netbuffer.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. #include <rthw.h>
  2. #include <rtthread.h>
  3. #include "netbuffer.h"
  4. #define MP3_DECODE_MP_CNT 2
  5. #define MP3_DECODE_MP_SZ 2560
  6. static rt_uint8_t mempool[(MP3_DECODE_MP_SZ * 2 + 4)* 2]; // 5k x 2
  7. static struct rt_mempool _mp;
  8. static rt_bool_t is_inited = RT_FALSE;
  9. rt_size_t sbuf_get_size()
  10. {
  11. return MP3_DECODE_MP_SZ * 2;
  12. }
  13. void sbuf_init()
  14. {
  15. rt_mp_init(&_mp, "mp3", &mempool[0], sizeof(mempool), MP3_DECODE_MP_SZ * 2);
  16. }
  17. void* sbuf_alloc()
  18. {
  19. if (is_inited == RT_FALSE)
  20. {
  21. sbuf_init();
  22. is_inited = RT_TRUE;
  23. }
  24. return (rt_uint16_t*)rt_mp_alloc(&_mp, RT_WAITING_FOREVER);
  25. }
  26. void sbuf_release(void* ptr)
  27. {
  28. rt_mp_free(ptr);
  29. }
  30. #if STM32_EXT_SRAM
  31. /* netbuf worker stat */
  32. #define NETBUF_STAT_FREE 0
  33. #define NETBUF_STAT_BUFFERING 1
  34. #define NETBUF_STAT_BUSY 2
  35. #define NETBUF_STAT_STOPPING 3
  36. #define NETBUF_STAT_STOPPED 4
  37. /* net buffer module */
  38. struct net_buffer
  39. {
  40. /* read index and save index in the buffer */
  41. rt_size_t read_index, save_index;
  42. /* buffer data and size of buffer */
  43. rt_uint8_t* buffer_data;
  44. rt_size_t data_length;
  45. rt_size_t size;
  46. /* buffer ready water mater */
  47. rt_uint32_t ready_wm, resume_wm;
  48. rt_bool_t is_wait_ready, is_wait_resume;
  49. rt_sem_t wait_ready, wait_resume;
  50. /* netbuf worker stat */
  51. rt_uint8_t stat;
  52. };
  53. struct net_buffer_job
  54. {
  55. rt_size_t (*fetch)(rt_uint8_t* ptr, rt_size_t len, void* parameter);
  56. void (*close)(void* parameter);
  57. void* parameter;
  58. };
  59. static struct net_buffer _netbuf;
  60. static rt_mq_t _netbuf_mq = RT_NULL;
  61. rt_size_t net_buf_read(rt_uint8_t* buffer, rt_size_t length)
  62. {
  63. rt_size_t data_length, read_index;
  64. rt_uint32_t level;
  65. data_length = _netbuf.data_length;
  66. if ((data_length == 0) &&
  67. (_netbuf.stat != NETBUF_STAT_STOPPED && _netbuf.stat != NETBUF_STAT_STOPPING))
  68. {
  69. /* set stat */
  70. _netbuf.stat = NETBUF_STAT_BUFFERING;
  71. rt_kprintf("stat -> buffering\n");
  72. /* buffer is not ready. */
  73. _netbuf.is_wait_ready = RT_TRUE;
  74. rt_kprintf("wait ready, data len: %d, stat %d\n", data_length, _netbuf.stat);
  75. /* set buffer status to buffering */
  76. player_set_buffer_status(RT_TRUE);
  77. rt_sem_take(_netbuf.wait_ready, RT_WAITING_FOREVER);
  78. }
  79. if ((data_length <= _netbuf.ready_wm) &&
  80. (_netbuf.stat == NETBUF_STAT_BUFFERING))
  81. {
  82. /* buffer is not ready. */
  83. _netbuf.is_wait_ready = RT_TRUE;
  84. rt_kprintf("wait ready, data len: %d, stat %d\n", data_length, _netbuf.stat);
  85. rt_sem_take(_netbuf.wait_ready, RT_WAITING_FOREVER);
  86. }
  87. /* get read and save index */
  88. read_index = _netbuf.read_index;
  89. /* re-get data legnth */
  90. data_length = _netbuf.data_length;
  91. /* set the length */
  92. if (length > data_length) length = data_length;
  93. // rt_kprintf("data len: %d, read idx %d\n", data_length, read_index);
  94. if (data_length > 0)
  95. {
  96. /* copy buffer */
