drv_sdio.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2020-10-27 bigmagic first version
  9. */
  10. #include <rtdef.h>
  11. #include "mbox.h"
  12. #include "raspi4.h"
  13. #include "drv_sdio.h"
  14. #include "mmu.h"
  15. #ifdef BSP_USING_SDIO
  16. static rt_uint32_t mmc_base_clock = 0;
  17. static rt_uint32_t sdCommandTable[] =
  18. {
  19. SD_CMD_INDEX(0),
  20. SD_CMD_RESERVED(1),
  21. SD_CMD_INDEX(2) | SD_RESP_R2,
  22. SD_CMD_INDEX(3) | SD_RESP_R1,
  23. SD_CMD_INDEX(4),
  24. SD_CMD_RESERVED(5), //SD_CMD_INDEX(5) | SD_RESP_R4,
  25. SD_CMD_INDEX(6) | SD_RESP_R1,
  26. SD_CMD_INDEX(7) | SD_RESP_R1b,
  27. SD_CMD_INDEX(8) | SD_RESP_R1,
  28. SD_CMD_INDEX(9) | SD_RESP_R2,
  29. SD_CMD_INDEX(10) | SD_RESP_R2,
  30. SD_CMD_INDEX(11) | SD_RESP_R1,
  31. SD_CMD_INDEX(12) | SD_RESP_R1b | SD_CMD_TYPE_ABORT,
  32. SD_CMD_INDEX(13) | SD_RESP_R1,
  33. SD_CMD_RESERVED(14),
  34. SD_CMD_INDEX(15),
  35. SD_CMD_INDEX(16) | SD_RESP_R1,
  36. SD_CMD_INDEX(17) | SD_RESP_R1 | SD_DATA_READ,
  37. SD_CMD_INDEX(18) | SD_RESP_R1 | SD_DATA_READ | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  38. SD_CMD_INDEX(19) | SD_RESP_R1 | SD_DATA_READ,
  39. SD_CMD_INDEX(20) | SD_RESP_R1b,
  40. SD_CMD_RESERVED(21),
  41. SD_CMD_RESERVED(22),
  42. SD_CMD_INDEX(23) | SD_RESP_R1,
  43. SD_CMD_INDEX(24) | SD_RESP_R1 | SD_DATA_WRITE,
  44. SD_CMD_INDEX(25) | SD_RESP_R1 | SD_DATA_WRITE | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  45. SD_CMD_INDEX(26) | SD_RESP_R1 | SD_DATA_WRITE, // add
  46. SD_CMD_INDEX(27) | SD_RESP_R1 | SD_DATA_WRITE,
  47. SD_CMD_INDEX(28) | SD_RESP_R1b,
  48. SD_CMD_INDEX(29) | SD_RESP_R1b,
  49. SD_CMD_INDEX(30) | SD_RESP_R1 | SD_DATA_READ,
  50. SD_CMD_RESERVED(31),
  51. SD_CMD_INDEX(32) | SD_RESP_R1,
  52. SD_CMD_INDEX(33) | SD_RESP_R1,
  53. SD_CMD_RESERVED(34),
  54. SD_CMD_INDEX(35) | SD_RESP_R1, // add
  55. SD_CMD_INDEX(36) | SD_RESP_R1, // add
  56. SD_CMD_RESERVED(37),
  57. SD_CMD_INDEX(38) | SD_RESP_R1b,
  58. SD_CMD_INDEX(39) | SD_RESP_R4, // add
  59. SD_CMD_INDEX(40) | SD_RESP_R5, // add
  60. SD_CMD_INDEX(41) | SD_RESP_R3, // add, mov from harbote
  61. SD_CMD_RESERVED(42) | SD_RESP_R1,
  62. SD_CMD_RESERVED(43),
  63. SD_CMD_RESERVED(44),
  64. SD_CMD_RESERVED(45),
  65. SD_CMD_RESERVED(46),
  66. SD_CMD_RESERVED(47),
  67. SD_CMD_RESERVED(48),
  68. SD_CMD_RESERVED(49),
  69. SD_CMD_RESERVED(50),
  70. SD_CMD_INDEX(51) | SD_RESP_R1 | SD_DATA_READ,
  71. SD_CMD_RESERVED(52),
  72. SD_CMD_RESERVED(53),
  73. SD_CMD_RESERVED(54),
  74. SD_CMD_INDEX(55) | SD_RESP_R3,
  75. SD_CMD_INDEX(56) | SD_RESP_R1 | SD_CMD_ISDATA,
  76. SD_CMD_RESERVED(57),
  77. SD_CMD_RESERVED(58),
  78. SD_CMD_RESERVED(59),
  79. SD_CMD_RESERVED(60),
  80. SD_CMD_RESERVED(61),
  81. SD_CMD_RESERVED(62),
  82. SD_CMD_RESERVED(63)
  83. };
  84. rt_inline rt_uint32_t read32(rt_ubase_t addr)
  85. {
  86. return (*((volatile unsigned int *)(addr)));
  87. }
  88. rt_inline void write32(rt_ubase_t addr, rt_uint32_t value)
