fsl_clock.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /*
  2. * Copyright 2017 NXP
  3. *
  4. * Redistribution and use in source and binary forms, with or without modification,
  5. * are permitted provided that the following conditions are met:
  6. *
  7. * o Redistributions of source code must retain the above copyright notice, this list
  8. * of conditions and the following disclaimer.
  9. *
  10. * o Redistributions in binary form must reproduce the above copyright notice, this
  11. * list of conditions and the following disclaimer in the documentation and/or
  12. * other materials provided with the distribution.
  13. *
  14. * o Neither the name of the copyright holder nor the names of its
  15. * contributors may be used to endorse or promote products derived from this
  16. * software without specific prior written permission.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
  22. * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  23. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  24. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  25. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  26. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  27. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include "fsl_common.h"
  30. #include "fsl_clock.h"
  31. /*******************************************************************************
  32. * Definitions
  33. ******************************************************************************/
  34. /*******************************************************************************
  35. * Variables
  36. ******************************************************************************/
  37. /* External XTAL (OSC) clock frequency. */
  38. uint32_t g_xtalFreq;
  39. /* External RTC XTAL clock frequency. */
  40. uint32_t g_rtcXtalFreq;
  41. /*******************************************************************************
  42. * Prototypes
  43. ******************************************************************************/
  44. /*******************************************************************************
  45. * Code
  46. ******************************************************************************/
  47. static uint32_t CLOCK_GetPeriphClkFreq(void)
  48. {
  49. uint32_t freq;
  50. /* Periph_clk2_clk ---> Periph_clk */
  51. if (CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK)
  52. {
  53. switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
  54. {
  55. /* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
  56. case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
  57. freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
  58. break;
  59. /* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
  60. case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
  61. freq = CLOCK_GetOscFreq();
  62. break;
  63. case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
  64. case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
  65. default:
  66. freq = 0U;
  67. break;
  68. }
  69. freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
  70. }
  71. /* Pre_Periph_clk ---> Periph_clk */
  72. else
  73. {
  74. switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
  75. {
  76. /* PLL2 ---> Pre_Periph_clk ---> Periph_clk */
  77. case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
  78. freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
  79. break;
  80. /* PLL2 PFD2 ---> Pre_Periph_clk ---> Periph_clk */
  81. case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
  82. freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
  83. break;
  84. /* PLL2 PFD0 ---> Pre_Periph_clk ---> Periph_clk */
  85. case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
  86. freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
  87. break;
  88. /* PLL1 divided(/2) ---> Pre_Periph_clk ---> Periph_clk */
  89. case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
  90. freq = CLOCK_GetPllFreq(kCLOCK_PllArm) / (((CCM->CACRR & CCM_CACRR_ARM_PODF_MASK) >> CCM_CACRR_ARM_PODF_SHIFT) + 1U);
  91. break;
  92. default:
  93. freq = 0U;
  94. break;
  95. }
  96. }
  97. return freq;
  98. }
  99. void CLOCK_InitExternalClk(bool bypassXtalOsc)
  100. {
  101. /* This device does not support bypass XTAL OSC. */
  102. assert(!bypassXtalOsc);
  103. CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */
  104. while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0)
  105. {
  106. }
  107. CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */
  108. while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0)
  109. {
  110. }
  111. CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
  112. }
  113. void CLOCK_DeinitExternalClk(void)
  114. {
  115. CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
  116. }
  117. void CLOCK_SwitchOsc(clock_osc_t osc)
  118. {
  119. if (osc == kCLOCK_RcOsc)
  120. XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK;
  121. else
  122. XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
  123. }
  124. void CLOCK_InitRcOsc24M(void)
  125. {
