spi_flash_sfud.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2016-09-28 armink first version.
  9. */
  10. #include <stdint.h>
  11. #include <rtdevice.h>
  12. #include "spi_flash.h"
  13. #include "spi_flash_sfud.h"
  14. #ifdef RT_USING_SFUD
  15. #ifdef RT_DEBUG_SFUD
  16. #define DEBUG_TRACE rt_kprintf("[SFUD] "); rt_kprintf
  17. #else
  18. #define DEBUG_TRACE(...)
  19. #endif /* RT_DEBUG_SFUD */
  20. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  21. /* read the JEDEC SFDP command must run at 50 MHz or less */
  22. #define RT_SFUD_DEFAULT_SPI_CFG \
  23. { \
  24. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  25. .data_width = 8, \
  26. .max_hz = 50 * 1000 * 1000, \
  27. }
  28. #endif
  29. #ifdef SFUD_USING_QSPI
  30. #define RT_SFUD_DEFAULT_QSPI_CFG \
  31. { \
  32. RT_SFUD_DEFAULT_SPI_CFG, \
  33. .medium_size = 0x800000, \
  34. .ddr_mode = 0, \
  35. .qspi_dl_width = 4, \
  36. }
  37. #endif
  38. static char log_buf[RT_CONSOLEBUF_SIZE];
  39. void sfud_log_debug(const char *file, const long line, const char *format, ...);
  40. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  41. RT_ASSERT(dev != RT_NULL);
  42. switch (cmd) {
  43. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  44. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  45. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  46. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  47. return -RT_ERROR;
  48. }
  49. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  50. geometry->sector_count = rtt_dev->geometry.sector_count;
  51. geometry->block_size = rtt_dev->geometry.block_size;
  52. break;
  53. }
  54. case RT_DEVICE_CTRL_BLK_ERASE: {
  55. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  56. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  57. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  58. rt_size_t phy_size;
  59. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  60. return -RT_ERROR;
  61. }
  62. if (end_addr == start_addr) {
  63. end_addr ++;
  64. }
  65. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  66. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  67. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  68. return -RT_ERROR;
  69. }
  70. break;
  71. }
  72. }
  73. return RT_EOK;
  74. }
  75. static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  76. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  77. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  78. /* change the block device's logic address to physical address */
  79. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  80. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  81. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  82. return 0;
  83. } else {
  84. return size;
  85. }
  86. }
  87. static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  88. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  89. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  90. /* change the block device's logic address to physical address */
  91. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  92. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  93. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  94. return 0;
  95. } else {
  96. return size;
  97. }
  98. }
  99. /**
  100. * SPI write data then read data
  101. */
  102. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  103. size_t read_size) {
  104. sfud_err result = SFUD_SUCCESS;
  105. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  106. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  107. #ifdef SFUD_USING_QSPI
  108. struct rt_qspi_device *qspi_dev = RT_NULL;
  109. #endif
  110. if (write_size) {
  111. RT_ASSERT(write_buf);
  112. }
  113. if (read_size) {
  114. RT_ASSERT(read_buf);
  115. }
  116. #ifdef SFUD_USING_QSPI
  117. if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
  118. qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  119. if (write_size && read_size) {
  120. if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) == 0) {
  121. result = SFUD_ERR_TIMEOUT;
  122. }
  123. } else if (write_size) {
  124. if (rt_qspi_send(qspi_dev, write_buf, write_size) == 0) {
  125. result = SFUD_ERR_TIMEOUT;
  126. }
  127. }
  128. }
  129. else
  130. #endif
  131. {
  132. if (write_size && read_size) {
  133. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  134. result = SFUD_ERR_TIMEOUT;
  135. }
  136. } else if (write_size) {
  137. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
  138. result = SFUD_ERR_TIMEOUT;
  139. }
  140. } else {