  89. {
  90. (*((volatile unsigned int *)(addr))) = value;
  91. }
  92. rt_err_t sd_int(struct sdhci_pdata_t *pdat, rt_uint32_t mask)
  93. {
  94. rt_uint32_t r;
  95. rt_uint32_t m = mask | INT_ERROR_MASK;
  96. int cnt = 1000000;
  97. while (!(read32(pdat->virt + EMMC_INTERRUPT) & (m | INT_ERROR_MASK)) && cnt--)
  98. {
  99. DELAY_MICROS(1);
  100. }
  101. r = read32(pdat->virt + EMMC_INTERRUPT);
  102. if (cnt <= 0 || (r & INT_CMD_TIMEOUT) || (r & INT_DATA_TIMEOUT))
  103. {
  104. write32(pdat->virt + EMMC_INTERRUPT, r);
  105. /* qemu maybe can not use sdcard */
  106. rt_kprintf("send cmd/data timeout wait for %x int: %x, status: %x\n", mask, r, read32(pdat->virt + EMMC_STATUS));
  107. return -RT_ETIMEOUT;
  108. }
  109. else if (r & INT_ERROR_MASK)
  110. {
  111. write32(pdat->virt + EMMC_INTERRUPT, r);
  112. rt_kprintf("send cmd/data error %x -> %x\n", r, read32(pdat->virt + EMMC_INTERRUPT));
  113. return -RT_ERROR;
  114. }
  115. write32(pdat->virt + EMMC_INTERRUPT, mask);
  116. return RT_EOK;
  117. }
  118. rt_err_t sd_status(struct sdhci_pdata_t *pdat, unsigned int mask)
  119. {
  120. int cnt = 500000;
  121. while ((read32(pdat->virt + EMMC_STATUS) & mask) && !(read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) && cnt--)
  122. {
  123. DELAY_MICROS(1);
  124. }
  125. if (cnt <= 0)
  126. {
  127. return -RT_ETIMEOUT;
  128. }
  129. else if (read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK)
  130. {
  131. return -RT_ERROR;
  132. }
  133. return RT_EOK;
  134. }
  135. static rt_err_t raspi_transfer_command(struct sdhci_pdata_t *pdat, struct sdhci_cmd_t *cmd)
  136. {
  137. rt_uint32_t cmdidx;
  138. rt_err_t ret = RT_EOK;
  139. ret = sd_status(pdat, SR_CMD_INHIBIT);
  140. if (ret)
  141. {
  142. rt_kprintf("ERROR: EMMC busy %d\n", ret);
  143. return ret;
  144. }
  145. cmdidx = sdCommandTable[cmd->cmdidx];
  146. if (cmdidx == 0xFFFFFFFF)
  147. {
  148. return -RT_EINVAL;
  149. }
  150. if (cmd->datarw == DATA_READ)
  151. {
  152. cmdidx |= SD_DATA_READ;
  153. }
  154. if (cmd->datarw == DATA_WRITE)
  155. {
  156. cmdidx |= SD_DATA_WRITE;
  157. }
  158. mmcsd_dbg("transfer cmd %x(%d) %x %x\n", cmdidx, cmd->cmdidx, cmd->cmdarg, read32(pdat->virt + EMMC_INTERRUPT));
  159. write32(pdat->virt + EMMC_INTERRUPT, read32(pdat->virt + EMMC_INTERRUPT));
  160. write32(pdat->virt + EMMC_ARG1, cmd->cmdarg);
  161. write32(pdat->virt + EMMC_CMDTM, cmdidx);
  162. if (cmd->cmdidx == SD_APP_OP_COND)
  163. {
  164. DELAY_MICROS(1000);
  165. }
  166. else if ((cmd->cmdidx == SD_SEND_IF_COND) || (cmd->cmdidx == APP_CMD))
  167. {
  168. DELAY_MICROS(100);
  169. }
  170. ret = sd_int(pdat, INT_CMD_DONE);
  171. if (ret)
  172. {
  173. return ret;
  174. }
  175. if (cmd->resptype & RESP_MASK)
  176. {
  177. if (cmd->resptype & RESP_R2)
  178. {
  179. rt_uint32_t resp[4];
  180. resp[0] = read32(pdat->virt + EMMC_RESP0);
  181. resp[1] = read32(pdat->virt + EMMC_RESP1);