  126. XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
  127. }
  128. void CLOCK_DeinitRcOsc24M(void)
  129. {
  130. XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
  131. }
  132. uint32_t CLOCK_GetFreq(clock_name_t name)
  133. {
  134. uint32_t freq;
  135. switch (name)
  136. {
  137. case kCLOCK_CpuClk:
  138. /* Periph_clk ---> AHB Clock */
  139. case kCLOCK_AhbClk:
  140. /* Periph_clk ---> AHB Clock */
  141. freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
  142. break;
  143. case kCLOCK_SemcClk:
  144. /* SEMC alternative clock ---> SEMC Clock */
  145. if (CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK)
  146. {
  147. /* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
  148. if (CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK)
  149. {
  150. freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
  151. }
  152. /* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
  153. else
  154. {
  155. freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
  156. }
  157. }
  158. /* Periph_clk ---> SEMC Clock */
  159. else
  160. {
  161. freq = CLOCK_GetPeriphClkFreq();
  162. }
  163. freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
  164. break;
  165. case kCLOCK_IpgClk:
  166. /* Periph_clk ---> AHB Clock ---> IPG Clock */
  167. freq = CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
  168. freq /= (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
  169. break;
  170. case kCLOCK_OscClk:
  171. freq = CLOCK_GetOscFreq();
  172. break;
  173. case kCLOCK_RtcClk:
  174. freq = CLOCK_GetRtcFreq();
  175. break;
  176. case kCLOCK_ArmPllClk:
  177. freq = CLOCK_GetPllFreq(kCLOCK_PllArm);
  178. break;
  179. case kCLOCK_Usb1PllClk:
  180. freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
  181. break;
  182. case kCLOCK_Usb1PllPfd0Clk:
  183. freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0);
  184. break;
  185. case kCLOCK_Usb1PllPfd1Clk:
  186. freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
  187. break;
  188. case kCLOCK_Usb1PllPfd2Clk:
  189. freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
  190. break;
  191. case kCLOCK_Usb1PllPfd3Clk:
  192. freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
  193. break;
  194. case kCLOCK_Usb2PllClk:
  195. freq = CLOCK_GetPllFreq(kCLOCK_PllUsb2);
  196. break;
  197. case kCLOCK_SysPllClk:
  198. freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
  199. break;
  200. case kCLOCK_SysPllPfd0Clk:
  201. freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
  202. break;
  203. case kCLOCK_SysPllPfd1Clk:
  204. freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1);
  205. break;
  206. case kCLOCK_SysPllPfd2Clk:
  207. freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
  208. break;
  209. case kCLOCK_SysPllPfd3Clk:
  210. freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
  211. break;
  212. case kCLOCK_EnetPll0Clk:
  213. freq = CLOCK_GetPllFreq(kCLOCK_PllEnet0);
  214. break;
  215. case kCLOCK_EnetPll1Clk:
  216. freq = CLOCK_GetPllFreq(kCLOCK_PllEnet1);
  217. break;
  218. case kCLOCK_EnetPll2Clk:
  219. freq = CLOCK_GetPllFreq(kCLOCK_PllEnet2);
  220. break;
  221. case kCLOCK_AudioPllClk:
  222. freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
  223. break;
  224. case kCLOCK_VideoPllClk:
  225. freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
  226. break;
  227. default:
  228. freq = 0U;
  229. break;
  230. }
  231. return freq;
  232. }
  233. void CLOCK_InitArmPll(const clock_arm_pll_config_t *config)
  234. {
  235. CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_ENABLE_MASK |
  236. CCM_ANALOG_PLL_ARM_DIV_SELECT(config->loopDivider);
  237. while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0)
  238. {
  239. }
  240. }
  241. void CLOCK_DeinitArmPll(void)
  242. {
  243. CCM_ANALOG->PLL_ARM = CCM_ANALOG_PLL_ARM_POWERDOWN_MASK;
  244. }
  245. void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
  246. {
  247. CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_ENABLE_MASK |
  248. CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);
  249. while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0)
  250. {
  251. }
  252. }
  253. void CLOCK_DeinitSysPll(void)
  254. {
  255. CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
  256. }
  257. void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
  258. {
  259. CCM_ANALOG->PLL_USB1 = CCM_ANALOG_PLL_USB1_ENABLE_MASK |
  260. CCM_ANALOG_PLL_USB1_POWER_MASK |
  261. CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK |
  262. CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);
  263. while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0)
  264. {
  265. }
  266. }
  267. void CLOCK_DeinitUsb1Pll(void)
  268. {
  269. CCM_ANALOG->PLL_USB1 = 0U;
  270. }
  271. void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config)
  272. {
  273. CCM_ANALOG->PLL_USB2 = CCM_ANALOG_PLL_USB2_ENABLE_MASK |
  274. CCM_ANALOG_PLL_USB2_POWER_MASK |
  275. CCM_ANALOG_PLL_USB2_EN_USB_CLKS_MASK |
  276. CCM_ANALOG_PLL_USB2_DIV_SELECT(config->loopDivider);