  141. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
  142. result = SFUD_ERR_TIMEOUT;
  143. }
  144. }
  145. }
  146. return result;
  147. }
  148. #ifdef SFUD_USING_QSPI
  149. /**
  150. * QSPI fast read data
  151. */
  152. static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
  153. struct rt_qspi_message message;
  154. sfud_err result = SFUD_SUCCESS;
  155. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  156. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  157. struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
  158. /* set message struct */
  159. message.instruction.content = qspi_read_cmd_format->instruction;
  160. message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;
  161. message.address.content = addr;
  162. message.address.size = qspi_read_cmd_format->address_size;
  163. message.address.qspi_lines = qspi_read_cmd_format->address_lines;
  164. message.alternate_bytes.content = 0;
  165. message.alternate_bytes.size = 0;
  166. message.alternate_bytes.qspi_lines = 0;
  167. message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;
  168. message.parent.send_buf = RT_NULL;
  169. message.parent.recv_buf = read_buf;
  170. message.parent.length = read_size;
  171. message.parent.cs_release = 1;
  172. message.parent.cs_take = 1;
  173. message.qspi_data_lines = qspi_read_cmd_format->data_lines;
  174. if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
  175. result = SFUD_ERR_TIMEOUT;
  176. }
  177. return result;
  178. }
  179. #endif
  180. static void spi_lock(const sfud_spi *spi) {
  181. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  182. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  183. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  184. }
  185. static void spi_unlock(const sfud_spi *spi) {
  186. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  187. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  188. rt_mutex_release(&(rtt_dev->lock));
  189. }
  190. static void retry_delay_100us(void) {
  191. /* 100 microsecond delay */
  192. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  193. }
  194. /**
  195. * This function is print debug info.
  196. *
  197. * @param file the file which has call this function
  198. * @param line the line number which has call this function
  199. * @param format output format
  200. * @param ... args
  201. */
  202. void sfud_log_debug(const char *file, const long line, const char *format, ...) {
  203. va_list args;
  204. /* args point to the first variable parameter */
  205. va_start(args, format);
  206. rt_kprintf("[SFUD] (%s:%ld) ", file, line);
  207. /* must use vprintf to print */
  208. rt_vsnprintf(log_buf, sizeof(log_buf), format, args);
  209. rt_kprintf("%s\n", log_buf);
  210. va_end(args);
  211. }
  212. /**
  213. * This function is print routine info.
  214. *
  215. * @param format output format
  216. * @param ... args
  217. */
  218. void sfud_log_info(const char *format, ...) {
  219. va_list args;
  220. /* args point to the first variable parameter */
  221. va_start(args, format);
  222. rt_kprintf("[SFUD] ");
  223. /* must use vprintf to print */
  224. rt_vsnprintf(log_buf, sizeof(log_buf), format, args);
  225. rt_kprintf("%s\n", log_buf);
  226. va_end(args);
  227. }
  228. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  229. sfud_err result = SFUD_SUCCESS;
  230. /* port SPI device interface */
  231. flash->spi.wr = spi_write_read;
  232. #ifdef SFUD_USING_QSPI
  233. flash->spi.qspi_read = qspi_read;
  234. #endif
  235. flash->spi.lock = spi_lock;
  236. flash->spi.unlock = spi_unlock;
  237. flash->spi.user_data = flash;
  238. if (RT_TICK_PER_SECOND < 1000) {
  239. rt_kprintf("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.\n", RT_TICK_PER_SECOND);
  240. }
  241. /* 100 microsecond delay */
  242. flash->retry.delay = retry_delay_100us;
  243. /* 60 seconds timeout */
  244. flash->retry.times = 60 * 10000;
  245. return result;
  246. }
  247. #ifdef RT_USING_DEVICE_OPS
  248. const static struct rt_device_ops flash_device_ops =
  249. {
  250. RT_NULL,
  251. RT_NULL,
  252. RT_NULL,
  253. rt_sfud_read,
  254. rt_sfud_write,
  255. rt_sfud_control
  256. };
  257. #endif
  258. /**
  259. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  260. *
  261. * @param spi_flash_dev_name the name which will create SPI flash device
  262. * @param spi_dev_name using SPI device name
  263. *
  264. * @return probed SPI flash device, probe failed will return RT_NULL
  265. */
  266. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) {
