k9f1g08_mtd.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. /*
  2. * File : rtthread.h
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006-2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE.
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2011-10-13 prife the first version
  13. * 2012-03-11 prife use mtd device interface
  14. */
  15. #include <rtdevice.h>
  16. #include <s3c24x0.h>
  17. /* nand flash commands. This appears to be generic across all NAND flash chips */
  18. #define CMD_READ 0x00 // Read
  19. #define CMD_READ1 0x01 // Read1
  20. #define CMD_READ2 0x50 // Read2
  21. #define CMD_READ3 0x30 // Read3
  22. #define CMD_READID 0x90 // ReadID
  23. #define CMD_WRITE1 0x80 // Write phase 1
  24. #define CMD_WRITE2 0x10 // Write phase 2
  25. #define CMD_ERASE1 0x60 // Erase phase 1
  26. #define CMD_ERASE2 0xd0 // Erase phase 2
  27. #define CMD_STATUS 0x70 // Status read
  28. #define CMD_RESET 0xff // Reset
  29. #define CMD_RANDOMREAD1 0x05 // random read phase 1
  30. #define CMD_RANDOMREAD2 0xE0 // random read phase 2
  31. #define CMD_RANDOMWRITE 0x85 // random write phase 1
  32. #define NF_CMD(cmd) {NFCMD = (cmd); }
  33. #define NF_ADDR(addr) {NFADDR = (addr); }
  34. #define NF_CE_L() {NFCONT &= ~(1<<1); }
  35. #define NF_CE_H() {NFCONT |= (1<<1); }
  36. #define NF_RSTECC() {NFCONT |= (1<<4); }
  37. #define NF_RDMECC() (NFMECC0 )
  38. #define NF_RDSECC() (NFSECC )
  39. #define NF_RDDATA() (NFDATA)
  40. #define NF_RDDATA8() (NFDATA8)
  41. #define NF_WRDATA(data) {NFDATA = (data); }
  42. #define NF_WRDATA8(data) {NFDATA8 = (data); }
  43. #define NF_WAITRB() {while(!(NFSTAT&(1<<0)));}
  44. #define NF_CLEAR_RB() {NFSTAT |= (1<<2); }
  45. #define NF_DETECT_RB() {while(!(NFSTAT&(1<<2)));}
  46. #define NF_MECC_UNLOCK() {NFCONT &= ~(1<<5); }
  47. #define NF_MECC_LOCK() {NFCONT |= (1<<5); }
  48. #define NF_SECC_UNLOCK() {NFCONT &= ~(1<<6); }
  49. #define NF_SECC_LOCK() {NFCONT |= (1<<6); }
  50. /* HCLK=100Mhz, TACLS + TWRPH0 + TWRPH1 >= 50ns */
  51. #define TACLS 1 // 1-clock(0ns)
  52. #define TWRPH0 4 // 3-clock(25ns)
  53. #define TWRPH1 0 // 1-clock(10ns)
  54. /* status bit pattern */
  55. #define STATUS_READY 0x40 // ready
  56. #define STATUS_ERROR 0x01 // error
  57. #define STATUS_ILLACC 0x08 // illegal access
  58. /* configurations */
  59. #define PAGE_DATA_SIZE 2048
  60. #define BLOCK_MARK_SPARE_OFFSET 4
  61. //#define CONFIG_USE_HW_ECC
  62. static struct rt_mutex nand;
  63. #define BLOCK_MARK_OFFSET (PAGE_DATA_SIZE + BLOCK_MARK_SPARE_OFFSET)
  64. /*
  65. * In a page, data's ecc code is stored in spare area, from BYTE 0 to BYTEE 3.
  66. * Block's status byte which indicate a block is bad or not is BYTE4.
