1
0

dfs_elm.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2008-02-22 QiuYi The first version.
  9. * 2011-10-08 Bernard fixed the block size in statfs.
  10. * 2011-11-23 Bernard fixed the rename issue.
  11. * 2012-07-26 aozima implement ff_memalloc and ff_memfree.
  12. * 2012-12-19 Bernard fixed the O_APPEND and lseek issue.
  13. * 2013-03-01 aozima fixed the stat(st_mtime) issue.
  14. * 2014-01-26 Bernard Check the sector size before mount.
  15. * 2017-02-13 Hichard Update Fatfs version to 0.12b, support exFAT.
  16. * 2017-04-11 Bernard fix the st_blksize issue.
  17. * 2017-05-26 Urey fix f_mount error when mount more fats
  18. */
  19. #include <rtthread.h>
  20. #include "ffconf.h"
  21. #include "ff.h"
  22. #include <string.h>
  23. #include <sys/time.h>
  24. /* ELM FatFs provide a DIR struct */
  25. #define HAVE_DIR_STRUCTURE
  26. #include <dfs.h>
  27. #include <dfs_fs.h>
  28. #include <dfs_dentry.h>
  29. #include <dfs_file.h>
  30. #include <dfs_mnt.h>
  31. #ifdef RT_USING_PAGECACHE
  32. #include "dfs_pcache.h"
  33. #endif
  34. static int dfs_elm_free_vnode(struct dfs_vnode *vnode);
  35. static int dfs_elm_truncate(struct dfs_file *file, off_t offset);
  36. #ifdef RT_USING_PAGECACHE
  37. static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page);
  38. static ssize_t dfs_elm_page_write(struct dfs_page *page);
  39. static struct dfs_aspace_ops dfs_elm_aspace_ops =
  40. {
  41. .read = dfs_elm_page_read,
  42. .write = dfs_elm_page_write,
  43. };
  44. #endif
  45. #undef SS
  46. #if FF_MAX_SS == FF_MIN_SS
  47. #define SS(fs) ((UINT)FF_MAX_SS) /* Fixed sector size */
  48. #else
  49. #define SS(fs) ((fs)->ssize) /* Variable sector size */
  50. #endif
  51. static rt_device_t disk[FF_VOLUMES] = {0};
  52. int dfs_elm_unmount(struct dfs_mnt *mnt);
  53. static int elm_result_to_dfs(FRESULT result)
  54. {
  55. int status = RT_EOK;
  56. switch (result)
  57. {
  58. case FR_OK:
  59. break;
  60. case FR_NO_FILE:
  61. case FR_NO_PATH:
  62. case FR_NO_FILESYSTEM:
  63. status = -ENOENT;
  64. break;
  65. case FR_INVALID_NAME:
  66. status = -EINVAL;
  67. break;
  68. case FR_EXIST:
  69. case FR_INVALID_OBJECT:
  70. status = -EEXIST;
  71. break;
  72. case FR_DISK_ERR:
  73. case FR_NOT_READY:
  74. case FR_INT_ERR:
  75. status = -EIO;
  76. break;
  77. case FR_WRITE_PROTECTED:
  78. case FR_DENIED:
  79. status = -EROFS;
  80. break;
  81. case FR_MKFS_ABORTED:
  82. status = -EINVAL;
  83. break;
  84. default:
  85. status = -1;
  86. break;
  87. }
  88. return status;
  89. }
  90. /* results:
  91. * -1, no space to install fatfs driver
  92. * >= 0, there is an space to install fatfs driver
  93. */
  94. static int get_disk(rt_device_t id)
  95. {
  96. int index;
  97. for (index = 0; index < FF_VOLUMES; index ++)
  98. {
  99. if (disk[index] == id)
  100. return index;
  101. }
  102. return -1;
  103. }
  104. static int dfs_elm_mount(struct dfs_mnt *mnt, unsigned long rwflag, const void *data)
  105. {
  106. FATFS *fat;
  107. FRESULT result;
  108. int index;
  109. struct rt_device_blk_geometry geometry;
  110. char logic_nbr[3] = {'0',':', 0};
  111. /* open device, but do not check the status of device */
  112. if (mnt->dev_id == RT_NULL
  113. || rt_device_open(mnt->dev_id, RT_DEVICE_OFLAG_RDWR) != RT_EOK)
  114. {
  115. return -ENODEV;
  116. }
  117. /* get an empty position */
  118. index = get_disk(RT_NULL);
  119. if (index == -1)
  120. {
  121. rt_device_close(mnt->dev_id);
  122. return -ENOENT;
  123. }
  124. logic_nbr[0] = '0' + index;
  125. /* save device */
  126. disk[index] = mnt->dev_id;
  127. /* check sector size */
  128. if (rt_device_control(mnt->dev_id, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry) == RT_EOK)
  129. {