  182. resp[2] = read32(pdat->virt + EMMC_RESP2);
  183. resp[3] = read32(pdat->virt + EMMC_RESP3);
  184. if (cmd->resptype == RESP_R2)
  185. {
  186. cmd->response[0] = resp[3] << 8 | ((resp[2] >> 24) & 0xff);
  187. cmd->response[1] = resp[2] << 8 | ((resp[1] >> 24) & 0xff);
  188. cmd->response[2] = resp[1] << 8 | ((resp[0] >> 24) & 0xff);
  189. cmd->response[3] = resp[0] << 8 ;
  190. }
  191. else
  192. {
  193. cmd->response[0] = resp[0];
  194. cmd->response[1] = resp[1];
  195. cmd->response[2] = resp[2];
  196. cmd->response[3] = resp[3];
  197. }
  198. }
  199. else
  200. {
  201. cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
  202. }
  203. }
  204. mmcsd_dbg("response: %x: %x %x %x %x (%x, %x)\n", cmd->resptype, cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], read32(pdat->virt + EMMC_STATUS), read32(pdat->virt + EMMC_INTERRUPT));
  205. return ret;
  206. }
  207. static rt_err_t read_bytes(struct sdhci_pdata_t *pdat, rt_uint32_t *buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  208. {
  209. int c = 0;
  210. rt_err_t ret;
  211. int d;
  212. while (c < blkcount)
  213. {
  214. if ((ret = sd_int(pdat, INT_READ_RDY)))
  215. {
  216. rt_kprintf("timeout happens when reading block %d\n", c);
  217. return ret;
  218. }
  219. for (d = 0; d < blksize / 4; d++)
  220. {
  221. if (read32(pdat->virt + EMMC_STATUS) & SR_READ_AVAILABLE)
  222. {
  223. buf[d] = read32(pdat->virt + EMMC_DATA);
  224. }
  225. }
  226. c++;
  227. buf += blksize / 4;
  228. }
  229. return RT_EOK;
  230. }
  231. static rt_err_t write_bytes(struct sdhci_pdata_t *pdat, rt_uint32_t *buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  232. {
  233. int c = 0;
  234. rt_err_t ret;
  235. int d;
  236. while (c < blkcount)
  237. {
  238. if ((ret = sd_int(pdat, INT_WRITE_RDY)))
  239. {
  240. return ret;
  241. }
  242. for (d = 0; d < blksize / 4; d++)
  243. {
  244. write32(pdat->virt + EMMC_DATA, buf[d]);
  245. }
  246. c++;
  247. buf += blksize / 4;
  248. }
  249. if ((ret = sd_int(pdat, INT_DATA_DONE)))
  250. {
  251. return ret;
  252. }
  253. return RT_EOK;
  254. }
  255. static rt_err_t raspi_transfer_data(struct sdhci_pdata_t *pdat, struct sdhci_cmd_t *cmd, struct sdhci_data_t *dat)
  256. {
  257. rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
  258. rt_err_t ret = sd_status(pdat, SR_DAT_INHIBIT);
  259. if (ret)
  260. {
  261. rt_kprintf("ERROR: EMMC busy\n");
  262. return ret;
  263. }
  264. if (dat->blkcnt > 1)
  265. {
  266. struct sdhci_cmd_t newcmd;
  267. newcmd.cmdidx = SET_BLOCK_COUNT;
  268. newcmd.cmdarg = dat->blkcnt;
  269. newcmd.resptype = RESP_R1;
  270. ret = raspi_transfer_command(pdat, &newcmd);
  271. if (ret)
  272. {
  273. return ret;
  274. }
  275. }
  276. if (dlen < 512)
  277. {
  278. write32(pdat->virt + EMMC_BLKSIZECNT, dlen | 1 << 16);
  279. }
  280. else
  281. {
  282. write32(pdat->virt + EMMC_BLKSIZECNT, 512 | (dat->blkcnt) << 16);