  267. rt_spi_flash_device_t rtt_dev = RT_NULL;
  268. sfud_flash *sfud_dev = RT_NULL;
  269. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  270. /* using default flash SPI configuration for initialize SPI Flash
  271. * @note you also can change the SPI to other configuration after initialized finish */
  272. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  273. extern sfud_err sfud_device_init(sfud_flash *flash);
  274. #ifdef SFUD_USING_QSPI
  275. struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;
  276. struct rt_qspi_device *qspi_dev = RT_NULL;
  277. #endif
  278. RT_ASSERT(spi_flash_dev_name);
  279. RT_ASSERT(spi_dev_name);
  280. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  281. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  282. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  283. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  284. if (rtt_dev) {
  285. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  286. /* initialize lock */
  287. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
  288. }
  289. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  290. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  291. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  292. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  293. /* make string end sign */
  294. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  295. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  296. /* SPI configure */
  297. {
  298. /* RT-Thread SPI device initialize */
  299. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  300. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  301. rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
  302. goto error;
  303. }
  304. sfud_dev->spi.name = spi_dev_name_bak;
  305. #ifdef SFUD_USING_QSPI
  306. /* set the qspi line number and configure the QSPI bus */
  307. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  308. qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
  309. qspi_cfg.qspi_dl_width = qspi_dev->config.qspi_dl_width;
  310. rt_qspi_configure(qspi_dev, &qspi_cfg);
  311. }
  312. else
  313. #endif
  314. rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
  315. }
  316. /* SFUD flash device initialize */
  317. {
  318. sfud_dev->name = spi_flash_dev_name_bak;
  319. /* accessed each other */
  320. rtt_dev->user_data = sfud_dev;
  321. rtt_dev->rt_spi_device->user_data = rtt_dev;
  322. rtt_dev->flash_device.user_data = rtt_dev;
  323. sfud_dev->user_data = rtt_dev;
  324. /* initialize SFUD device */
  325. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  326. rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name);
  327. goto error;
  328. }
  329. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  330. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  331. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  332. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  333. #ifdef SFUD_USING_QSPI
  334. /* reconfigure the QSPI bus for medium size */
  335. if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
  336. qspi_cfg.medium_size = sfud_dev->chip.capacity;
  337. rt_qspi_configure(qspi_dev, &qspi_cfg);
  338. if(qspi_dev->enter_qspi_mode != RT_NULL)
  339. qspi_dev->enter_qspi_mode(qspi_dev);
  340. }
  341. /* set data lines width */
  342. sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
  343. #endif /* SFUD_USING_QSPI */
  344. }
  345. /* register device */
  346. rtt_dev->flash_device.type = RT_Device_Class_Block;
  347. #ifdef RT_USING_DEVICE_OPS
  348. rtt_dev->flash_device.ops = &flash_device_ops;
  349. #else
  350. rtt_dev->flash_device.init = RT_NULL;
  351. rtt_dev->flash_device.open = RT_NULL;
  352. rtt_dev->flash_device.close = RT_NULL;
  353. rtt_dev->flash_device.read = rt_sfud_read;
  354. rtt_dev->flash_device.write = rt_sfud_write;
  355. rtt_dev->flash_device.control = rt_sfud_control;
  356. #endif
  357. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  358. DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name);
  359. return rtt_dev;
  360. } else {
  361. rt_kprintf("ERROR: Low memory.\n");
  362. goto error;
  363. }
  364. error:
  365. if (rtt_dev) {
  366. rt_mutex_detach(&(rtt_dev->lock));
  367. }
  368. /* may be one of objects memory was malloc success, so need free all */
  369. rt_free(rtt_dev);
  370. rt_free(sfud_dev);
  371. rt_free(spi_flash_dev_name_bak);
  372. rt_free(spi_dev_name_bak);
  373. return RT_NULL;
  374. }
  375. /**
  376. * Delete SPI flash device
  377. *
  378. * @param spi_flash_dev SPI flash device