  130. if (geometry.bytes_per_sector > FF_MAX_SS)
  131. {
  132. rt_kprintf("The sector size of device is greater than the sector size of FAT.\n");
  133. rt_device_close(mnt->dev_id);
  134. return -EINVAL;
  135. }
  136. }
  137. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  138. if (fat == RT_NULL)
  139. {
  140. disk[index] = RT_NULL;
  141. rt_device_close(mnt->dev_id);
  142. return -ENOMEM;
  143. }
  144. /* mount fatfs, always 0 logic driver */
  145. result = f_mount(fat, (const TCHAR *)logic_nbr, 1);
  146. if (result == FR_OK)
  147. {
  148. char drive[8];
  149. DIR *dir;
  150. rt_snprintf(drive, sizeof(drive), "%d:/", index);
  151. dir = (DIR *)rt_malloc(sizeof(DIR));
  152. if (dir == RT_NULL)
  153. {
  154. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  155. disk[index] = RT_NULL;
  156. rt_free(fat);
  157. rt_device_close(mnt->dev_id);
  158. return -ENOMEM;
  159. }
  160. /* open the root directory to test whether the fatfs is valid */
  161. result = f_opendir(dir, drive);
  162. if (result != FR_OK)
  163. goto __err;
  164. /* mount succeed! */
  165. mnt->data = fat;
  166. rt_free(dir);
  167. return RT_EOK;
  168. }
  169. __err:
  170. f_mount(RT_NULL, (const TCHAR *)logic_nbr, 1);
  171. disk[index] = RT_NULL;
  172. rt_free(fat);
  173. rt_device_close(mnt->dev_id);
  174. return elm_result_to_dfs(result);
  175. }
  176. int dfs_elm_unmount(struct dfs_mnt *mnt)
  177. {
  178. FATFS *fat;
  179. FRESULT result;
  180. int index;
  181. char logic_nbr[3] = {'0',':', 0};
  182. fat = (FATFS *)mnt->data;
  183. RT_ASSERT(fat != RT_NULL);
  184. /* find the device index and then umount it */
  185. index = get_disk(mnt->dev_id);
  186. if (index == -1) /* not found */
  187. return -ENOENT;
  188. logic_nbr[0] = '0' + index;
  189. result = f_mount(RT_NULL, logic_nbr, (BYTE)0);
  190. if (result != FR_OK)
  191. return elm_result_to_dfs(result);
  192. mnt->data = RT_NULL;
  193. disk[index] = RT_NULL;
  194. rt_free(fat);
  195. rt_device_close(mnt->dev_id);
  196. return RT_EOK;
  197. }
  198. int dfs_elm_mkfs(rt_device_t dev_id, const char *fs_name)
  199. {
  200. #define FSM_STATUS_INIT 0
  201. #define FSM_STATUS_USE_TEMP_DRIVER 1
  202. FATFS *fat = RT_NULL;
  203. BYTE *work;
  204. int flag;
  205. FRESULT result;
  206. int index;
  207. char logic_nbr[3] = {'0',':', 0};
  208. MKFS_PARM opt;
  209. work = rt_malloc(FF_MAX_SS);
  210. if(RT_NULL == work) {
  211. return -ENOMEM;
  212. }
  213. if (dev_id == RT_NULL)
  214. {
  215. rt_free(work); /* release memory */
  216. return -EINVAL;
  217. }
  218. /* if the device is already mounted, then just do mkfs to the drv,
  219. * while if it is not mounted yet, then find an empty drive to do mkfs
  220. */
  221. flag = FSM_STATUS_INIT;
  222. index = get_disk(dev_id);
  223. if (index == -1)
  224. {
  225. /* not found the device id */
  226. index = get_disk(RT_NULL);
  227. if (index == -1)
  228. {
  229. /* no space to store an temp driver */
  230. rt_kprintf("sorry, there is no space to do mkfs! \n");
  231. rt_free(work); /* release memory */
  232. return -ENOSPC;
  233. }
  234. else
  235. {
  236. fat = (FATFS *)rt_malloc(sizeof(FATFS));
  237. if (fat == RT_NULL)
  238. {
  239. rt_free(work); /* release memory */
  240. return -ENOMEM;
  241. }
  242. flag = FSM_STATUS_USE_TEMP_DRIVER;
  243. disk[index] = dev_id;
  244. /* try to open device */
  245. rt_device_open(dev_id, RT_DEVICE_OFLAG_RDWR);
  246. /* just fill the FatFs[vol] in ff.c, or mkfs will failded!
  247. * consider this condition: you just umount the elm fat,
  248. * then the space in FatFs[index] is released, and now do mkfs
  249. * on the disk, you will get a failure. so we need f_mount here,
  250. * just fill the FatFS[index] in elm fatfs to make mkfs work.
