sensor.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. */
  10. #include "sensor.h"
  11. #define DBG_TAG "sensor"
  12. #define DBG_LVL DBG_INFO
  13. #include <rtdbg.h>
  14. #include <string.h>
  15. static char *const sensor_name_str[] =
  16. {
  17. "none",
  18. "acce_", /* Accelerometer */
  19. "gyro_", /* Gyroscope */
  20. "mag_", /* Magnetometer */
  21. "temp_", /* Temperature */
  22. "humi_", /* Relative Humidity */
  23. "baro_", /* Barometer */
  24. "li_", /* Ambient light */
  25. "pr_", /* Proximity */
  26. "hr_", /* Heart Rate */
  27. "tvoc_", /* TVOC Level */
  28. "noi_", /* Noise Loudness */
  29. "step_", /* Step sensor */
  30. "forc_" /* Force sensor */
  31. };
  32. /* Sensor interrupt correlation function */
  33. /*
  34. * Sensor interrupt handler function
  35. */
  36. void rt_sensor_cb(rt_sensor_t sen)
  37. {
  38. if (sen->parent.rx_indicate == RT_NULL)
  39. {
  40. return;
  41. }
  42. if (sen->irq_handle != RT_NULL)
  43. {
  44. sen->irq_handle(sen);
  45. }
  46. /* The buffer is not empty. Read the data in the buffer first */
  47. if (sen->data_len > 0)
  48. {
  49. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  50. }
  51. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  52. {
  53. /* The interrupt mode only produces one data at a time */
  54. sen->parent.rx_indicate(&sen->parent, 1);
  55. }
  56. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  57. {
  58. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  59. }
  60. }
  61. /* ISR for sensor interrupt */
  62. static void irq_callback(void *args)
  63. {
  64. rt_sensor_t sensor = args;
  65. rt_uint8_t i;
  66. if (sensor->module)
  67. {
  68. /* Invoke a callback for all sensors in the module */
  69. for (i = 0; i < sensor->module->sen_num; i++)
  70. {
  71. rt_sensor_cb(sensor->module->sen[i]);
  72. }
  73. }
  74. else
  75. {
  76. rt_sensor_cb(sensor);
  77. }
  78. }
  79. /* Sensor interrupt initialization function */
  80. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  81. {
  82. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  83. {
  84. return -RT_EINVAL;
  85. }
  86. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  87. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  88. {
  89. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  90. }
  91. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  92. {
  93. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  94. }
  95. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  96. {
  97. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  98. }
  99. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  100. LOG_I("interrupt init success");
  101. return 0;
  102. }
  103. /* Sensor interrupt enable */
  104. static void rt_sensor_irq_enable(rt_sensor_t sensor)
  105. {
  106. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  107. {
  108. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  109. }
  110. }
  111. /* Sensor interrupt disable */
  112. static void rt_sensor_irq_disable(rt_sensor_t sensor)
  113. {
  114. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  115. {
  116. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  117. }
  118. }
  119. /* RT-Thread Device Interface */
  120. static rt_err_t rt_sensor_init(rt_device_t dev)
  121. {
  122. rt_sensor_t sensor = (rt_sensor_t)dev;
  123. RT_ASSERT(dev != RT_NULL);
  124. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  125. {
  126. /* Allocate memory for the sensor buffer */
  127. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  128. if (sensor->data_buf == RT_NULL)
  129. {
  130. return -RT_ENOMEM;
  131. }
  132. }
  133. return RT_EOK;
  134. }
  135. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  136. {
  137. rt_sensor_t sensor = (rt_sensor_t)dev;
  138. RT_ASSERT(dev != RT_NULL);
  139. if (sensor->module)
  140. {
  141. /* take the module mutex */
  142. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  143. }
  144. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  145. {
  146. /* If polling mode is supported, configure it to polling mode */
  147. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING) == RT_EOK)
  148. {
  149. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  150. }
  151. }
  152. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  153. {
  154. /* If interrupt mode is supported, configure it to interrupt mode */
  155. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT) == RT_EOK)
  156. {
  157. sensor->config.mode = RT_SENSOR_MODE_INT;
  158. /* Initialization sensor interrupt */
  159. rt_sensor_irq_init(sensor);
  160. }
  161. }
  162. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  163. {
  164. /* If fifo mode is supported, configure it to fifo mode */
  165. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO) == RT_EOK)
  166. {
  167. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  168. /* Initialization sensor interrupt */
  169. rt_sensor_irq_init(sensor);
  170. }
  171. }
  172. else
  173. {
  174. return -RT_EINVAL;
  175. }
  176. /* Configure power mode to normal mode */
  177. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  178. {
  179. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  180. }
  181. if (sensor->module)
  182. {
  183. /* release the module mutex */
  184. rt_mutex_release(sensor->module->lock);
  185. }
  186. return RT_EOK;
  187. }
  188. static rt_err_t rt_sensor_close(rt_device_t dev)
  189. {
  190. rt_sensor_t sensor = (rt_sensor_t)dev;
  191. RT_ASSERT(dev != RT_NULL);
  192. if (sensor->module)
  193. {
  194. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  195. }
  196. /* Configure power mode to power down mode */
  197. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  198. {