  379. *
  380. * @return the operation status, RT_EOK on successful
  381. */
  382. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  383. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  384. RT_ASSERT(spi_flash_dev);
  385. RT_ASSERT(sfud_flash_dev);
  386. rt_device_unregister(&(spi_flash_dev->flash_device));
  387. rt_mutex_detach(&(spi_flash_dev->lock));
  388. rt_free(sfud_flash_dev->spi.name);
  389. rt_free(sfud_flash_dev->name);
  390. rt_free(sfud_flash_dev);
  391. rt_free(spi_flash_dev);
  392. return RT_EOK;
  393. }
  394. #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
  395. #include <finsh.h>
  396. static void sf(uint8_t argc, char **argv) {
  397. #define CMD_PROBE_INDEX 0
  398. #define CMD_READ_INDEX 1
  399. #define CMD_WRITE_INDEX 2
  400. #define CMD_ERASE_INDEX 3
  401. #define CMD_RW_STATUS_INDEX 4
  402. #define CMD_BENCH_INDEX 5
  403. sfud_err result = SFUD_SUCCESS;
  404. static const sfud_flash *sfud_dev = NULL;
  405. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  406. size_t i = 0;
  407. const char* sf_help_info[] = {
  408. [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  409. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  410. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  411. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  412. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  413. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  414. };
  415. if (argc < 2) {
  416. rt_kprintf("Usage:\n");
  417. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  418. rt_kprintf("%s\n", sf_help_info[i]);
  419. }
  420. rt_kprintf("\n");
  421. } else {
  422. const char *operator = argv[1];
  423. uint32_t addr, size;
  424. if (!strcmp(operator, "probe")) {
  425. if (argc < 3) {
  426. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
  427. } else {
  428. char *spi_dev_name = argv[2];
  429. rtt_dev_bak = rtt_dev;
  430. /* delete the old SPI flash device */
  431. if(rtt_dev_bak) {
  432. rt_sfud_flash_delete(rtt_dev_bak);
  433. }
  434. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  435. if (!rtt_dev) {
  436. return;
  437. }
  438. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  439. if (sfud_dev->chip.capacity < 1024 * 1024) {
  440. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  441. } else {
  442. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  443. sfud_dev->name);
  444. }
  445. }
  446. } else {
  447. if (!sfud_dev) {
  448. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  449. return;
  450. }
  451. if (!rt_strcmp(operator, "read")) {
  452. if (argc < 4) {
  453. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  454. return;
  455. } else {
  456. addr = atol(argv[2]);
  457. size = atol(argv[3]);
  458. uint8_t *data = rt_malloc(size);
  459. if (data) {
  460. result = sfud_read(sfud_dev, addr, size, data);
  461. if (result == SFUD_SUCCESS) {
  462. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  463. sfud_dev->name, addr, size);
  464. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  465. for (i = 0; i < size; i++) {
  466. if (i % 16 == 0) {
  467. rt_kprintf("[%08X] ", addr + i);
  468. }
  469. rt_kprintf("%02X ", data[i]);
  470. if (((i + 1) % 16 == 0) || i == size - 1) {
  471. rt_kprintf("\n");
  472. }
  473. }
  474. rt_kprintf("\n");
  475. }
  476. rt_free(data);
  477. } else {
  478. rt_kprintf("Low memory!\n");
  479. }
  480. }
  481. } else if (!rt_strcmp(operator, "write")) {
  482. if (argc < 4) {
  483. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  484. return;
  485. } else {
  486. addr = atol(argv[2]);
  487. size = argc - 3;
  488. uint8_t *data = rt_malloc(size);
  489. if (data) {
  490. for (i = 0; i < size; i++) {
  491. data[i] = atoi(argv[3 + i]);
  492. }
  493. result = sfud_write(sfud_dev, addr, size, data);
  494. if (result == SFUD_SUCCESS) {
  495. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  496. sfud_dev->name, addr, size);
  497. rt_kprintf("Write data: ");
  498. for (i = 0; i < size; i++) {
  499. rt_kprintf("%d ", data[i]);
  500. }
  501. rt_kprintf(".\n");
  502. }
  503. rt_free(data);
  504. } else {
  505. rt_kprintf("Low memory!\n");
  506. }
  507. }
  508. } else if (!rt_strcmp(operator, "erase")) {
  509. if (argc < 4) {
  510. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  511. return;
  512. } else {
  513. addr = atol(argv[2]);
  514. size = atol(argv[3]);
  515. result = sfud_erase(sfud_dev, addr, size);
  516. if (result == SFUD_SUCCESS) {