  277. while ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_LOCK_MASK) == 0)
  278. {
  279. }
  280. }
  281. void CLOCK_DeinitUsb2Pll(void)
  282. {
  283. CCM_ANALOG->PLL_USB2 = 0U;
  284. }
  285. void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
  286. {
  287. uint32_t pllAudio;
  288. uint32_t misc2 = 0;
  289. CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator);
  290. CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator);
  291. /*
  292. * Set post divider:
  293. *
  294. * ------------------------------------------------------------------------
  295. * | config->postDivider | PLL_AUDIO[POST_DIV_SELECT] | MISC2[AUDIO_DIV] |
  296. * ------------------------------------------------------------------------
  297. * | 1 | 2 | 0 |
  298. * ------------------------------------------------------------------------
  299. * | 2 | 1 | 0 |
  300. * ------------------------------------------------------------------------
  301. * | 4 | 2 | 3 |
  302. * ------------------------------------------------------------------------
  303. * | 8 | 1 | 3 |
  304. * ------------------------------------------------------------------------
  305. * | 16 | 0 | 3 |
  306. * ------------------------------------------------------------------------
  307. */
  308. pllAudio = CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider);
  309. switch (config->postDivider)
  310. {
  311. case 16:
  312. pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0);
  313. misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
  314. break;
  315. case 8:
  316. pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
  317. misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
  318. break;
  319. case 4:
  320. pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
  321. misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
  322. break;
  323. case 2:
  324. pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
  325. break;
  326. default:
  327. pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
  328. break;
  329. }
  330. CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK))
  331. | misc2;
  332. CCM_ANALOG->PLL_AUDIO = pllAudio;
  333. while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0)
  334. {
  335. }
  336. }
  337. void CLOCK_DeinitAudioPll(void)
  338. {
  339. CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
  340. }
  341. void CLOCK_InitVideoPll(const clock_video_pll_config_t *config)
  342. {
  343. uint32_t pllVideo;
  344. uint32_t misc2 = 0;
  345. CCM_ANALOG->PLL_VIDEO_NUM = CCM_ANALOG_PLL_VIDEO_NUM_A(config->numerator);
  346. CCM_ANALOG->PLL_VIDEO_DENOM = CCM_ANALOG_PLL_VIDEO_DENOM_B(config->denominator);
  347. /*
  348. * Set post divider:
  349. *
  350. * ------------------------------------------------------------------------
  351. * | config->postDivider | PLL_VIDEO[POST_DIV_SELECT] | MISC2[VIDEO_DIV] |
  352. * ------------------------------------------------------------------------
  353. * | 1 | 2 | 0 |
  354. * ------------------------------------------------------------------------
  355. * | 2 | 1 | 0 |
  356. * ------------------------------------------------------------------------
  357. * | 4 | 2 | 3 |
  358. * ------------------------------------------------------------------------
  359. * | 8 | 1 | 3 |
  360. * ------------------------------------------------------------------------
  361. * | 16 | 0 | 3 |
  362. * ------------------------------------------------------------------------
  363. */
  364. pllVideo = CCM_ANALOG_PLL_VIDEO_ENABLE_MASK | CCM_ANALOG_PLL_VIDEO_DIV_SELECT(config->loopDivider);
  365. switch (config->postDivider)
  366. {
  367. case 16:
  368. pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0);
  369. misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
  370. break;
  371. case 8:
  372. pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
  373. misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
  374. break;
  375. case 4:
  376. pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
  377. misc2 = CCM_ANALOG_MISC2_VIDEO_DIV(3);
  378. break;
  379. case 2:
  380. pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1);
  381. break;
  382. default:
  383. pllVideo |= CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(2);
  384. break;
  385. }
  386. CCM_ANALOG->MISC2 = (CCM_ANALOG->MISC2 & ~CCM_ANALOG_MISC2_VIDEO_DIV_MASK) | misc2;
  387. CCM_ANALOG->PLL_VIDEO = pllVideo;
  388. while ((CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_LOCK_MASK) == 0)
  389. {
  390. }
  391. }
  392. void CLOCK_DeinitVideoPll(void)
  393. {
  394. CCM_ANALOG->PLL_VIDEO = CCM_ANALOG_PLL_VIDEO_POWERDOWN_MASK;
  395. }
  396. void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
  397. {
  398. uint32_t enet_pll = CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT(config->loopDivider1) |
  399. CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT(config->loopDivider0);
  400. if (config->enableClkOutput0)
  401. {
  402. enet_pll |= CCM_ANALOG_PLL_ENET_ENET1_125M_EN_MASK;
  403. }