  199. sensor->config.power = RT_SENSOR_POWER_DOWN;
  200. }
  201. /* Sensor disable interrupt */
  202. rt_sensor_irq_disable(sensor);
  203. if (sensor->module)
  204. {
  205. rt_mutex_release(sensor->module->lock);
  206. }
  207. return RT_EOK;
  208. }
  209. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  210. {
  211. rt_sensor_t sensor = (rt_sensor_t)dev;
  212. rt_size_t result = 0;
  213. RT_ASSERT(dev != RT_NULL);
  214. if (buf == NULL || len == 0)
  215. {
  216. return 0;
  217. }
  218. if (sensor->module)
  219. {
  220. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  221. }
  222. /* The buffer is not empty. Read the data in the buffer first */
  223. if (sensor->data_len > 0)
  224. {
  225. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  226. {
  227. len = sensor->data_len / sizeof(struct rt_sensor_data);
  228. }
  229. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  230. /* Clear the buffer */
  231. sensor->data_len = 0;
  232. result = len;
  233. }
  234. else
  235. {
  236. /* If the buffer is empty read the data */
  237. result = sensor->ops->fetch_data(sensor, buf, len);
  238. }
  239. if (sensor->module)
  240. {
  241. rt_mutex_release(sensor->module->lock);
  242. }
  243. return result;
  244. }
  245. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  246. {
  247. rt_sensor_t sensor = (rt_sensor_t)dev;
  248. rt_err_t result = RT_EOK;
  249. RT_ASSERT(dev != RT_NULL);
  250. if (sensor->module)
  251. {
  252. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  253. }
  254. switch (cmd)
  255. {
  256. case RT_SENSOR_CTRL_GET_ID:
  257. if (args)
  258. {
  259. sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
  260. }
  261. break;
  262. case RT_SENSOR_CTRL_GET_INFO:
  263. if (args)
  264. {
  265. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  266. }
  267. break;
  268. case RT_SENSOR_CTRL_SET_RANGE:
  269. /* Configuration measurement range */
  270. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  271. if (result == RT_EOK)
  272. {
  273. sensor->config.range = (rt_int32_t)args;
  274. LOG_D("set range %d", sensor->config.range);
  275. }
  276. break;
  277. case RT_SENSOR_CTRL_SET_ODR:
  278. /* Configuration data output rate */
  279. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  280. if (result == RT_EOK)
  281. {
  282. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  283. LOG_D("set odr %d", sensor->config.odr);
  284. }
  285. break;
  286. case RT_SENSOR_CTRL_SET_MODE:
  287. /* Configuration sensor work mode */
  288. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, args);
  289. if (result == RT_EOK)
  290. {
  291. sensor->config.mode = (rt_uint32_t)args & 0xFF;
  292. LOG_D("set work mode code:", sensor->config.mode);
  293. if (sensor->config.mode == RT_SENSOR_MODE_POLLING)
  294. {
  295. rt_sensor_irq_disable(sensor);
  296. }
  297. else if (sensor->config.mode == RT_SENSOR_MODE_INT || sensor->config.mode == RT_SENSOR_MODE_FIFO)
  298. {
  299. rt_sensor_irq_enable(sensor);
  300. }
  301. }
  302. break;
  303. case RT_SENSOR_CTRL_SET_POWER:
  304. /* Configuration sensor power mode */
  305. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  306. if (result == RT_EOK)
  307. {
  308. sensor->config.power = (rt_uint32_t)args & 0xFF;
  309. LOG_D("set power mode code:", sensor->config.power);
  310. }
  311. break;
  312. case RT_SENSOR_CTRL_SELF_TEST:
  313. /* Device self-test */
  314. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  315. break;
  316. default:
  317. return -RT_ERROR;
  318. }
  319. if (sensor->module)
  320. {
  321. rt_mutex_release(sensor->module->lock);
  322. }
  323. return result;
  324. }
  325. #ifdef RT_USING_DEVICE_OPS
  326. const static struct rt_device_ops rt_sensor_ops =
  327. {
  328. rt_sensor_init,
  329. rt_sensor_open,
  330. rt_sensor_close,
  331. rt_sensor_read,
  332. RT_NULL,
  333. rt_sensor_control
  334. };
  335. #endif
  336. /*
  337. * sensor register
  338. */
  339. int rt_hw_sensor_register(rt_sensor_t sensor,
  340. const char *name,
  341. rt_uint32_t flag,
  342. void *data)
  343. {
  344. rt_int8_t result;
  345. rt_device_t device;
  346. RT_ASSERT(sensor != RT_NULL);
  347. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  348. /* Add a type name for the sensor device */
  349. sensor_name = sensor_name_str[sensor->info.type];
  350. device_name = rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  351. if (device_name == RT_NULL)
  352. {
  353. LOG_E("device_name calloc failed!");
  354. return -RT_ERROR;
  355. }
  356. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  357. strcat(device_name, name);
  358. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  359. {
  360. /* Create a mutex lock for the module */
  361. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  362. if (sensor->module->lock == RT_NULL)
  363. {
  364. rt_free(device_name);
  365. return -RT_ERROR;
  366. }
  367. }
  368. device = &sensor->parent;
  369. #ifdef RT_USING_DEVICE_OPS
  370. device->ops = &rt_sensor_ops;
  371. #else
  372. device->init = rt_sensor_init;
  373. device->open = rt_sensor_open;
  374. device->close = rt_sensor_close;
  375. device->read = rt_sensor_read;
  376. device->write = RT_NULL;
  377. device->control = rt_sensor_control;
  378. #endif
  379. device->type = RT_Device_Class_Sensor;
  380. device->rx_indicate = RT_NULL;
  381. device->tx_complete = RT_NULL;
  382. device->user_data = data;
  383. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  384. if (result != RT_EOK)
  385. {
  386. LOG_E("rt_sensor register err code: %d", result);
  387. return result;
  388. }
  389. LOG_I("rt_sensor init success");
  390. return RT_EOK;
  391. }