am_hal_iom_callback_t pfnCallback;
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Try to get the next IOM operation from the queue.
- //
- if ( am_hal_queue_item_get(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) )
- {
- //
- // Read the operation parameters
- //
- ui32ChipSelect = sIOMTransaction.ui32ChipSelect;
- pui32Data = sIOMTransaction.pui32Data;
- ui32NumBytes = sIOMTransaction.ui32NumBytes;
- ui32Options = sIOMTransaction.ui32Options;
- pfnCallback = sIOMTransaction.pfnCallback;
- //
- // Figure out if this was a SPI or I2C write or read, and call the
- // appropriate non-blocking function.
- //
- switch ( sIOMTransaction.ui32Operation )
- {
- case AM_HAL_IOM_QUEUE_SPI_WRITE:
- am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- case AM_HAL_IOM_QUEUE_SPI_READ:
- am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- case AM_HAL_IOM_QUEUE_I2C_WRITE:
- am_hal_iom_i2c_write_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- case AM_HAL_IOM_QUEUE_I2C_READ:
- am_hal_iom_i2c_read_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- break;
- }
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- //*****************************************************************************
- //
- //! @brief Send a SPI frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip-select number for this transaction.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI writes to a selected SPI device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_spi_write(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- am_hal_iom_spi_write_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_WRITE;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- am_hal_debug_assert_msg(0,
- "The IOM queue is full. Allocate more"
- "memory to the IOM queue, or allow it more"
- "time to empty between transactions.");
- }
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- //*****************************************************************************
- //
- //! @brief Read a SPI frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32ChipSelect - Chip select number for this transaction.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional SPI transfer options.
- //!
- //! This function performs SPI reads to a selected SPI device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_spi_read(uint32_t ui32Module, uint32_t ui32ChipSelect,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- am_hal_iom_spi_read_nb(ui32Module, ui32ChipSelect, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_SPI_READ;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32ChipSelect;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- am_hal_debug_assert_msg(0,
- "The IOM queue is full. Allocate more"
- "memory to the IOM queue, or allow it more"
- "time to empty between transactions.");
- }
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- //*****************************************************************************
- //
- //! @brief Send an I2C frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the bytes that will be sent.
- //! @param ui32NumBytes - Number of bytes to send.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs I2C writes to a selected I2C device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will refill the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_i2c_write(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- am_hal_iom_i2c_write_nb(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_WRITE;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32BusAddress;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- am_hal_debug_assert_msg(0,
- "The IOM queue is full. Allocate more"
- "memory to the IOM queue, or allow it more"
- "time to empty between transactions.");
- }
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- //*****************************************************************************
- //
- //! @brief Read a I2C frame using the IOM queue.
- //!
- //! @param ui32Module - Module number for the IOM
- //! @param ui32BusAddress - I2C address of the target device.
- //! @param pui32Data - Pointer to the array where received bytes should go.
- //! @param ui32NumBytes - Number of bytes to read.
- //! @param ui32Options - Additional I2C transfer options.
- //!
- //! This function performs I2C reads to a selected I2C device.
- //!
- //! This function call is a queued implementation. It will write as much
- //! data to the FIFO as possible immediately, store a pointer to the remaining
- //! data, start the transfer on the bus, and then immediately return. If the
- //! FIFO is already in use, this function will save its arguments to the IOM
- //! queue and execute the transaction when the FIFO becomes available.
- //!
- //! The caller will need to make sure that \e am_hal_iom_queue_service() is
- //! called for IOM FIFO interrupt events and "command complete" interrupt
- //! events. The \e am_hal_iom_queue_service() function will empty the FIFO as
- //! necessary and call the \e pfnCallback function when the transaction is
- //! finished.
- //!
- //! @note The actual SPI and I2C interfaces operate in BYTES, not 32-bit words.
- //! This means that you will need to byte-pack the \e pui32Data array with the
- //! data you intend to send over the interface. One easy way to do this is to
- //! declare the array as a 32-bit integer array, but use an 8-bit pointer to
- //! put your actual data into the array. If there are not enough bytes in your
- //! desired message to completely fill the last 32-bit word, you may pad that
- //! last word with bytes of any value. The IOM hardware will only read the
- //! first \e ui32NumBytes in the \e pui8Data array.