  97. if (_netbuf.size - read_index > length)
  98. {
  99. rt_memcpy(buffer, &_netbuf.buffer_data[read_index],
  100. length);
  101. _netbuf.read_index += length;
  102. }
  103. else
  104. {
  105. rt_memcpy(buffer, &_netbuf.buffer_data[read_index],
  106. _netbuf.size - read_index);
  107. rt_memcpy(&buffer[_netbuf.size - read_index],
  108. &_netbuf.buffer_data[0],
  109. length - (_netbuf.size - read_index));
  110. _netbuf.read_index = length - (_netbuf.size - read_index);
  111. }
  112. level = rt_hw_interrupt_disable();
  113. _netbuf.data_length -= length;
  114. data_length = _netbuf.data_length;
  115. if ((_netbuf.is_wait_resume == RT_TRUE) && data_length < _netbuf.resume_wm)
  116. {
  117. _netbuf.is_wait_resume = RT_FALSE;
  118. rt_hw_interrupt_enable(level);
  119. rt_kprintf("resume netbuf worker\n");
  120. rt_sem_release(_netbuf.wait_resume);
  121. }
  122. else
  123. {
  124. rt_hw_interrupt_enable(level);
  125. }
  126. }
  127. return length;
  128. }
  129. void net_buf_add_job(rt_size_t (*fetch)(rt_uint8_t* ptr, rt_size_t len, void* parameter),
  130. void (*close)(void* parameter),
  131. void* parameter)
  132. {
  133. struct net_buffer_job job;
  134. job.fetch = fetch;
  135. job.close = close;
  136. job.parameter = parameter;
  137. rt_mq_send(_netbuf_mq, (void*)&job, sizeof(struct net_buffer_job));
  138. }
  139. void net_buf_stop_job()
  140. {
  141. rt_uint32_t level;
  142. level = rt_hw_interrupt_disable();
  143. _netbuf.stat = NETBUF_STAT_STOPPING;
  144. rt_kprintf("stat -> stopping\n");
  145. rt_hw_interrupt_enable(level);
  146. }
  147. static void net_buf_do_stop(struct net_buffer_job* job)
  148. {
  149. /* source closed */
  150. job->close(job->parameter);
  151. _netbuf.stat = NETBUF_STAT_STOPPED;
  152. rt_kprintf("stat -> stopped\n");
  153. if (_netbuf.is_wait_ready == RT_TRUE)
  154. {
  155. /* resume the wait for buffer task */
  156. _netbuf.is_wait_ready = RT_FALSE;
  157. rt_sem_release(_netbuf.wait_ready);
  158. }
  159. rt_kprintf("job done, stat %d\n", _netbuf.stat);
  160. }
  161. #define NETBUF_BLOCK_SIZE 4096
  162. static void net_buf_do_job(struct net_buffer_job* job)
  163. {
  164. rt_uint32_t level;
  165. rt_size_t read_length, data_length;
  166. rt_uint8_t *ptr;
  167. ptr = rt_malloc(NETBUF_BLOCK_SIZE);
  168. while (1)
  169. {
  170. if (_netbuf.stat == NETBUF_STAT_STOPPING)
  171. {
  172. net_buf_do_stop(job);
  173. break;
  174. }
  175. /* fetch data buffer */
  176. read_length = job->fetch(ptr, NETBUF_BLOCK_SIZE, job->parameter);
  177. if (read_length <= 0)
  178. {
  179. net_buf_do_stop(job);
  180. break;
  181. }
  182. else
  183. {
  184. /* got data length in the buffer */
  185. data_length = _netbuf.data_length;
  186. /* check avaible buffer to save */
  187. if ((_netbuf.size - data_length) < read_length)
  188. {
  189. rt_err_t result;
  190. _netbuf.is_wait_resume = RT_TRUE;
  191. rt_kprintf("netbuf suspend, avaible room %d\n", data_length);
  192. result = rt_sem_take(_netbuf.wait_resume, RT_WAITING_FOREVER);
  193. if (result != RT_EOK)
  194. {
  195. /* stop net buffer worker */
  196. net_buf_do_stop(job);
  197. break;
  198. }
  199. }
  200. /* there are free space to fetch data */