  251. */
  252. logic_nbr[0] = '0' + index;
  253. f_mount(fat, logic_nbr, (BYTE)index);
  254. }
  255. }
  256. else
  257. {
  258. logic_nbr[0] = '0' + index;
  259. }
  260. /* [IN] Logical drive number */
  261. /* [IN] Format options */
  262. /* [-] Working buffer */
  263. /* [IN] Size of working buffer */
  264. rt_memset(&opt, 0, sizeof(opt));
  265. opt.fmt = FM_ANY|FM_SFD;
  266. result = f_mkfs(logic_nbr, &opt, work, FF_MAX_SS);
  267. rt_free(work); work = RT_NULL;
  268. /* check flag status, we need clear the temp driver stored in disk[] */
  269. if (flag == FSM_STATUS_USE_TEMP_DRIVER)
  270. {
  271. rt_free(fat);
  272. f_mount(RT_NULL, logic_nbr, (BYTE)index);
  273. disk[index] = RT_NULL;
  274. /* close device */
  275. rt_device_close(dev_id);
  276. }
  277. if (result != FR_OK)
  278. {
  279. rt_kprintf("format error, result=%d\n", result);
  280. return elm_result_to_dfs(result);
  281. }
  282. return RT_EOK;
  283. }
  284. int dfs_elm_statfs(struct dfs_mnt *mnt, struct statfs *buf)
  285. {
  286. FATFS *f;
  287. FRESULT res;
  288. char driver[4];
  289. DWORD fre_clust, fre_sect, tot_sect;
  290. RT_ASSERT(mnt != RT_NULL);
  291. RT_ASSERT(buf != RT_NULL);
  292. f = (FATFS *)mnt->data;
  293. rt_snprintf(driver, sizeof(driver), "%d:", f->pdrv);
  294. res = f_getfree(driver, &fre_clust, &f);
  295. if (res)
  296. return elm_result_to_dfs(res);
  297. /* Get total sectors and free sectors */
  298. tot_sect = (f->n_fatent - 2) * f->csize;
  299. fre_sect = fre_clust * f->csize;
  300. buf->f_bfree = fre_sect;
  301. buf->f_blocks = tot_sect;
  302. #if FF_MAX_SS != 512
  303. buf->f_bsize = f->ssize;
  304. #else
  305. buf->f_bsize = 512;
  306. #endif
  307. return 0;
  308. }
  309. int dfs_elm_open(struct dfs_file *file)
  310. {
  311. FIL *fd;
  312. BYTE mode;
  313. FRESULT result;
  314. char *drivers_fn;
  315. #if (FF_VOLUMES > 1)
  316. int vol;
  317. struct dfs_mnt *mnt = file->vnode->mnt;
  318. extern int elm_get_vol(FATFS * fat);
  319. RT_ASSERT(file->vnode->ref_count > 0);
  320. if (file->vnode->data)
  321. {
  322. if (file->vnode->type == FT_DIRECTORY
  323. && !(file->flags & O_DIRECTORY))
  324. {
  325. return -ENOENT;
  326. }
  327. file->fpos = 0;
  328. return 0;
  329. }
  330. if (mnt == NULL)
  331. return -ENOENT;
  332. /* add path for ELM FatFS driver support */
  333. vol = elm_get_vol((FATFS *)mnt->data);
  334. if (vol < 0)
  335. return -ENOENT;
  336. drivers_fn = (char *)rt_malloc(256);
  337. if (drivers_fn == RT_NULL)
  338. return -ENOMEM;
  339. rt_snprintf(drivers_fn, 256, "%d:%s", vol, file->dentry->pathname);
  340. #else
  341. drivers_fn = file->dentry->pathname;
  342. #endif
  343. if (file->flags & O_DIRECTORY)
  344. {
  345. DIR *dir;
  346. if (file->flags & O_CREAT)
  347. {
  348. result = f_mkdir(drivers_fn);
  349. if (result != FR_OK)
  350. {
  351. #if FF_VOLUMES > 1
  352. rt_free(drivers_fn);
  353. #endif
  354. return elm_result_to_dfs(result);
  355. }
  356. }
  357. /* open directory */
  358. dir = (DIR *)rt_malloc(sizeof(DIR));
  359. if (dir == RT_NULL)
  360. {
  361. #if FF_VOLUMES > 1
  362. rt_free(drivers_fn);
  363. #endif
  364. return -ENOMEM;
  365. }
  366. result = f_opendir(dir, drivers_fn);
  367. #if FF_VOLUMES > 1
  368. rt_free(drivers_fn);
  369. #endif
  370. if (result != FR_OK)
  371. {
  372. rt_free(dir);
  373. return elm_result_to_dfs(result);
  374. }
  375. file->vnode->data = dir;
  376. rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
  377. return RT_EOK;
  378. }
  379. else
  380. {
  381. mode = FA_READ;
  382. if (file->flags & O_WRONLY)
  383. mode |= FA_WRITE;
  384. if ((file->flags & O_ACCMODE) & O_RDWR)
  385. mode |= FA_WRITE;
  386. /* Opens the file, if it is existing. If not, a new file is created. */
  387. if (file->flags & O_CREAT)
  388. mode |= FA_OPEN_ALWAYS;
  389. /* Creates a new file. If the file is existing, it is truncated and overwritten. */
  390. if (file->flags & O_TRUNC)
  391. mode |= FA_CREATE_ALWAYS;