  67. */
  68. static void nand_hw_init(void)
  69. {
  70. /* initialize GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
  71. GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
  72. /* enable PCLK for nand controller */
  73. CLKCON |= 1 << 4;
  74. NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
  75. NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
  76. NFSTAT = 0;
  77. /* reset nand flash */
  78. NF_CE_L();
  79. NF_CLEAR_RB();
  80. NF_CMD(CMD_RESET);
  81. NF_DETECT_RB();
  82. NF_CE_H();
  83. }
  84. /*
  85. *check the first byte in spare of the block's first page
  86. *return
  87. * good block, RT_EOK
  88. * bad blcok, return -RT_ERROR
  89. */
  90. static rt_err_t k9f1g08_mtd_check_block(
  91. struct rt_mtd_nand_device* device,
  92. rt_uint32_t block)
  93. {
  94. rt_uint8_t status;
  95. block = block << 6;
  96. NF_CE_L();
  97. NF_CLEAR_RB();
  98. NF_CMD(CMD_READ);
  99. NF_ADDR(BLOCK_MARK_OFFSET);
  100. NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
  101. NF_ADDR(block & 0xff);
  102. NF_ADDR((block >> 8) & 0xff);
  103. NF_ADDR((block >>16) & 0xff);
  104. NF_CMD(CMD_READ3);
  105. NF_DETECT_RB(); /* wait for ready bit */
  106. status = NF_RDDATA8();
  107. NF_CE_H();
  108. /* TODO: more check about status */
  109. return status == 0xFF ? RT_EOK : -RT_ERROR;
  110. #if 0
  111. /* check the second page */
  112. block ++;
  113. NF_CE_L();
  114. NF_CLEAR_RB();
  115. NF_CMD(CMD_READ);
  116. NF_ADDR(BLOCK_MARK_OFFSET);
  117. NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
  118. NF_ADDR(block & 0xff);
  119. NF_ADDR((block >> 8) & 0xff);
  120. NF_ADDR((block >>16) & 0xff);
  121. NF_CMD(CMD_READ3);
  122. NF_DETECT_RB(); /* wait for ready bit */
  123. status = NF_RDDATA8();
  124. NF_CE_H();
  125. return status == 0xFF ? RT_EOK : -RT_ERROR;
  126. #endif
  127. }
  128. static rt_err_t k9f1g08_mtd_mark_bad_block(
  129. struct rt_mtd_nand_device* device,
  130. rt_uint32_t block)
  131. {
  132. /* get address of the fisrt page in the block */
  133. rt_err_t result = RT_EOK;
  134. block = block << 6;
  135. NF_CE_L();
  136. NF_CLEAR_RB();
  137. NF_CMD(CMD_WRITE1);
  138. NF_ADDR(BLOCK_MARK_OFFSET);
  139. NF_ADDR((BLOCK_MARK_OFFSET >> 8) & 0xff);
  140. NF_ADDR(block & 0xff);
  141. NF_ADDR((block >> 8) & 0xff);
  142. NF_ADDR((block >>16) & 0xff);
  143. /* write bad block mark in spare*/
  144. NF_WRDATA8(0);
  145. NF_CMD(CMD_WRITE2);
  146. NF_DETECT_RB(); /* wait for ready bit */
  147. if ( NFSTAT & STATUS_ILLACC )
  148. {
  149. NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
  150. result = -RT_ERROR;
  151. }
  152. else
  153. {
  154. NF_CMD(CMD_STATUS); /* get the status */
  155. if (NF_RDDATA() & STATUS_ERROR)
  156. result = -RT_ERROR;
  157. }
  158. NF_CE_H(); /* disable chip select */
  159. return result;
  160. }
  161. static rt_err_t k9f1g08_mtd_erase_block(
  162. struct rt_mtd_nand_device* device,
  163. rt_uint32_t block)
  164. {
  165. /* 1 block = 64 page= 2^6*/
  166. rt_err_t result = RT_EOK;
  167. block <<= 6; /* get the first page's address in this block*/
  168. rt_mutex_take(&nand, RT_WAITING_FOREVER);
  169. NF_CE_L(); /* enable chip */
  170. NF_CLEAR_RB();
  171. NF_CMD(CMD_ERASE1); /* erase one block 1st command */
  172. NF_ADDR(block & 0xff);
  173. NF_ADDR((block >> 8) & 0xff);
  174. // NF_ADDR((block >> 16) & 0xff);
  175. NF_CMD(CMD_ERASE2);
  176. NF_DETECT_RB(); /* wait for ready bit */
  177. if ( NFSTAT & STATUS_ILLACC )
  178. {
  179. NFSTAT |= STATUS_ILLACC; /* write 1 to clear.*/
  180. result = -RT_ERROR;
  181. } else {
  182. NF_CMD(CMD_STATUS); /* check status */