  404. if (config->enableClkOutput1)
  405. {
  406. enet_pll |= CCM_ANALOG_PLL_ENET_ENET2_125M_EN_MASK;
  407. }
  408. if (config->enableClkOutput2)
  409. {
  410. enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
  411. }
  412. CCM_ANALOG->PLL_ENET = enet_pll;
  413. /* Wait for stable */
  414. while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0)
  415. {
  416. }
  417. }
  418. void CLOCK_DeinitEnetPll(void)
  419. {
  420. CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
  421. }
  422. uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
  423. {
  424. uint32_t freq;
  425. uint32_t divSelect;
  426. uint64_t freqTmp;
  427. const uint32_t enetRefClkFreq[] = {
  428. 25000000U, /* 25M */
  429. 50000000U, /* 50M */
  430. 100000000U, /* 100M */
  431. 125000000U /* 125M */
  432. };
  433. switch (pll)
  434. {
  435. case kCLOCK_PllArm:
  436. freq = ((CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_DIV_SELECT_MASK) >>
  437. CCM_ANALOG_PLL_ARM_DIV_SELECT_SHIFT)) >> 1U);
  438. break;
  439. case kCLOCK_PllSys:
  440. freq = CLOCK_GetOscFreq();
  441. /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
  442. freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_SYS_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_SYS_DENOM));
  443. if (CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK)
  444. {
  445. freq *= 22U;
  446. }
  447. else
  448. {
  449. freq *= 20U;
  450. }
  451. freq += (uint32_t)freqTmp;
  452. break;
  453. case kCLOCK_PllUsb1:
  454. freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) ? 22U : 20U));
  455. break;
  456. case kCLOCK_PllAudio:
  457. freq = CLOCK_GetOscFreq();
  458. /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
  459. divSelect = (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;
  460. freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_AUDIO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_AUDIO_DENOM));
  461. freq = freq * divSelect + (uint32_t)freqTmp;
  462. /* AUDIO PLL output = PLL output frequency / POSTDIV. */
  463. /*
  464. * Post divider:
  465. *
  466. * PLL_AUDIO[POST_DIV_SELECT]:
  467. * 0x00: 4
  468. * 0x01: 2
  469. * 0x02: 1
  470. *
  471. * MISC2[AUDO_DIV]:
  472. * 0x00: 1
  473. * 0x01: 2
  474. * 0x02: 1
  475. * 0x03: 4
  476. */
  477. switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK)
  478. {
  479. case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U):
  480. freq = freq >> 2U;
  481. break;
  482. case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U):
  483. freq = freq >> 1U;
  484. break;
  485. default:
  486. break;
  487. }
  488. switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK))
  489. {
  490. case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
  491. freq >>= 2U;
  492. break;
  493. case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
  494. freq >>= 1U;
  495. break;
  496. default:
  497. break;
  498. }
  499. break;
  500. case kCLOCK_PllVideo:
  501. freq = CLOCK_GetOscFreq();
  502. /* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
  503. divSelect = (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_VIDEO_DIV_SELECT_SHIFT;
  504. freqTmp = ((uint64_t)freq * ((uint64_t)(CCM_ANALOG->PLL_VIDEO_NUM))) / ((uint64_t)(CCM_ANALOG->PLL_VIDEO_DENOM));
  505. freq = freq * divSelect + (uint32_t)freqTmp;
  506. /* VIDEO PLL output = PLL output frequency / POSTDIV. */
  507. /*
  508. * Post divider:
  509. *
  510. * PLL_VIDEO[POST_DIV_SELECT]:
  511. * 0x00: 4
  512. * 0x01: 2
  513. * 0x02: 1
  514. *
  515. * MISC2[VIDEO_DIV]:
  516. * 0x00: 1
  517. * 0x01: 2
  518. * 0x02: 1
  519. * 0x03: 4
  520. */
  521. switch (CCM_ANALOG->PLL_VIDEO & CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT_MASK)
  522. {
  523. case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(0U):
  524. freq = freq >> 2U;
  525. break;
  526. case CCM_ANALOG_PLL_VIDEO_POST_DIV_SELECT(1U):
  527. freq = freq >> 1U;
  528. break;
  529. default:
  530. break;
  531. }
  532. switch (CCM_ANALOG->MISC2 & CCM_ANALOG_MISC2_VIDEO_DIV_MASK)
  533. {
  534. case CCM_ANALOG_MISC2_VIDEO_DIV(3):
  535. freq >>= 2U;
  536. break;
  537. case CCM_ANALOG_MISC2_VIDEO_DIV(1):
  538. freq >>= 1U;
  539. break;
  540. default:
  541. break;
  542. }
  543. break;
  544. case kCLOCK_PllEnet0:
  545. divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_MASK)
  546. >> CCM_ANALOG_PLL_ENET_ENET0_DIV_SELECT_SHIFT;
  547. freq = enetRefClkFreq[divSelect];
  548. break;
  549. case kCLOCK_PllEnet1:
  550. divSelect = (CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_MASK)
  551. >> CCM_ANALOG_PLL_ENET_ENET1_DIV_SELECT_SHIFT;
  552. freq = enetRefClkFreq[divSelect];
  553. break;
  554. case kCLOCK_PllEnet2:
  555. /* ref_enetpll2 if fixed at 25MHz. */
  556. freq = 25000000UL;
  557. break;
  558. case kCLOCK_PllUsb2:
  559. freq = (CLOCK_GetOscFreq() * ((CCM_ANALOG->PLL_USB2 & CCM_ANALOG_PLL_USB2_DIV_SELECT_MASK) ? 22U : 20U));
  560. break;
  561. default:
  562. freq = 0U;
  563. break;
  564. }
  565. return freq;
  566. }
  567. void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