  283. }
  284. if (dat->flag & DATA_DIR_READ)
  285. {
  286. cmd->datarw = DATA_READ;
  287. ret = raspi_transfer_command(pdat, cmd);
  288. if (ret)
  289. {
  290. return ret;
  291. }
  292. mmcsd_dbg("read_block %d, %d\n", dat->blkcnt, dat->blksz);
  293. ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  294. }
  295. else if (dat->flag & DATA_DIR_WRITE)
  296. {
  297. cmd->datarw = DATA_WRITE;
  298. ret = raspi_transfer_command(pdat, cmd);
  299. if (ret)
  300. {
  301. return ret;
  302. }
  303. mmcsd_dbg("write_block %d, %d", dat->blkcnt, dat->blksz);
  304. ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  305. }
  306. return ret;
  307. }
  308. static rt_err_t sdhci_transfer(struct sdhci_t *sdhci, struct sdhci_cmd_t *cmd, struct sdhci_data_t *dat)
  309. {
  310. struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)sdhci->priv;
  311. if (!dat)
  312. {
  313. return raspi_transfer_command(pdat, cmd);
  314. }
  315. return raspi_transfer_data(pdat, cmd, dat);
  316. }
  317. static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  318. {
  319. struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
  320. struct sdhci_cmd_t cmd;
  321. struct sdhci_cmd_t stop;
  322. struct sdhci_data_t dat;
  323. rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
  324. rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
  325. rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
  326. cmd.cmdidx = req->cmd->cmd_code;
  327. cmd.cmdarg = req->cmd->arg;
  328. cmd.resptype = resp_type(req->cmd);
  329. if (req->data)
  330. {
  331. dat.buf = (rt_uint8_t *)req->data->buf;
  332. dat.flag = req->data->flags;
  333. dat.blksz = req->data->blksize;
  334. dat.blkcnt = req->data->blks;
  335. req->cmd->err = sdhci_transfer(sdhci, &cmd, &dat);
  336. }
  337. else
  338. {
  339. req->cmd->err = sdhci_transfer(sdhci, &cmd, RT_NULL);
  340. }
  341. req->cmd->resp[3] = cmd.response[3];
  342. req->cmd->resp[2] = cmd.response[2];
  343. req->cmd->resp[1] = cmd.response[1];
  344. req->cmd->resp[0] = cmd.response[0];
  345. if (req->stop)
  346. {
  347. stop.cmdidx = req->stop->cmd_code;
  348. stop.cmdarg = req->stop->arg;
  349. cmd.resptype = resp_type(req->stop);
  350. req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL);
  351. }
  352. mmcsd_req_complete(host);
  353. }
  354. rt_int32_t mmc_card_status(struct rt_mmcsd_host *host)
  355. {
  356. return 0;
  357. }
  358. static rt_err_t sdhci_detect(struct sdhci_t *sdhci)
  359. {
  360. return RT_EOK;
  361. }
  362. static rt_err_t sdhci_setwidth(struct sdhci_t *sdhci, rt_uint32_t width)
  363. {
  364. rt_uint32_t temp = 0;
  365. struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)sdhci->priv;
  366. if (width == MMCSD_BUS_WIDTH_4)
  367. {
  368. temp = read32((pdat->virt + EMMC_CONTROL0));
  369. temp |= C0_HCTL_HS_EN;
  370. temp |= C0_HCTL_DWITDH; // always use 4 data lines:
  371. write32((pdat->virt + EMMC_CONTROL0), temp);