  183. if (NF_RDDATA() & STATUS_ERROR) {
  184. result = -RT_ERROR;
  185. }
  186. }
  187. NF_CE_H();
  188. rt_mutex_release(&nand);
  189. return result;
  190. }
  191. /* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
  192. static rt_err_t k9f1g08_mtd_read(
  193. struct rt_mtd_nand_device * dev,
  194. rt_off_t page,
  195. rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
  196. rt_uint8_t * spare, rt_uint32_t spare_len)
  197. {
  198. rt_uint32_t i;
  199. rt_uint32_t mecc;
  200. rt_uint32_t status;
  201. rt_err_t result = RT_EOK;
  202. rt_mutex_take(&nand, RT_WAITING_FOREVER);
  203. NF_RSTECC(); /* reset ECC*/
  204. NF_MECC_UNLOCK();/* unlock MECC */
  205. NF_CE_L(); /* enable chip */
  206. if (data != RT_NULL && data_len != 0)
  207. {
  208. /* read page data area */
  209. NF_CLEAR_RB();
  210. NF_CMD(CMD_READ);
  211. NF_ADDR(0);
  212. NF_ADDR(0);
  213. NF_ADDR((page) & 0xff);
  214. NF_ADDR((page >> 8) & 0xff);
  215. // NF_ADDR((page >> 16) & 0xff);
  216. NF_CMD(CMD_READ3);
  217. NF_DETECT_RB();/* wait for ready bit */
  218. /*TODO: use a more quick method */
  219. for (i = 0; i < data_len; i++)
  220. data[i] = NF_RDDATA8();
  221. NF_MECC_LOCK();
  222. #if defined(CONFIG_USE_HW_ECC)
  223. /* if read whole page data, then check ecc status */
  224. if (data_len == PAGE_DATA_SIZE)
  225. {
  226. mecc = NF_RDDATA();
  227. NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
  228. NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
  229. /* check data ecc */
  230. status = NFESTAT0 & 0x03;
  231. if (status == 0x00) /* no error */
  232. result = RT_EOK;
  233. else if (status == 0x01) /* error can be fixed */
  234. {
  235. //TODO add code to do ecc correct operation
  236. result = -1;
  237. }
  238. else /* error can't be fixed */
  239. result = -2;
  240. }
  241. #endif
  242. }
  243. if (spare != RT_NULL && spare_len != 0)
  244. {
  245. /* read page spare area */
  246. NF_CLEAR_RB();
  247. NF_CMD(CMD_READ);
  248. NF_ADDR(PAGE_DATA_SIZE);
  249. NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
  250. NF_ADDR((page) & 0xff);
  251. NF_ADDR((page >> 8) & 0xff);
  252. // NF_ADDR((page >> 16) & 0xff);
  253. NF_CMD(CMD_READ3);
  254. NF_DETECT_RB();/* wait for ready bit */
  255. /*TODO: use a more quick method */
  256. for (i = 0; i < spare_len; i++)
  257. spare[i] = NF_RDDATA8();
  258. NF_MECC_LOCK();
  259. result = RT_EOK;
  260. }
  261. NF_CE_H();
  262. rt_mutex_release(&nand);
  263. /* TODO: more check about status */
  264. return result;
  265. }
  266. static rt_err_t k9f1g08_mtd_write (
  267. struct rt_mtd_nand_device * dev,
  268. rt_off_t page,
  269. const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
  270. const rt_uint8_t * spare, rt_uint32_t spare_len)
  271. {
  272. rt_uint32_t i;
  273. rt_uint32_t mecc0;
  274. rt_err_t result = RT_EOK;
  275. #if defined(CONFIG_USE_HW_ECC)
  276. rt_uint8_t ecc_data[4];
  277. #endif
  278. rt_mutex_take(&nand, RT_WAITING_FOREVER);
  279. NF_CE_L(); /* enable chip */
  280. NF_RSTECC();
  281. NF_MECC_UNLOCK();
  282. if (data != RT_NULL && data_len != 0)
  283. {
  284. RT_ASSERT(data_len == PAGE_DATA_SIZE);
  285. NF_CLEAR_RB();
  286. NF_CMD(CMD_WRITE1);
  287. NF_ADDR(0);
  288. NF_ADDR(0);
  289. NF_ADDR( page & 0xff);
  290. NF_ADDR((page >> 8) & 0xff);
  291. // NF_ADDR((page >> 16) & 0xff);
  292. for(i=0; i<PAGE_DATA_SIZE; i++)
  293. NF_WRDATA8(data[i]);
  294. NF_MECC_LOCK();
  295. #if defined(CONFIG_USE_HW_ECC)
  296. /* produce HARDWARE ECC */
  297. mecc0=NFMECC0;
  298. ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
  299. ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