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_i2c_read(uint32_t ui32Module, uint32_t ui32BusAddress,
- uint32_t *pui32Data, uint32_t ui32NumBytes,
- uint32_t ui32Options, am_hal_iom_callback_t pfnCallback)
- {
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- am_hal_debug_assert_msg(ui32NumBytes > 0,
- "Trying to do a 0 byte transaction");
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check to see if we need to use the queue. If the IOM is idle, and
- // there's nothing in the queue already, we can go ahead and start the
- // transaction in the physical IOM. Need to check for the g_bIomBusy to
- // avoid a race condition where IDLE is set - but the command complete
- // for previous transaction has not been processed yet
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // Send the packet.
- //
- am_hal_iom_i2c_read_nb(ui32Module, ui32BusAddress, pui32Data,
- ui32NumBytes, ui32Options, pfnCallback);
- }
- else
- {
- //
- // Otherwise, we'll build a transaction structure and add it to the queue.
- //
- am_hal_iom_queue_entry_t sIOMTransaction;
- sIOMTransaction.ui32Operation = AM_HAL_IOM_QUEUE_I2C_READ;
- sIOMTransaction.ui32Module = ui32Module;
- sIOMTransaction.ui32ChipSelect = ui32BusAddress;
- sIOMTransaction.pui32Data = pui32Data;
- sIOMTransaction.ui32NumBytes = ui32NumBytes;
- sIOMTransaction.ui32Options = ui32Options;
- sIOMTransaction.pfnCallback = pfnCallback;
- //
- // Make sure the item actually makes it into the queue
- //
- if ( am_hal_queue_item_add(&g_psIOMQueue[ui32Module], &sIOMTransaction, 1) == false )
- {
- //
- // Didn't have enough memory.
- //
- am_hal_debug_assert_msg(0, "The IOM queue is full. Allocate more"
- "memory to the IOM queue, or allow it more"
- "time to empty between transactions.");
- }
- }
- //
- // Exit the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- //*****************************************************************************
- //
- //! @brief "Block" until the queue of IOM transactions is over.
- //!
- //! @param ui32Module - Module number for the IOM.
- //!
- //! This function will sleep the core block until the queue for the selected
- //! IOM is empty. This is mainly useful for non-RTOS applications where the
- //! caller needs to know that a certain IOM transaction is complete before
- //! continuing with the main program flow.
- //!
- //! @note This function will put the core to sleep while it waits for the
- //! queued IOM transactions to complete. This will save power, in most
- //! situations, but it may not be the best option in all cases. \e Do \e not
- //! call this function from interrupt context (the core may not wake up again).
- //! \e Be \e careful using this function from an RTOS task (many RTOS
- //! implementations use hardware interrupts to switch contexts, and most RTOS
- //! implementations expect to control sleep behavior).
- //
- //*****************************************************************************
- void
- am_hal_iom_sleeping_queue_flush(uint32_t ui32Module)
- {
- bool bWaiting = true;
- uint32_t ui32Critical;
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Loop forever waiting for the IOM to be idle and the queue to be empty.
- //
- while ( bWaiting )
- {
- //
- // Start a critical section.
- //
- ui32Critical = am_hal_interrupt_master_disable();
- //
- // Check the queue and the IOM itself.
- //
- if ( (g_bIomBusy[ui32Module] == false) &&
- am_hal_queue_empty(&g_psIOMQueue[ui32Module]) )
- {
- //
- // If the queue is empty and the IOM is idle, we can go ahead and
- // return.
- //
- bWaiting = false;
- }
- else
- {
- //
- // Otherwise, we should sleep until the interface is actually free.
- //
- am_hal_sysctrl_sleep(AM_HAL_SYSCTRL_SLEEP_NORMAL);
- }
- //
- // End the critical section.
- //
- am_hal_interrupt_master_set(ui32Critical);
- }
- }
- //*****************************************************************************
- //
- //! @brief Service IOM transaction queue.
- //!
- //! @param ui32Module - Module number for the IOM to be used.