  372. }
  373. return RT_EOK;
  374. }
  375. static uint32_t sd_get_clock_divider(rt_uint32_t sdHostVer, rt_uint32_t base_clock, rt_uint32_t target_rate)
  376. {
  377. rt_uint32_t targetted_divisor = 0;
  378. rt_uint32_t freq_select = 0;
  379. rt_uint32_t upper_bits = 0;
  380. rt_uint32_t ret = 0;
  381. int divisor = -1;
  382. if (target_rate > base_clock)
  383. {
  384. targetted_divisor = 1;
  385. }
  386. else
  387. {
  388. targetted_divisor = base_clock / target_rate;
  389. rt_uint32_t mod = base_clock % target_rate;
  390. if (mod)
  391. {
  392. targetted_divisor--;
  393. }
  394. }
  395. // Decide on the clock mode to use
  396. // Currently only 10-bit divided clock mode is supported
  397. // HCI version 3 or greater supports 10-bit divided clock mode
  398. // This requires a power-of-two divider
  399. // Find the first bit set
  400. for (int first_bit = 31; first_bit >= 0; first_bit--)
  401. {
  402. rt_uint32_t bit_test = (1 << first_bit);
  403. if (targetted_divisor & bit_test)
  404. {
  405. divisor = first_bit;
  406. targetted_divisor &= ~bit_test;
  407. if (targetted_divisor)
  408. {
  409. // The divisor is not a power-of-two, increase it
  410. divisor++;
  411. }
  412. break;
  413. }
  414. }
  415. if (divisor == -1)
  416. {
  417. divisor = 31;
  418. }
  419. if (divisor >= 32)
  420. {
  421. divisor = 31;
  422. }
  423. if (divisor != 0)
  424. {
  425. divisor = (1 << (divisor - 1));
  426. }
  427. if (divisor >= 0x400)
  428. {
  429. divisor = 0x3ff;
  430. }
  431. freq_select = divisor & 0xff;
  432. upper_bits = (divisor >> 8) & 0x3;
  433. ret = (freq_select << 8) | (upper_bits << 6) | (0 << 5);
  434. return ret;
  435. }
  436. static rt_err_t sdhci_setclock(struct sdhci_t *sdhci, rt_uint32_t clock)
  437. {
  438. rt_uint32_t temp = 0;
  439. rt_uint32_t sdHostVer = 0;
  440. int count = 100000;
  441. struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)(sdhci->priv);
  442. while ((read32(pdat->virt + EMMC_STATUS) & (SR_CMD_INHIBIT | SR_DAT_INHIBIT)) && (--count))
  443. {
  444. DELAY_MICROS(1);
  445. }
  446. if (count <= 0)
  447. {
  448. rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n", read32(pdat->virt + EMMC_STATUS));
  449. return RT_ERROR;
  450. }
  451. // Switch clock off.
  452. temp = read32((pdat->virt + EMMC_CONTROL1));
  453. temp &= ~C1_CLK_EN;
  454. write32((pdat->virt + EMMC_CONTROL1), temp);
  455. DELAY_MICROS(10);
  456. // Request the new clock setting and enable the clock
  457. temp = read32(pdat->virt + EMMC_SLOTISR_VER);
  458. sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT;
  459. int cdiv = sd_get_clock_divider(sdHostVer, mmc_base_clock, clock);
  460. temp = read32((pdat->virt + EMMC_CONTROL1));
  461. temp |= 1;
  462. temp |= cdiv;
  463. temp |= (7 << 16);
  464. temp = (temp & 0xffff003f) | cdiv;
  465. write32((pdat->virt + EMMC_CONTROL1), temp);
  466. DELAY_MICROS(10);
  467. // Enable the clock.