  517. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  518. addr, size);
  519. }
  520. }
  521. } else if (!rt_strcmp(operator, "status")) {
  522. if (argc < 3) {
  523. uint8_t status;
  524. result = sfud_read_status(sfud_dev, &status);
  525. if (result == SFUD_SUCCESS) {
  526. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  527. }
  528. } else if (argc == 4) {
  529. bool is_volatile = atoi(argv[2]);
  530. uint8_t status = atoi(argv[3]);
  531. result = sfud_write_status(sfud_dev, is_volatile, status);
  532. if (result == SFUD_SUCCESS) {
  533. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  534. }
  535. } else {
  536. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  537. return;
  538. }
  539. } else if (!rt_strcmp(operator, "bench")) {
  540. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  541. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  542. return;
  543. }
  544. /* full chip benchmark test */
  545. addr = 0;
  546. size = sfud_dev->chip.capacity;
  547. uint32_t start_time, time_cast;
  548. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE;
  549. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  550. if (write_data && read_data) {
  551. rt_memset(write_data, 0x55, write_size);
  552. /* benchmark testing */
  553. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  554. start_time = rt_tick_get();
  555. result = sfud_erase(sfud_dev, addr, size);
  556. if (result == SFUD_SUCCESS) {
  557. time_cast = rt_tick_get() - start_time;
  558. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  559. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  560. } else {
  561. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  562. }
  563. /* write test */
  564. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  565. start_time = rt_tick_get();
  566. for (i = 0; i < size; i += write_size) {
  567. result = sfud_write(sfud_dev, addr + i, write_size, write_data);
  568. if (result != SFUD_SUCCESS) {
  569. break;
  570. }
  571. }
  572. if (result == SFUD_SUCCESS) {
  573. time_cast = rt_tick_get() - start_time;
  574. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  575. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  576. } else {
  577. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  578. }
  579. /* read test */
  580. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  581. start_time = rt_tick_get();
  582. for (i = 0; i < size; i += read_size) {
  583. if (i + read_size <= size) {
  584. result = sfud_read(sfud_dev, addr + i, read_size, read_data);
  585. } else {
  586. result = sfud_read(sfud_dev, addr + i, size - i, read_data);
  587. }
  588. /* data check */
  589. if (memcmp(write_data, read_data, read_size))
  590. {
  591. rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
  592. result = SFUD_ERR_READ;
  593. }
  594. if (result != SFUD_SUCCESS) {
  595. break;
  596. }
  597. }
  598. if (result == SFUD_SUCCESS) {
  599. time_cast = rt_tick_get() - start_time;
  600. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  601. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  602. } else {
  603. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  604. }
  605. } else {
  606. rt_kprintf("Low memory!\n");
  607. }
  608. rt_free(write_data);
  609. rt_free(read_data);
  610. } else {
  611. rt_kprintf("Usage:\n");
  612. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  613. rt_kprintf("%s\n", sf_help_info[i]);
  614. }
  615. rt_kprintf("\n");
  616. return;
  617. }
  618. if (result != SFUD_SUCCESS) {
  619. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  620. }
  621. }
  622. }
  623. }
  624. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  625. sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name)
  626. {
  627. rt_spi_flash_device_t rtt_dev = RT_NULL;
  628. struct rt_spi_device *rt_spi_device = RT_NULL;
  629. sfud_flash_t sfud_dev = RT_NULL;
  630. rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  631. if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice)
  632. {
  633. rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
  634. goto error;
  635. }
  636. rtt_dev = (rt_spi_flash_device_t)(rt_spi_device->user_data);
  637. if (rtt_dev && rtt_dev->user_data)
  638. {
  639. sfud_dev = (sfud_flash_t)(rtt_dev->user_data);
  640. return sfud_dev;
  641. }
  642. else
  643. {
  644. rt_kprintf("ERROR: SFUD flash device not found!\n");
  645. goto error;
  646. }
  647. error:
  648. return RT_NULL;
  649. }
  650. #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
  651. #endif /* RT_USING_SFUD */