  568. {
  569. uint32_t pfdIndex = (uint32_t)pfd;
  570. uint32_t pfd528;
  571. pfd528 = CCM_ANALOG->PFD_528 & ~((CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) << (8 * pfdIndex));
  572. /* Disable the clock output first. */
  573. CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfdIndex));
  574. /* Set the new value and enable output. */
  575. CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
  576. }
  577. void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
  578. {
  579. CCM_ANALOG->PFD_528 |= CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8 * pfd);
  580. }
  581. void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
  582. {
  583. uint32_t pfdIndex = (uint32_t)pfd;
  584. uint32_t pfd480;
  585. pfd480 = CCM_ANALOG->PFD_480 & ~((CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) << (8 * pfdIndex));
  586. /* Disable the clock output first. */
  587. CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfdIndex));
  588. /* Set the new value and enable output. */
  589. CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8 * pfdIndex));
  590. }
  591. void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
  592. {
  593. CCM_ANALOG->PFD_480 |= CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8 * pfd);
  594. }
  595. uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
  596. {
  597. uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
  598. switch (pfd)
  599. {
  600. case kCLOCK_Pfd0:
  601. freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT);
  602. break;
  603. case kCLOCK_Pfd1:
  604. freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT);
  605. break;
  606. case kCLOCK_Pfd2:
  607. freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT);
  608. break;
  609. case kCLOCK_Pfd3:
  610. freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT);
  611. break;
  612. default:
  613. freq = 0U;
  614. break;
  615. }
  616. freq *= 18U;
  617. return freq;
  618. }
  619. uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
  620. {
  621. uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
  622. switch (pfd)
  623. {
  624. case kCLOCK_Pfd0:
  625. freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT);
  626. break;
  627. case kCLOCK_Pfd1:
  628. freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT);
  629. break;
  630. case kCLOCK_Pfd2:
  631. freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT);
  632. break;
  633. case kCLOCK_Pfd3:
  634. freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT);
  635. break;
  636. default:
  637. freq = 0U;
  638. break;
  639. }
  640. freq *= 18U;
  641. return freq;
  642. }
  643. bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
  644. {
  645. CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
  646. USB1->USBCMD |= USBHS_USBCMD_RST_MASK;
  647. for (volatile uint32_t i = 0; i < 400000; i++) /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
  648. {
  649. __ASM("nop");
  650. }
  651. PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
  652. return true;
  653. }
  654. bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq)
  655. {
  656. CCM->CCGR6 |= CCM_CCGR6_CG0_MASK ;
  657. USB2->USBCMD |= USBHS_USBCMD_RST_MASK;
  658. for (volatile uint32_t i = 0; i < 400000; i++) /* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
  659. {
  660. __ASM("nop");
  661. }
  662. PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) | (PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
  663. return true;
  664. }
  665. bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
  666. {
  667. const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
  668. CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
  669. USBPHY1->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
  670. USBPHY1->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
  671. USBPHY1->PWD = 0;
  672. USBPHY1->CTRL |=
  673. USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
  674. USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
  675. USBPHY_CTRL_ENUTMILEVEL2_MASK |
  676. USBPHY_CTRL_ENUTMILEVEL3_MASK;
  677. return true;
  678. }
  679. bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
  680. {
  681. const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
  682. CLOCK_InitUsb2Pll(&g_ccmConfigUsbPll);
  683. USBPHY2->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
  684. USBPHY2->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
  685. USBPHY2->PWD = 0;
  686. USBPHY2->CTRL |=
  687. USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK |
  688. USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
  689. USBPHY_CTRL_ENUTMILEVEL2_MASK |
  690. USBPHY_CTRL_ENUTMILEVEL3_MASK;
  691. return true;
  692. }
  693. void CLOCK_DisableUsbhs0PhyPllClock(void)
  694. {
  695. CLOCK_DeinitUsb1Pll();
  696. USBPHY1->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
  697. }
  698. void CLOCK_DisableUsbhs1PhyPllClock(void)
  699. {
  700. CLOCK_DeinitUsb2Pll();
  701. USBPHY2->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
  702. }