  392. /* Creates a new file. The function fails if the file is already existing. */
  393. if (file->flags & O_EXCL)
  394. mode |= FA_CREATE_NEW;
  395. /* allocate a fd */
  396. fd = (FIL *)rt_malloc(sizeof(FIL));
  397. if (fd == RT_NULL)
  398. {
  399. #if FF_VOLUMES > 1
  400. rt_free(drivers_fn);
  401. #endif
  402. return -ENOMEM;
  403. }
  404. result = f_open(fd, drivers_fn, mode);
  405. #if FF_VOLUMES > 1
  406. rt_free(drivers_fn);
  407. #endif
  408. if (result == FR_OK)
  409. {
  410. file->fpos = fd->fptr;
  411. file->vnode->size = f_size(fd);
  412. file->vnode->type = FT_REGULAR;
  413. file->vnode->data = fd;
  414. rt_mutex_init(&file->vnode->lock, file->dentry->pathname, RT_IPC_FLAG_PRIO);
  415. if (file->flags & O_APPEND)
  416. {
  417. /* seek to the end of file */
  418. f_lseek(fd, f_size(fd));
  419. file->fpos = fd->fptr;
  420. }
  421. }
  422. else
  423. {
  424. /* open failed, return */
  425. rt_free(fd);
  426. return elm_result_to_dfs(result);
  427. }
  428. }
  429. return RT_EOK;
  430. }
  431. int dfs_elm_close(struct dfs_file *file)
  432. {
  433. FRESULT result;
  434. RT_ASSERT(file->vnode->ref_count > 0);
  435. if (file->vnode->ref_count > 1)
  436. {
  437. return 0;
  438. }
  439. result = FR_OK;
  440. if (file->vnode->type == FT_DIRECTORY)
  441. {
  442. DIR *dir = RT_NULL;
  443. dir = (DIR *)(file->vnode->data);
  444. RT_ASSERT(dir != RT_NULL);
  445. /* release memory */
  446. rt_free(dir);
  447. }
  448. else if (file->vnode->type == FT_REGULAR)
  449. {
  450. FIL *fd = RT_NULL;
  451. fd = (FIL *)(file->vnode->data);
  452. RT_ASSERT(fd != RT_NULL);
  453. f_close(fd);
  454. /* release memory */
  455. rt_free(fd);
  456. }
  457. file->vnode->data = RT_NULL;
  458. rt_mutex_detach(&file->vnode->lock);
  459. return elm_result_to_dfs(result);
  460. }
  461. int dfs_elm_ioctl(struct dfs_file *file, int cmd, void *args)
  462. {
  463. switch (cmd)
  464. {
  465. case RT_FIOFTRUNCATE:
  466. {
  467. off_t offset = (off_t)(size_t)(args);
  468. return dfs_elm_truncate(file, offset);
  469. }
  470. case F_GETLK:
  471. return 0;
  472. case F_SETLK:
  473. return 0;
  474. }
  475. return -ENOSYS;
  476. }
  477. ssize_t dfs_elm_read(struct dfs_file *file, void *buf, size_t len, off_t *pos)
  478. {
  479. FIL *fd;
  480. FRESULT result = FR_OK;
  481. UINT byte_read;
  482. if (file->vnode->type == FT_DIRECTORY)
  483. {
  484. return -EISDIR;
  485. }
  486. if (file->vnode->size > *pos)
  487. {
  488. fd = (FIL *)(file->vnode->data);
  489. RT_ASSERT(fd != RT_NULL);
  490. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  491. f_lseek(fd, *pos);
  492. result = f_read(fd, buf, len, &byte_read);
  493. /* update position */
  494. *pos = fd->fptr;
  495. rt_mutex_release(&file->vnode->lock);
  496. if (result == FR_OK)
  497. return byte_read;
  498. }
  499. return elm_result_to_dfs(result);
  500. }
  501. ssize_t dfs_elm_write(struct dfs_file *file, const void *buf, size_t len, off_t *pos)
  502. {
  503. FIL *fd;
  504. FRESULT result;
  505. UINT byte_write;
  506. if (file->vnode->type == FT_DIRECTORY)
  507. {
  508. return -EISDIR;
  509. }
  510. fd = (FIL *)(file->vnode->data);
  511. RT_ASSERT(fd != RT_NULL);
  512. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  513. f_lseek(fd, *pos);
  514. result = f_write(fd, buf, len, &byte_write);
  515. /* update position and file size */
  516. *pos = fd->fptr;
  517. file->vnode->size = f_size(fd);
  518. rt_mutex_release(&file->vnode->lock);
  519. if (result == FR_OK)
  520. return byte_write;
  521. return elm_result_to_dfs(result);
  522. }
  523. int dfs_elm_flush(struct dfs_file *file)
  524. {
  525. FIL *fd;
  526. FRESULT result;
  527. fd = (FIL *)(file->vnode->data);
  528. RT_ASSERT(fd != RT_NULL);
  529. result = f_sync(fd);
  530. return elm_result_to_dfs(result);
  531. }
  532. off_t dfs_elm_lseek(struct dfs_file *file, off_t offset, int wherece)
  533. {
  534. FRESULT result = FR_OK;
  535. switch (wherece)
