k9f1g08_mtd_ecc_hw.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549
  1. /*
  2. * File : rtthread.h
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006-2012, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE.
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2011-10-13 prife the first version
  13. * 2012-03-11 prife use mtd device interface
  14. */
  15. #include <rtdevice.h>
  16. #include <s3c24x0.h>
  17. //#include "nand.h"
  18. // For flash chip that is bigger than 32 MB, we need to have 4 step address
  19. //
  20. #define NFCONF_INIT 0xF830 // 512-byte 4 Step Address
  21. #define NEED_EXT_ADDR 1
  22. //#define NFCONF_INIT 0xA830 // 256-byte 4 Step Address
  23. //#define NEED_EXT_ADDR 0
  24. //#define NFCONF_INIT 0xF840
  25. // NAND Flash Command. This appears to be generic across all NAND flash chips
  26. #define CMD_READ 0x00 // Read
  27. #define CMD_READ1 0x01 // Read1
  28. #define CMD_READ2 0x50 // Read2
  29. #define CMD_READ3 0x30 // Read3
  30. #define CMD_READID 0x90 // ReadID
  31. #define CMD_WRITE1 0x80 // Write phase 1
  32. #define CMD_WRITE2 0x10 // Write phase 2
  33. #define CMD_ERASE1 0x60 // Erase phase 1
  34. #define CMD_ERASE2 0xd0 // Erase phase 2
  35. #define CMD_STATUS 0x70 // Status read
  36. #define CMD_RESET 0xff // Reset
  37. #define CMD_RANDOMREAD1 0x05 // random read phase 1
  38. #define CMD_RANDOMREAD2 0xE0 // random read phase 2
  39. #define CMD_RANDOMWRITE 0x85 // random write phase 1
  40. #define NF_CMD(cmd) {NFCMD = (cmd); }
  41. #define NF_ADDR(addr) {NFADDR = (addr); }
  42. #define NF_nFCE_L() {NFCONT &= ~(1<<1); }
  43. #define NF_nFCE_H() {NFCONT |= (1<<1); }
  44. #define NF_RSTECC() {NFCONT |= (1<<4); }
  45. #define NF_RDMECC() (NFMECC0 )
  46. #define NF_RDSECC() (NFSECC )
  47. #define NF_RDDATA() (NFDATA)
  48. #define NF_RDDATA8() (NFDATA8)
  49. #define NF_WRDATA(data) {NFDATA = (data); }
  50. #define NF_WRDATA8(data) {NFDATA8 = (data); }
  51. #define NF_WAITRB() {while(!(NFSTAT&(1<<0)));}
  52. #define NF_CLEAR_RB() {NFSTAT |= (1<<2); }
  53. #define NF_DETECT_RB() {while(!(NFSTAT&(1<<2)));}
  54. #define NF_MECC_UnLock() {NFCONT &= ~(1<<5); }
  55. #define NF_MECC_Lock() {NFCONT |= (1<<5); }
  56. #define NF_SECC_UnLock() {NFCONT &= ~(1<<6); }
  57. #define NF_SECC_Lock() {NFCONT |= (1<<6); }
  58. #define RdNFDat8() (NFDATA8) //byte access
  59. #define RdNFDat() RdNFDat8() //for 8 bit nand flash, use byte access
  60. #define WrNFDat8(dat) (NFDATA8 = (dat)) //byte access
  61. #define WrNFDat(dat) WrNFDat8() //for 8 bit nand flash, use byte access
  62. #define NF_CE_L() NF_nFCE_L()
  63. #define NF_CE_H() NF_nFCE_H()
  64. #define NF_DATA_R() NFDATA
  65. #define NF_ECC() NFECC0
  66. // HCLK=100Mhz
  67. #define TACLS 1 // 1-clk(0ns)
  68. #define TWRPH0 4 // 3-clk(25ns)
  69. #define TWRPH1 0 // 1-clk(10ns) //TACLS+TWRPH0+TWRPH1>=50ns
  70. // Status bit pattern
  71. #define STATUS_READY 0x40 // Ready
  72. #define STATUS_ERROR 0x01 // Error
  73. #define STATUS_ILLACC 0x08 // Illigar Access
  74. //
  75. // ERROR_Xxx
  76. //
  77. #define ERR_SUCCESS 0
  78. #define ERR_DISK_OP_FAIL1 1
  79. #define ERR_DISK_OP_FAIL2 2
  80. #define ERR_INVALID_BOOT_SECTOR 3
  81. #define ERR_INVALID_LOAD_ADDR 4
  82. #define ERR_GEN_FAILURE 5
  83. #define ERR_INVALID_PARAMETER 6
  84. #define ERR_JUMP_FAILED 7
  85. #define ERR_INVALID_TOC 8
  86. #define ERR_INVALID_FILE_TYPE 9
  87. //#define NF_READID 1
  88. #define READ_SECTOR_INFO
  89. #define NAND_BASE 0xB0E00000
  90. #define IOP_BASE 0xB1600000
  91. #define PAGE_DATA_SIZE 2048
  92. static struct rt_mutex nand;
  93. /*
  94. * In a page, data's ecc code is stored in spare area, spare BYTE0 to BYTEE 3
  95. * block's status byte which indicate a block is bad is BYTE4 in spare area
  96. */
  97. static void nand_hw_init(void)
  98. {
  99. /* Init GPIO£¬ nFWE£¬ALE£¬CLE£¬nFCE£¬nFRE */