  468. temp = read32(pdat->virt + EMMC_CONTROL1);
  469. temp |= C1_CLK_EN;
  470. write32((pdat->virt + EMMC_CONTROL1), temp);
  471. DELAY_MICROS(10);
  472. // wait for clock to be stable.
  473. count = 10000;
  474. while (!(read32(pdat->virt + EMMC_CONTROL1) & C1_CLK_STABLE) && count--)
  475. {
  476. DELAY_MICROS(10);
  477. }
  478. if (count <= 0)
  479. {
  480. rt_kprintf("EMMC: ERROR: failed to get stable clock %d.\n", clock);
  481. return RT_ERROR;
  482. }
  483. mmcsd_dbg("set stable clock %d.\n", clock);
  484. return RT_EOK;
  485. }
  486. static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  487. {
  488. struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
  489. sdhci_setclock(sdhci, io_cfg->clock);
  490. sdhci_setwidth(sdhci, io_cfg->bus_width);
  491. }
  492. static const struct rt_mmcsd_host_ops ops =
  493. {
  494. mmc_request_send,
  495. mmc_set_iocfg,
  496. RT_NULL,
  497. RT_NULL,
  498. };
  499. static rt_err_t reset_emmc(struct sdhci_pdata_t *pdat)
  500. {
  501. rt_uint32_t control1;
  502. int cnt = 10000;
  503. /* reset the controller */
  504. control1 = read32((pdat->virt + EMMC_CONTROL1));
  505. control1 |= (1 << 24);
  506. /* disable clock */
  507. control1 &= ~(1 << 2);
  508. control1 &= ~(1 << 0);
  509. /* temp |= C1_CLK_INTLEN | C1_TOUNIT_MAX; */
  510. write32((pdat->virt + EMMC_CONTROL1), control1);
  511. do
  512. {
  513. DELAY_MICROS(10);
  514. --cnt;
  515. if (cnt == 0)
  516. {
  517. break;
  518. }
  519. }
  520. while ((read32(pdat->virt + EMMC_CONTROL1) & (0x7 << 24)) != 0);
  521. // Enable SD Bus Power VDD1 at 3.3V
  522. rt_uint32_t control0 = read32(pdat->virt + EMMC_CONTROL0);
  523. control0 |= 0x0F << 8;
  524. write32(pdat->virt + EMMC_CONTROL0, control0);
  525. rt_thread_delay(100);
  526. /* check for a valid card */
  527. mmcsd_dbg("EMMC: checking for an inserted card\n");
  528. cnt = 10000;
  529. do
  530. {
  531. DELAY_MICROS(10);
  532. --cnt;
  533. if (cnt == 0)
  534. {
  535. break;
  536. }
  537. }
  538. while ((read32(pdat->virt + EMMC_STATUS) & (0x1 << 16)) == 0);
  539. rt_uint32_t status_reg = read32(pdat->virt + EMMC_STATUS);
  540. if ((status_reg & (1 << 16)) == 0)
  541. {
  542. rt_kprintf("EMMC: no card inserted\n");
  543. return -1;
  544. }
  545. else
  546. {
  547. mmcsd_dbg("EMMC: status: %08x\n", status_reg);
  548. }
  549. /* clear control2 */
  550. write32(pdat->virt + EMMC_CONTROL2, 0);
  551. /* get the base clock rate */
  552. mmc_base_clock = bcm271x_mbox_clock_get_rate(EMMC_CLK_ID);
  553. if (mmc_base_clock == 0)
  554. {
  555. rt_kprintf("EMMC: assuming clock rate to be 100MHz\n");
  556. mmc_base_clock = 100000000;
  557. }
  558. mmcsd_dbg("EMMC: setting clock rate is %d\n", mmc_base_clock);
  559. return RT_EOK;
  560. }
  561. #ifdef RT_MMCSD_DBG