- //! @param ui32Status - Interrupt status bits for the IOM module being used.
- //!
- //! This function handles the operation of FIFOs and the IOM queue during
- //! queued IOM transactions. If you are using \e am_hal_iom_queue_spi_write()
- //! or similar functions, you will need to call this function in your interrupt
- //! handler.
- //!
- //! @note This interrupt service routine relies on the user to enable the IOM
- //! interrupts for FIFO threshold and CMD complete.
- //!
- //! Example:
- //!
- //! @code
- //! void
- //! am_iomaster0_isr(void)
- //! {
- //! uint32_t ui32Status;
- //!
- //! //
- //! // Check to see which interrupt caused us to enter the ISR.
- //! //
- //! ui32Status = am_hal_iom_int_status(0, true);
- //!
- //! //
- //! // Fill or empty the FIFO, and either continue the current operation or
- //! // start the next one in the queue. If there was a callback, it will be
- //! // called here.
- //! //
- //! am_hal_iom_queue_service(0, ui32Status);
- //!
- //! //
- //! // Clear the interrupts before leaving the ISR.
- //! //
- //! am_hal_iom_int_clear(ui32Status);
- //! }
- //! @endcode
- //!
- //! @return
- //
- //*****************************************************************************
- void
- am_hal_iom_queue_service(uint32_t ui32Module, uint32_t ui32Status)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- //
- // Service the FIFOs in case this was a threshold interrupt.
- //
- am_hal_iom_int_service(ui32Module, ui32Status);
- //
- // If the last interrupt was a "command complete", then the IOM should be
- // idle already or very soon. Make absolutely sure that the IOM is not in
- // use, and then start the next transaction in the queue.
- //
- if ( ui32Status & AM_HAL_IOM_INT_CMDCMP )
- {
- if ( g_psIOMQueue[ui32Module].pui8Data != NULL )
- {
- am_hal_iom_queue_start_next_msg(ui32Module);
- }
- }
- }
- //*****************************************************************************
- //
- //! @brief Enable selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to enable the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_enable(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTEN) |= ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Return the enabled IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //!
- //! Use this function to return all enabled IOM interrupts.
- //!
- //! @return all enabled IOM interrupts.
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_int_enable_get(uint32_t ui32Module)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- return AM_REGn(IOMSTR, ui32Module, INTEN);
- }
- //*****************************************************************************
- //
- //! @brief Disable selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to disable the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_disable(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTEN) &= ~ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Clear selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to clear the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_clear(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTCLR) = ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Set selected IOM Interrupts.
- //!
- //! @param ui32Module - Module number.
- //! @param ui32Interrupt - Use the macro bit fields provided in am_hal_iom.h
- //!
- //! Use this function to set the IOM interrupts.
- //!
- //! @return None
- //
- //*****************************************************************************
- void
- am_hal_iom_int_set(uint32_t ui32Module, uint32_t ui32Interrupt)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return;
- }
- AM_REGn(IOMSTR, ui32Module, INTSET) = ui32Interrupt;
- }
- //*****************************************************************************
- //
- //! @brief Return the IOM Interrupt status.
- //!
- //! @param ui32Module - Module number.
- //! @param bEnabledOnly - return only the enabled interrupts.
- //!
- //! Use this function to get the IOM interrupt status.
- //!
- //! @return interrupt status
- //
- //*****************************************************************************
- uint32_t
- am_hal_iom_int_status_get(uint32_t ui32Module, bool bEnabledOnly)
- {
- //
- // Validate parameters
- //
- if ( ui32Module >= AM_REG_IOMSTR_NUM_MODULES )
- {
- return 0;
- }
- if ( bEnabledOnly )
- {
- uint32_t u32RetVal = AM_REGn(IOMSTR, ui32Module, INTSTAT);
- return u32RetVal & AM_REGn(IOMSTR, ui32Module, INTEN);
- }
- else
- {
- return AM_REGn(IOMSTR, ui32Module, INTSTAT);
- }
- }
- //*****************************************************************************
- //
- // End Doxygen group.
- //! @}
- //
- //*****************************************************************************
|