  100. GPACON |= (1<<17) | (1<<18) | (1<<19) | (1<<20) | (1<<22);
  101. /* Enable PCLK into nand Controller */
  102. CLKCON |= 1 << 4;
  103. NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4)|(0<<0);
  104. NFCONT = (0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0);
  105. NFSTAT = 0;
  106. /* reset nand flash */
  107. NF_CE_L();
  108. NF_CLEAR_RB();
  109. NF_CMD(CMD_RESET);
  110. NF_DETECT_RB();
  111. NF_CE_H();
  112. }
  113. static rt_err_t k9f1g08_mtd_erase_block(
  114. struct rt_mtd_nand_device* device,
  115. rt_uint32_t block)
  116. {
  117. /* 1 block = 64 page= 2^6*/
  118. rt_err_t result = RT_EOK;
  119. block <<= 6; /* get the first page's address in this block*/
  120. rt_mutex_take(&nand, RT_WAITING_FOREVER);
  121. NF_nFCE_L(); /* enable chip */
  122. NF_CLEAR_RB();
  123. NF_CMD(CMD_ERASE1); /* Erase one block 1st command */
  124. NF_ADDR(block & 0xff);
  125. NF_ADDR((block >> 8) & 0xff);
  126. // NF_ADDR((block >> 16) & 0xff);
  127. NF_CMD(CMD_ERASE2);
  128. NF_DETECT_RB(); /* Wait for ready bit */
  129. if ( NFSTAT & STATUS_ILLACC )
  130. {
  131. NFSTAT |= STATUS_ILLACC; /* Write 1 to clear.*/
  132. result = -RT_ERROR;
  133. } else {
  134. NF_CMD(CMD_STATUS); /* Check the status */
  135. if (NF_DATA_R() & STATUS_ERROR) {
  136. result = -RT_ERROR;
  137. }
  138. }
  139. NF_nFCE_H();
  140. rt_mutex_release(&nand);
  141. return result;
  142. /* TODO: more check about status */
  143. }
  144. /* return 0, ecc ok, 1, can be fixed , -1 can not be fixed */
  145. static rt_err_t k9f1g08_mtd_read(
  146. struct rt_mtd_nand_device * dev,
  147. rt_off_t page,
  148. rt_uint8_t * data, rt_uint32_t data_len, //may not always be 2048
  149. rt_uint8_t * spare, rt_uint32_t spare_len)
  150. {
  151. rt_uint32_t i;
  152. rt_uint32_t mecc;
  153. rt_uint32_t status;
  154. rt_err_t result;
  155. rt_mutex_take(&nand, RT_WAITING_FOREVER);
  156. NF_RSTECC(); /* reset ECC*/
  157. NF_MECC_UnLock();/* unlock MECC */
  158. NF_nFCE_L(); /* enable chip */
  159. if (data != RT_NULL && data_len != 0)
  160. {
  161. /* read page data area */
  162. NF_CLEAR_RB();
  163. NF_CMD(CMD_READ);
  164. NF_ADDR(0);
  165. NF_ADDR(0);
  166. NF_ADDR((page) & 0xff);
  167. NF_ADDR((page >> 8) & 0xff);
  168. // NF_ADDR((page >> 16) & 0xff);
  169. NF_CMD(CMD_READ3);
  170. NF_DETECT_RB();/* Wait for RB */
  171. /*TODO: use a more quick method */
  172. for (i = 0; i < data_len; i++)
  173. data[i] = NF_RDDATA8();
  174. NF_MECC_Lock();
  175. /* if read whole page data, then check ecc status */
  176. if (data_len == PAGE_DATA_SIZE)
  177. {
  178. mecc = NF_RDDATA();
  179. NFMECCD0 = ((mecc&0xff00)<<8)|(mecc&0xff);
  180. NFMECCD1 = ((mecc&0xff000000)>>8)|((mecc&0xff0000)>>16);
  181. /* check data ecc */
  182. status = NFESTAT0 & 0x03;
  183. if (status == 0x00)
  184. result = RT_EOK; /* no error */
  185. else if (status == 0x01)
  186. result = -1;/* error can be fixed */
  187. else
  188. result = -2; /* erroe can't be fixed */
  189. }
  190. else
  191. result = RT_EOK;
  192. }
  193. if (spare != RT_NULL && spare_len != 0)
  194. {
  195. /* read page spare area */
  196. NF_CLEAR_RB();
  197. NF_CMD(CMD_READ);
  198. NF_ADDR(PAGE_DATA_SIZE);
  199. NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
  200. NF_ADDR((page) & 0xff);
  201. NF_ADDR((page >> 8) & 0xff);
  202. // NF_ADDR((page >> 16) & 0xff);
  203. NF_CMD(CMD_READ3);
  204. NF_DETECT_RB();/* Wait for RB */
  205. /*TODO: use a more quick method */
  206. for (i = 0; i < spare_len; i++)
  207. spare[i] = NF_RDDATA8();
  208. NF_MECC_Lock();
  209. result = RT_EOK;
  210. }
  211. NF_nFCE_H();
  212. rt_mutex_release(&nand);
  213. return result;
  214. }
  215. static rt_err_t k9f1g08_mtd_write (
  216. struct rt_mtd_nand_device * dev,
  217. rt_off_t page,
  218. const rt_uint8_t * data, rt_uint32_t data_len,//will be 2048 always!