  201. if ((_netbuf.size - _netbuf.save_index) < read_length)
  202. {
  203. rt_memcpy(&_netbuf.buffer_data[_netbuf.save_index],
  204. ptr, _netbuf.size - _netbuf.save_index);
  205. rt_memcpy(&_netbuf.buffer_data[0],
  206. ptr + (_netbuf.size - _netbuf.save_index),
  207. read_length - (_netbuf.size - _netbuf.save_index));
  208. /* move save index */
  209. _netbuf.save_index = read_length - (_netbuf.size - _netbuf.save_index);
  210. }
  211. else
  212. {
  213. rt_memcpy(&_netbuf.buffer_data[_netbuf.save_index],
  214. ptr, read_length);
  215. /* move save index */
  216. _netbuf.save_index += read_length;
  217. if (_netbuf.save_index >= _netbuf.size) _netbuf.save_index = 0;
  218. }
  219. level = rt_hw_interrupt_disable();
  220. _netbuf.data_length += read_length;
  221. data_length = _netbuf.data_length;
  222. rt_hw_interrupt_enable(level);
  223. }
  224. rt_kprintf("buffering ... %d %c\n", (data_length * 100) / _netbuf.size, '%');
  225. /* set buffer position */
  226. player_set_position(data_length);
  227. if ((_netbuf.stat == NETBUF_STAT_BUFFERING) && (data_length >= _netbuf.ready_wm))
  228. {
  229. _netbuf.stat = NETBUF_STAT_BUSY;
  230. rt_kprintf("stat -> busy\n");
  231. /* notify the thread for waitting buffer ready */
  232. rt_kprintf("resume wait buffer\n");
  233. if (_netbuf.is_wait_ready == RT_TRUE)
  234. {
  235. _netbuf.is_wait_ready = RT_FALSE;
  236. /* set buffer status to playing */
  237. player_set_buffer_status(RT_FALSE);
  238. rt_sem_release(_netbuf.wait_ready);
  239. }
  240. }
  241. }
  242. /* release fetch buffer */
  243. rt_free(ptr);
  244. }
  245. static void net_buf_thread_entry(void* parameter)
  246. {
  247. rt_err_t result;
  248. struct net_buffer_job job;
  249. while (1)
  250. {
  251. /* get a job */
  252. result = rt_mq_recv(_netbuf_mq, (void*)&job, sizeof(struct net_buffer_job), RT_WAITING_FOREVER);
  253. if (result == RT_EOK)
  254. {
  255. _netbuf.stat = NETBUF_STAT_BUFFERING;
  256. rt_kprintf("stat -> buffering\n");
  257. /* perform the job */
  258. net_buf_do_job(&job);
  259. }
  260. }
  261. }
  262. void net_buf_init(rt_size_t size)
  263. {
  264. rt_thread_t tid;
  265. /* init net buffer structure */
  266. _netbuf.read_index = _netbuf.save_index = 0;
  267. _netbuf.size = size; /* net buffer size */
  268. /* allocate buffer */
  269. _netbuf.buffer_data = rt_malloc(_netbuf.size);
  270. _netbuf.data_length = 0;
  271. /* set ready and resume water mater */
  272. _netbuf.ready_wm = _netbuf.size * 90/100;
  273. _netbuf.resume_wm = _netbuf.size * 80/100;
  274. /* set init stat */
  275. _netbuf.stat = NETBUF_STAT_FREE;
  276. rt_kprintf("stat -> free\n");
  277. _netbuf.wait_ready = rt_sem_create("nready", 0, RT_IPC_FLAG_FIFO);
  278. _netbuf.wait_resume = rt_sem_create("nresum", 0, RT_IPC_FLAG_FIFO);
  279. _netbuf.is_wait_ready = RT_FALSE;
  280. _netbuf.is_wait_resume = RT_FALSE;
  281. /* crate message queue */
  282. _netbuf_mq = rt_mq_create("njob", sizeof(struct net_buffer_job),
  283. 4, RT_IPC_FLAG_FIFO);
  284. /* create net buffer thread */
  285. tid = rt_thread_create("nbuf",
  286. net_buf_thread_entry, RT_NULL,
  287. 1024, 22, 5);
  288. if (tid != RT_NULL)
  289. rt_thread_startup(tid);
  290. }
  291. #endif