  300. ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
  301. ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
  302. /* write ecc to spare[0]..[3] */
  303. for(i=0; i<4; i++)
  304. NF_WRDATA8(ecc_data[i]);
  305. #endif
  306. NF_CMD(CMD_WRITE2);
  307. NF_DETECT_RB(); /* wait for ready bit */
  308. if (NFSTAT & STATUS_ILLACC)
  309. {
  310. NFSTAT |= STATUS_ILLACC;
  311. result = -RT_ERROR;
  312. goto __ret;
  313. }
  314. else
  315. {
  316. NF_CMD(CMD_STATUS);
  317. if (NF_RDDATA() & STATUS_ERROR)
  318. {
  319. result = -RT_ERROR;
  320. goto __ret;
  321. }
  322. }
  323. }
  324. if (spare != RT_NULL && spare_len != 0)
  325. {
  326. NF_CLEAR_RB();
  327. NF_CMD(CMD_WRITE1);
  328. NF_ADDR(PAGE_DATA_SIZE);
  329. NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
  330. NF_ADDR( page & 0xff);
  331. NF_ADDR((page >> 8) & 0xff);
  332. // NF_ADDR((page >> 16) & 0xff);
  333. for(i=0; i<spare_len; i++)
  334. NF_WRDATA8(spare[i]);
  335. NF_CMD(CMD_WRITE2);
  336. NF_DETECT_RB();
  337. if (NFSTAT & STATUS_ILLACC)
  338. {
  339. NFSTAT |= STATUS_ILLACC;
  340. result = -RT_ERROR;
  341. goto __ret;
  342. }
  343. else
  344. {
  345. NF_CMD(CMD_STATUS);
  346. if (NF_RDDATA() & STATUS_ERROR)
  347. {
  348. result = -RT_ERROR;
  349. goto __ret;
  350. }
  351. }
  352. }
  353. __ret:
  354. NF_CE_H(); /* disable chip */
  355. rt_mutex_release(&nand);
  356. return result;
  357. }
  358. static rt_err_t k9f1g08_read_id(
  359. struct rt_mtd_nand_device * dev)
  360. {
  361. return RT_EOK;
  362. }
  363. const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
  364. {
  365. k9f1g08_read_id,
  366. k9f1g08_mtd_read,
  367. k9f1g08_mtd_write,
  368. k9f1g08_mtd_erase_block,
  369. k9f1g08_mtd_check_block,
  370. k9f1g08_mtd_mark_bad_block,
  371. };
  372. /* interface of nand and rt-thread device */
  373. static struct rt_mtd_nand_device nand_part[4];
  374. void k9f1g08_mtd_init()
  375. {
  376. /* initialize nand controller of S3C2440 */
  377. nand_hw_init();
  378. /* initialize mutex */
  379. if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
  380. {
  381. rt_kprintf("init nand lock mutex failed\n");
  382. }
  383. /* the first partition of nand */
  384. nand_part[0].page_size = PAGE_DATA_SIZE;
  385. nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  386. nand_part[0].block_start = 0;
  387. nand_part[0].block_end = 255;
  388. nand_part[0].oob_size = 64;
  389. nand_part[0].ops = &k9f1g08_mtd_ops;
  390. rt_mtd_nand_register_device("nand0", &nand_part[0]);
  391. /* the second partition of nand */
  392. nand_part[1].page_size = PAGE_DATA_SIZE;
  393. nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  394. nand_part[1].block_start = 256;
  395. nand_part[1].block_end = 512-1;
  396. nand_part[1].oob_size = 64;
  397. nand_part[1].ops = &k9f1g08_mtd_ops;
  398. rt_mtd_nand_register_device("nand1", &nand_part[1]);
  399. /* the third partition of nand */
  400. nand_part[2].page_size = PAGE_DATA_SIZE;
  401. nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  402. nand_part[2].block_start = 512;
  403. nand_part[2].block_end = 512+256-1;
  404. nand_part[2].oob_size = 64;
  405. nand_part[2].ops = &k9f1g08_mtd_ops;
  406. rt_mtd_nand_register_device("nand2", &nand_part[2]);
  407. /* the 4th partition of nand */
  408. nand_part[3].page_size = PAGE_DATA_SIZE;
  409. nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  410. nand_part[3].block_start = 512+256;
  411. nand_part[3].block_end = 1024-1;
  412. nand_part[3].oob_size = 64;
  413. nand_part[3].ops = &k9f1g08_mtd_ops;
  414. rt_mtd_nand_register_device("nand3", &nand_part[3]);
  415. }