  562. void dump_registers(struct sdhci_pdata_t *pdat)
  563. {
  564. int i = EMMC_ARG2;
  565. rt_kprintf("EMMC registers:");
  566. for (; i <= EMMC_CONTROL2; i += 4)
  567. {
  568. rt_kprintf("\t%x:%x\n", i, read32(pdat->virt + i));
  569. }
  570. rt_kprintf("\t%x:%x\n", 0x50, read32(pdat->virt + 0x50));
  571. rt_kprintf("\t%x:%x\n", 0x70, read32(pdat->virt + 0x70));
  572. rt_kprintf("\t%x:%x\n", 0x74, read32(pdat->virt + 0x74));
  573. rt_kprintf("\t%x:%x\n", 0x80, read32(pdat->virt + 0x80));
  574. rt_kprintf("\t%x:%x\n", 0x84, read32(pdat->virt + 0x84));
  575. rt_kprintf("\t%x:%x\n", 0x88, read32(pdat->virt + 0x88));
  576. rt_kprintf("\t%x:%x\n", 0x8c, read32(pdat->virt + 0x8c));
  577. rt_kprintf("\t%x:%x\n", 0x90, read32(pdat->virt + 0x90));
  578. rt_kprintf("\t%x:%x\n", 0xf0, read32(pdat->virt + 0xf0));
  579. rt_kprintf("\t%x:%x\n", 0xfc, read32(pdat->virt + 0xfc));
  580. }
  581. #endif
  582. int raspi_sdmmc_init(void)
  583. {
  584. size_t virt;
  585. struct rt_mmcsd_host *host = RT_NULL;
  586. struct sdhci_pdata_t *pdat = RT_NULL;
  587. struct sdhci_t *sdhci = RT_NULL;
  588. #ifdef BSP_USING_SDIO0
  589. host = mmcsd_alloc_host();
  590. if (!host)
  591. {
  592. rt_kprintf("alloc host failed");
  593. goto err;
  594. }
  595. sdhci = rt_malloc(sizeof(struct sdhci_t));
  596. if (!sdhci)
  597. {
  598. rt_kprintf("alloc sdhci failed");
  599. goto err;
  600. }
  601. rt_memset(sdhci, 0, sizeof(struct sdhci_t));
  602. virt = MMC2_BASE_ADDR;
  603. pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t));
  604. RT_ASSERT(pdat != RT_NULL);
  605. pdat->virt = virt;
  606. reset_emmc(pdat);
  607. sdhci->name = "sd0";
  608. sdhci->voltages = VDD_33_34;
  609. sdhci->width = MMCSD_BUSWIDTH_4;
  610. sdhci->clock = 1000 * 1000 * 1000;
  611. sdhci->removeable = RT_TRUE;
  612. sdhci->detect = sdhci_detect;
  613. sdhci->setwidth = sdhci_setwidth;
  614. sdhci->setclock = sdhci_setclock;
  615. sdhci->transfer = sdhci_transfer;
  616. sdhci->priv = pdat;
  617. host->ops = &ops;
  618. host->freq_min = 400000;
  619. host->freq_max = 50000000;
  620. host->valid_ocr = VDD_32_33 | VDD_33_34;
  621. host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4;
  622. host->max_seg_size = 2048;
  623. host->max_dma_segs = 10;
  624. host->max_blk_size = 512;
  625. host->max_blk_count = 1;
  626. host->private_data = sdhci;
  627. write32((pdat->virt + EMMC_IRPT_EN), 0xffffffff);
  628. write32((pdat->virt + EMMC_IRPT_MASK), 0xffffffff);
  629. #ifdef RT_MMCSD_DBG
  630. dump_registers(pdat);
  631. #endif
  632. mmcsd_change(host);
  633. #endif
  634. return RT_EOK;
  635. err:
  636. if (host) rt_free(host);
  637. if (sdhci) rt_free(sdhci);
  638. return -RT_EIO;
  639. }
  640. INIT_DEVICE_EXPORT(raspi_sdmmc_init);
  641. #endif /* BSP_USING_SDIO */