  536. {
  537. case SEEK_SET:
  538. break;
  539. case SEEK_CUR:
  540. offset += file->fpos;
  541. break;
  542. case SEEK_END:
  543. offset += file->vnode->size;
  544. break;
  545. default:
  546. return -EINVAL;
  547. }
  548. if (file->vnode->type == FT_REGULAR)
  549. {
  550. FIL *fd;
  551. /* regular file type */
  552. fd = (FIL *)(file->vnode->data);
  553. RT_ASSERT(fd != RT_NULL);
  554. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  555. result = f_lseek(fd, offset);
  556. rt_mutex_release(&file->vnode->lock);
  557. if (result == FR_OK)
  558. {
  559. /* return current position */
  560. return fd->fptr;
  561. }
  562. }
  563. else if (file->vnode->type == FT_DIRECTORY)
  564. {
  565. /* which is a directory */
  566. DIR *dir = RT_NULL;
  567. dir = (DIR *)(file->vnode->data);
  568. RT_ASSERT(dir != RT_NULL);
  569. rt_mutex_take(&file->vnode->lock, RT_WAITING_FOREVER);
  570. result = f_seekdir(dir, offset / sizeof(struct dirent));
  571. rt_mutex_release(&file->vnode->lock);
  572. if (result == FR_OK)
  573. {
  574. /* update file position */
  575. return offset;
  576. }
  577. }
  578. return elm_result_to_dfs(result);
  579. }
  580. static int dfs_elm_truncate(struct dfs_file *file, off_t offset)
  581. {
  582. FIL *fd;
  583. FSIZE_t fptr;
  584. FRESULT result = FR_OK;
  585. fd = (FIL *)(file->vnode->data);
  586. RT_ASSERT(fd != RT_NULL);
  587. /* save file read/write point */
  588. fptr = fd->fptr;
  589. if (offset <= fd->obj.objsize)
  590. {
  591. fd->fptr = offset;
  592. result = f_truncate(fd);
  593. }
  594. else
  595. {
  596. result = f_lseek(fd, offset);
  597. }
  598. /* restore file read/write point */
  599. fd->fptr = fptr;
  600. return elm_result_to_dfs(result);
  601. }
  602. int dfs_elm_getdents(struct dfs_file *file, struct dirent *dirp, uint32_t count)
  603. {
  604. DIR *dir;
  605. FILINFO fno;
  606. FRESULT result;
  607. rt_uint32_t index;
  608. struct dirent *d;
  609. dir = (DIR *)(file->vnode->data);
  610. RT_ASSERT(dir != RT_NULL);
  611. /* make integer count */
  612. count = (count / sizeof(struct dirent)) * sizeof(struct dirent);
  613. if (count == 0)
  614. return -EINVAL;
  615. index = 0;
  616. while (1)
  617. {
  618. char *fn;
  619. d = dirp + index;
  620. result = f_readdir(dir, &fno);
  621. if (result != FR_OK || fno.fname[0] == 0)
  622. break;
  623. #if FF_USE_LFN
  624. fn = *fno.fname ? fno.fname : fno.altname;
  625. #else
  626. fn = fno.fname;
  627. #endif
  628. d->d_type = DT_UNKNOWN;
  629. if (fno.fattrib & AM_DIR)
  630. d->d_type = DT_DIR;
  631. else
  632. d->d_type = DT_REG;
  633. d->d_namlen = (rt_uint8_t)rt_strlen(fn);
  634. d->d_reclen = (rt_uint16_t)sizeof(struct dirent);
  635. rt_strncpy(d->d_name, fn, DIRENT_NAME_MAX);
  636. index ++;
  637. if (index * sizeof(struct dirent) >= count)
  638. break;
  639. }
  640. if (index == 0)
  641. return elm_result_to_dfs(result);
  642. file->fpos += index * sizeof(struct dirent);
  643. return index * sizeof(struct dirent);
  644. }
  645. int dfs_elm_unlink(struct dfs_dentry *dentry)
  646. {
  647. FRESULT result;
  648. #if FF_VOLUMES > 1
  649. int vol;
  650. char *drivers_fn;
  651. extern int elm_get_vol(FATFS * fat);
  652. /* add path for ELM FatFS driver support */
  653. vol = elm_get_vol((FATFS *)dentry->mnt->data);
  654. if (vol < 0)
  655. return -ENOENT;
  656. drivers_fn = (char *)rt_malloc(256);
  657. if (drivers_fn == RT_NULL)
  658. return -ENOMEM;
  659. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  660. #else
  661. const char *drivers_fn;
  662. drivers_fn = path;
  663. #endif
  664. result = f_unlink(drivers_fn);
  665. #if FF_VOLUMES > 1
  666. rt_free(drivers_fn);
  667. #endif
  668. return elm_result_to_dfs(result);
  669. }
  670. int dfs_elm_rename(struct dfs_dentry *old_dentry, struct dfs_dentry *new_dentry)
  671. {
  672. FRESULT result;
  673. #if FF_VOLUMES > 1
  674. char *drivers_oldfn;
  675. const char *drivers_newfn;
  676. int vol;