  416. #include "finsh.h"
  417. static char buf[PAGE_DATA_SIZE+64];
  418. static char spare[64];
  419. void nand_erase(int start, int end)
  420. {
  421. int page;
  422. for(; start <= end; start ++)
  423. {
  424. page = start * 64;
  425. rt_memset(buf, 0, PAGE_DATA_SIZE);
  426. rt_memset(spare, 0, 64);
  427. k9f1g08_mtd_erase_block(RT_NULL, start);
  428. k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
  429. if (spare[0] != 0xFF)
  430. {
  431. rt_kprintf("block %d is bad, mark it bad\n", start);
  432. //rt_memset(spare, 0xFF, 64);
  433. if (spare[4] == 0xFF)
  434. {
  435. spare[4] = 0x00;
  436. k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
  437. }
  438. }
  439. }
  440. }
  441. int nand_read(int page)
  442. {
  443. int i;
  444. int res;
  445. rt_memset(buf, 0, sizeof(buf));
  446. // rt_memset(spare, 0, 64);
  447. // res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
  448. res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
  449. rt_kprintf("block=%d, page=%d\n", page/64, page%64);
  450. for(i=0; i<PAGE_DATA_SIZE; i++)
  451. {
  452. rt_kprintf("%02x ", buf[i]);
  453. if((i+1)%16 == 0)
  454. rt_kprintf("\n");
  455. }
  456. rt_kprintf("spare:\n");
  457. for(i=0; i<64; i++)
  458. {
  459. // rt_kprintf("%02x ", spare[i]);
  460. rt_kprintf("%02x ", buf[2048+i]);
  461. if((i+1)%8 == 0)
  462. rt_kprintf("\n");
  463. }
  464. return res;
  465. }
  466. int nand_write(int page)
  467. {
  468. int i;
  469. rt_memset(buf, 0, PAGE_DATA_SIZE);
  470. for(i=0; i<PAGE_DATA_SIZE; i++)
  471. buf[i] = (i % 2) + i / 2;
  472. return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
  473. }
  474. int nand_read2(int page)
  475. {
  476. int i;
  477. int res;
  478. rt_memset(buf, 0, sizeof(buf));
  479. res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
  480. rt_kprintf("block=%d, page=%d\n", page/64, page%64);
  481. for(i=0; i<PAGE_DATA_SIZE; i++)
  482. {
  483. rt_kprintf("%02x ", buf[i]);
  484. if((i+1)%16 == 0)
  485. rt_kprintf("\n");
  486. }
  487. rt_memset(spare, 0, 64);
  488. res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
  489. rt_kprintf("spare:\n");
  490. for(i=0; i<64; i++)
  491. {
  492. rt_kprintf("%02x ", spare[i]);
  493. if((i+1)%8 == 0)
  494. rt_kprintf("\n");
  495. }
  496. return res;
  497. }
  498. int nand_read3(int page)
  499. {
  500. int i;
  501. int res;
  502. rt_memset(buf, 0, sizeof(buf));
  503. rt_memset(spare, 0, 64);
  504. res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
  505. rt_kprintf("block=%d, page=%d\n", page/64, page%64);
  506. for(i=0; i<PAGE_DATA_SIZE; i++)
  507. {
  508. rt_kprintf("%02x ", buf[i]);
  509. if((i+1)%16 == 0)
  510. rt_kprintf("\n");
  511. }
  512. rt_kprintf("spare:\n");
  513. for(i=0; i<64; i++)
  514. {
  515. rt_kprintf("%02x ", spare[i]);
  516. if((i+1)%8 == 0)
  517. rt_kprintf("\n");
  518. }
  519. return res;
  520. }
  521. int nand_check(int block)
  522. {
  523. if ( k9f1g08_mtd_check_block(RT_NULL, block) != RT_EOK)
  524. rt_kprintf("block %d is bad\n", block);
  525. else
  526. rt_kprintf("block %d is good\n", block);
  527. }
  528. int nand_mark(int block)
  529. {
  530. return k9f1g08_mtd_mark_bad_block(RT_NULL, block);
  531. }
  532. FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
  533. FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
  534. FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
  535. FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
  536. FINSH_FUNCTION_EXPORT(nand_check, nand_check(1).);
  537. FINSH_FUNCTION_EXPORT(nand_mark, nand_mark(1).);
  538. FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);