  677. extern int elm_get_vol(FATFS * fat);
  678. /* add path for ELM FatFS driver support */
  679. vol = elm_get_vol((FATFS *)old_dentry->mnt->data);
  680. if (vol < 0)
  681. return -ENOENT;
  682. drivers_oldfn = (char *)rt_malloc(256);
  683. if (drivers_oldfn == RT_NULL)
  684. return -ENOMEM;
  685. drivers_newfn = new_dentry->pathname;
  686. rt_snprintf(drivers_oldfn, 256, "%d:%s", vol, old_dentry->pathname);
  687. #else
  688. const char *drivers_oldfn, *drivers_newfn;
  689. drivers_oldfn = old_dentry->pathname;
  690. drivers_newfn = new_dentry->pathname;
  691. #endif
  692. result = f_rename(drivers_oldfn, drivers_newfn);
  693. #if FF_VOLUMES > 1
  694. rt_free(drivers_oldfn);
  695. #endif
  696. return elm_result_to_dfs(result);
  697. }
  698. int dfs_elm_stat(struct dfs_dentry *dentry, struct stat *st)
  699. {
  700. FATFS *fat;
  701. FILINFO file_info;
  702. FRESULT result;
  703. fat = (FATFS *)dentry->mnt->data;
  704. #if FF_VOLUMES > 1
  705. int vol;
  706. char *drivers_fn;
  707. extern int elm_get_vol(FATFS * fat);
  708. /* add path for ELM FatFS driver support */
  709. vol = elm_get_vol(fat);
  710. if (vol < 0)
  711. return -ENOENT;
  712. drivers_fn = (char *)rt_malloc(256);
  713. if (drivers_fn == RT_NULL)
  714. return -ENOMEM;
  715. rt_snprintf(drivers_fn, 256, "%d:%s", vol, dentry->pathname);
  716. #else
  717. const char *drivers_fn;
  718. drivers_fn = dentry->pathname;
  719. #endif
  720. result = f_stat(drivers_fn, &file_info);
  721. #if FF_VOLUMES > 1
  722. rt_free(drivers_fn);
  723. #endif
  724. if (result == FR_OK)
  725. {
  726. /* convert to dfs stat structure */
  727. st->st_dev = (dev_t)(size_t)(dentry->mnt->dev_id);
  728. st->st_ino = (ino_t)dfs_dentry_full_path_crc32(dentry);
  729. if (file_info.fattrib & AM_DIR)
  730. {
  731. st->st_mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  732. }
  733. else
  734. {
  735. st->st_mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  736. }
  737. if (file_info.fattrib & AM_RDO)
  738. st->st_mode &= ~(S_IWUSR | S_IWGRP | S_IWOTH);
  739. if (S_IFDIR & st->st_mode)
  740. {
  741. st->st_size = file_info.fsize;
  742. }
  743. else
  744. {
  745. #ifdef RT_USING_PAGECACHE
  746. st->st_size = (dentry->vnode && dentry->vnode->aspace) ? dentry->vnode->size : file_info.fsize;
  747. #else
  748. st->st_size = file_info.fsize;
  749. #endif
  750. }
  751. st->st_blksize = fat->csize * SS(fat);
  752. if (file_info.fattrib & AM_ARC)
  753. {
  754. st->st_blocks = st->st_size ? ((st->st_size - 1) / SS(fat) / fat->csize + 1) : 0;
  755. st->st_blocks *= (st->st_blksize / 512); // man say st_blocks is number of 512B blocks allocated
  756. }
  757. else
  758. {
  759. st->st_blocks = fat->csize;
  760. }
  761. /* get st_mtime. */
  762. {
  763. struct tm tm_file;
  764. int year, mon, day, hour, min, sec;
  765. WORD tmp;
  766. tmp = file_info.fdate;
  767. day = tmp & 0x1F; /* bit[4:0] Day(1..31) */
  768. tmp >>= 5;
  769. mon = tmp & 0x0F; /* bit[8:5] Month(1..12) */
  770. tmp >>= 4;
  771. year = (tmp & 0x7F) + 1980; /* bit[15:9] Year origin from 1980(0..127) */
  772. tmp = file_info.ftime;
  773. sec = (tmp & 0x1F) * 2; /* bit[4:0] Second/2(0..29) */
  774. tmp >>= 5;
  775. min = tmp & 0x3F; /* bit[10:5] Minute(0..59) */
  776. tmp >>= 6;
  777. hour = tmp & 0x1F; /* bit[15:11] Hour(0..23) */
  778. rt_memset(&tm_file, 0, sizeof(tm_file));
  779. tm_file.tm_year = year - 1900; /* Years since 1900 */
  780. tm_file.tm_mon = mon - 1; /* Months *since* january: 0-11 */
  781. tm_file.tm_mday = day; /* Day of the month: 1-31 */
  782. tm_file.tm_hour = hour; /* Hours since midnight: 0-23 */
  783. tm_file.tm_min = min; /* Minutes: 0-59 */
  784. tm_file.tm_sec = sec; /* Seconds: 0-59 */
  785. st->st_mtime = timegm(&tm_file);
  786. } /* get st_mtime. */
  787. }
  788. return elm_result_to_dfs(result);
  789. }
  790. static struct dfs_vnode *dfs_elm_lookup(struct dfs_dentry *dentry)
  791. {
  792. struct stat st;
  793. struct dfs_vnode *vnode = RT_NULL;
  794. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  795. {
  796. return NULL;
  797. }
  798. if (dfs_elm_stat(dentry, &st) != 0)
  799. {
  800. return vnode;
  801. }
  802. vnode = dfs_vnode_create();
  803. if (vnode)
  804. {
  805. vnode->mnt = dentry->mnt;
  806. vnode->size = st.st_size;
  807. vnode->data = NULL;
  808. if (S_ISDIR(st.st_mode))
  809. {
  810. vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  811. vnode->type = FT_DIRECTORY;
  812. }
  813. else
  814. {
  815. vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  816. vnode->type = FT_REGULAR;
  817. #ifdef RT_USING_PAGECACHE
  818. vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
  819. #endif
  820. }
  821. }
  822. return vnode;
  823. }
  824. static struct dfs_vnode *dfs_elm_create_vnode(struct dfs_dentry *dentry, int type, mode_t mode)
  825. {
  826. struct dfs_vnode *vnode = RT_NULL;
  827. if (dentry == NULL || dentry->mnt == NULL || dentry->mnt->data == NULL)
  828. {
  829. return NULL;
  830. }
  831. vnode = dfs_vnode_create();
  832. if (vnode)
  833. {
  834. if (type == FT_DIRECTORY)
  835. {
  836. /* fat directory force mode 0555 */
  837. vnode->mode = S_IFDIR | (S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH);
  838. vnode->type = FT_DIRECTORY;
  839. }
  840. else
  841. {
  842. /* fat REGULAR file mode force mode 0777 */
  843. vnode->mode = S_IFREG | (S_IRWXU | S_IRWXG | S_IRWXO);
  844. vnode->type = FT_REGULAR;
  845. #ifdef RT_USING_PAGECACHE
  846. vnode->aspace = dfs_aspace_create(dentry, vnode, &dfs_elm_aspace_ops);
  847. #endif
  848. }
  849. vnode->mnt = dentry->mnt;
  850. vnode->data = NULL;
  851. vnode->size = 0;
  852. }
  853. return vnode;
  854. }
  855. static int dfs_elm_free_vnode(struct dfs_vnode *vnode)
  856. {
  857. /* nothing to be freed */
  858. if (vnode && vnode->ref_count <= 1)
  859. {
  860. vnode->data = NULL;
  861. }
  862. return 0;
  863. }
  864. #ifdef RT_USING_PAGECACHE
  865. static ssize_t dfs_elm_page_read(struct dfs_file *file, struct dfs_page *page)
  866. {
  867. int ret = -EINVAL;
  868. if (page->page)
  869. {
  870. off_t fpos = page->fpos;
  871. ret = dfs_elm_read(file, page->page, page->size, &fpos);
  872. }
  873. return ret;
  874. }
  875. ssize_t dfs_elm_page_write(struct dfs_page *page)
  876. {
  877. FIL *fd;
  878. FRESULT result;
  879. UINT byte_write;
  880. if (page->aspace->vnode->type == FT_DIRECTORY)
  881. {
  882. return -EISDIR;
  883. }
  884. fd = (FIL *)(page->aspace->vnode->data);
  885. RT_ASSERT(fd != RT_NULL);
  886. rt_mutex_take(&page->aspace->vnode->lock, RT_WAITING_FOREVER);
  887. f_lseek(fd, page->fpos);
  888. result = f_write(fd, page->page, page->len, &byte_write);
  889. rt_mutex_release(&page->aspace->vnode->lock);
  890. if (result == FR_OK)
  891. {
  892. return byte_write;
  893. }
  894. return elm_result_to_dfs(result);
  895. }
  896. #endif
  897. static const struct dfs_file_ops dfs_elm_fops =
  898. {
  899. .open = dfs_elm_open,
  900. .close = dfs_elm_close,
  901. .ioctl = dfs_elm_ioctl,
  902. .read = dfs_elm_read,
  903. .write = dfs_elm_write,
  904. .flush = dfs_elm_flush,
  905. .lseek = dfs_elm_lseek,
  906. .truncate = dfs_elm_truncate,
  907. .getdents = dfs_elm_getdents,
  908. };
  909. static const struct dfs_filesystem_ops dfs_elm =
  910. {
  911. "elm",
  912. FS_NEED_DEVICE,
  913. &dfs_elm_fops,
  914. .mount = dfs_elm_mount,
  915. .umount = dfs_elm_unmount,
  916. .mkfs = dfs_elm_mkfs,
  917. .statfs = dfs_elm_statfs,
  918. .unlink = dfs_elm_unlink,
  919. .stat = dfs_elm_stat,
  920. .rename = dfs_elm_rename,
  921. .lookup = dfs_elm_lookup,
  922. .create_vnode = dfs_elm_create_vnode,
  923. .free_vnode = dfs_elm_free_vnode
  924. };
  925. static struct dfs_filesystem_type _elmfs =
  926. {
  927. .fs_ops = &dfs_elm,
  928. };
  929. int elm_init(void)
  930. {
  931. /* register fatfs file system */
  932. dfs_register(&_elmfs);
  933. return 0;
  934. }
  935. INIT_COMPONENT_EXPORT(elm_init);
  936. /*
  937. * RT-Thread Device Interface for ELM FatFs
  938. */
  939. #include "diskio.h"
  940. /* Initialize a Drive */
  941. DSTATUS disk_initialize(BYTE drv)
  942. {
  943. return 0;
  944. }
  945. /* Return Disk Status */
  946. DSTATUS disk_status(BYTE drv)
  947. {
  948. return 0;
  949. }
  950. /* Read Sector(s) */
  951. DRESULT disk_read(BYTE drv, BYTE *buff, DWORD sector, UINT count)
  952. {
  953. rt_size_t result;
  954. rt_device_t device = disk[drv];
  955. result = rt_device_read(device, sector, buff, count);
  956. if (result == count)
  957. {
  958. return RES_OK;
  959. }
  960. return RES_ERROR;
  961. }
  962. /* Write Sector(s) */
  963. DRESULT disk_write(BYTE drv, const BYTE *buff, DWORD sector, UINT count)
  964. {
  965. rt_size_t result;
  966. rt_device_t device = disk[drv];
  967. result = rt_device_write(device, sector, buff, count);
  968. if (result == count)
  969. {
  970. return RES_OK;
  971. }
  972. return RES_ERROR;
  973. }
  974. /* Miscellaneous Functions */
  975. DRESULT disk_ioctl(BYTE drv, BYTE ctrl, void *buff)
  976. {
  977. rt_device_t device = disk[drv];
  978. if (device == RT_NULL)
  979. return RES_ERROR;
  980. if (ctrl == GET_SECTOR_COUNT)
  981. {
  982. struct rt_device_blk_geometry geometry;
  983. rt_memset(&geometry, 0, sizeof(geometry));
  984. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  985. *(DWORD *)buff = geometry.sector_count;
  986. if (geometry.sector_count == 0)
  987. return RES_ERROR;
  988. }
  989. else if (ctrl == GET_SECTOR_SIZE)
  990. {
  991. struct rt_device_blk_geometry geometry;
  992. rt_memset(&geometry, 0, sizeof(geometry));
  993. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  994. *(WORD *)buff = (WORD)(geometry.bytes_per_sector);
  995. }
  996. else if (ctrl == GET_BLOCK_SIZE) /* Get erase block size in unit of sectors (DWORD) */
  997. {
  998. struct rt_device_blk_geometry geometry;
  999. rt_memset(&geometry, 0, sizeof(geometry));
  1000. rt_device_control(device, RT_DEVICE_CTRL_BLK_GETGEOME, &geometry);
  1001. *(DWORD *)buff = geometry.block_size / geometry.bytes_per_sector;
  1002. }
  1003. else if (ctrl == CTRL_SYNC)
  1004. {
  1005. rt_device_control(device, RT_DEVICE_CTRL_BLK_SYNC, RT_NULL);
  1006. }
  1007. else if (ctrl == CTRL_TRIM)
  1008. {
  1009. rt_device_control(device, RT_DEVICE_CTRL_BLK_ERASE, buff);
  1010. }
  1011. return RES_OK;
  1012. }
  1013. DWORD get_fattime(void)
  1014. {
  1015. DWORD fat_time = 0;
  1016. time_t now;
  1017. struct tm tm_now;
  1018. now = time(RT_NULL);
  1019. gmtime_r(&now, &tm_now);
  1020. fat_time = (DWORD)(tm_now.tm_year - 80) << 25 |
  1021. (DWORD)(tm_now.tm_mon + 1) << 21 |
  1022. (DWORD)tm_now.tm_mday << 16 |
  1023. (DWORD)tm_now.tm_hour << 11 |
  1024. (DWORD)tm_now.tm_min << 5 |
  1025. (DWORD)tm_now.tm_sec / 2 ;
  1026. return fat_time;
  1027. }
  1028. #if FF_FS_REENTRANT
  1029. static rt_mutex_t Mutex[FF_VOLUMES + 1];
  1030. int ff_mutex_create (int vol)
  1031. {
  1032. char name[8];
  1033. rt_mutex_t mutex;
  1034. rt_snprintf(name, sizeof(name), "fat%d", vol);
  1035. mutex = rt_mutex_create(name, RT_IPC_FLAG_PRIO);
  1036. if (mutex != RT_NULL)
  1037. {
  1038. Mutex[vol] = mutex;
  1039. return RT_TRUE;
  1040. }
  1041. return RT_FALSE;
  1042. }
  1043. void ff_mutex_delete (int vol)
  1044. {
  1045. if (Mutex[vol] != RT_NULL)
  1046. rt_mutex_delete(Mutex[vol]);
  1047. }
  1048. int ff_mutex_take (int vol)
  1049. {
  1050. if (rt_mutex_take(Mutex[vol], FF_FS_TIMEOUT) == RT_EOK)
  1051. return RT_TRUE;
  1052. return RT_FALSE;
  1053. }
  1054. void ff_mutex_give (int vol)
  1055. {
  1056. rt_mutex_release(Mutex[vol]);
  1057. }
  1058. #endif
  1059. /* Memory functions */
  1060. #if FF_USE_LFN == 3
  1061. /* Allocate memory block */
  1062. void *ff_memalloc(UINT size)
  1063. {
  1064. return rt_malloc(size);
  1065. }
  1066. /* Free memory block */
  1067. void ff_memfree(void *mem)
  1068. {
  1069. rt_free(mem);
  1070. }
  1071. #endif /* FF_USE_LFN == 3 */