  219. const rt_uint8_t * spare, rt_uint32_t spare_len)
  220. {
  221. rt_uint32_t i;
  222. rt_uint32_t mecc0;
  223. rt_err_t result = RT_EOK;
  224. rt_uint8_t ecc_data[4];
  225. rt_mutex_take(&nand, RT_WAITING_FOREVER);
  226. NF_nFCE_L(); /* enable chip */
  227. NF_RSTECC();
  228. NF_MECC_UnLock();
  229. if (data != RT_NULL && data_len != 0)
  230. {
  231. RT_ASSERT(data_len == PAGE_DATA_SIZE);
  232. NF_CLEAR_RB(); /* clear RB */
  233. NF_CMD(CMD_WRITE1);
  234. NF_ADDR(0);
  235. NF_ADDR(0);
  236. NF_ADDR( page & 0xff);
  237. NF_ADDR((page >> 8) & 0xff);
  238. // NF_ADDR((page >> 16) & 0xff);
  239. for(i=0; i<PAGE_DATA_SIZE; i++) //PAGE_DATA_SIZE
  240. NF_WRDATA8(data[i]);
  241. NF_MECC_Lock();
  242. /* produce HARDWARE ECC */
  243. mecc0=NFMECC0;
  244. ecc_data[0]=(rt_uint8_t)(mecc0 & 0xff);
  245. ecc_data[1]=(rt_uint8_t)((mecc0 >> 8) & 0xff);
  246. ecc_data[2]=(rt_uint8_t)((mecc0 >> 16) & 0xff);
  247. ecc_data[3]=(rt_uint8_t)((mecc0 >> 24) & 0xff);
  248. /* write ecc to spare[0]..[3] */
  249. for(i=0; i<4; i++)
  250. NF_WRDATA8(ecc_data[i]);
  251. NF_CMD(CMD_WRITE2);
  252. NF_DETECT_RB(); /* Wait for RB */
  253. if (NFSTAT & STATUS_ILLACC)
  254. {
  255. NFSTAT |= STATUS_ILLACC;
  256. result = -RT_ERROR;
  257. goto __ret;
  258. }
  259. else
  260. {
  261. NF_CMD(CMD_STATUS);
  262. if (NF_DATA_R() & STATUS_ERROR)
  263. {
  264. result = -RT_ERROR;
  265. goto __ret;
  266. }
  267. }
  268. }
  269. if (spare != RT_NULL && spare_len != 0)
  270. {
  271. NF_CLEAR_RB();
  272. NF_CMD(CMD_WRITE1);
  273. NF_ADDR(PAGE_DATA_SIZE);
  274. NF_ADDR((PAGE_DATA_SIZE >> 8) & 0xff);
  275. NF_ADDR( page & 0xff);
  276. NF_ADDR((page >> 8) & 0xff);
  277. // NF_ADDR((page >> 16) & 0xff);
  278. for(i=0; i<spare_len; i++)
  279. NF_WRDATA8(spare[i]);
  280. NF_CMD(CMD_WRITE2);
  281. NF_DETECT_RB();
  282. if (NFSTAT & STATUS_ILLACC)
  283. {
  284. NFSTAT |= STATUS_ILLACC;
  285. result = -RT_ERROR;
  286. goto __ret;
  287. }
  288. else
  289. {
  290. NF_CMD(CMD_STATUS);
  291. if (NF_DATA_R() & STATUS_ERROR)
  292. {
  293. result = -RT_ERROR;
  294. goto __ret;
  295. }
  296. }
  297. }
  298. __ret:
  299. NF_nFCE_H(); /* disable chip */
  300. rt_mutex_release(&nand);
  301. return result;
  302. }
  303. static rt_err_t k9f1g08_read_id(
  304. struct rt_mtd_nand_device * dev)
  305. {
  306. return RT_EOK;
  307. }
  308. const static struct rt_mtd_nand_driver_ops k9f1g08_mtd_ops =
  309. {
  310. k9f1g08_read_id,
  311. k9f1g08_mtd_read,
  312. k9f1g08_mtd_write,
  313. k9f1g08_mtd_erase_block,
  314. };
  315. /* interface of nand and rt-thread device */
  316. static struct rt_mtd_nand_device nand_part[4];
  317. void k9f1g08_mtd_init()
  318. {
  319. /* initialize nand controller of S3C2440 */
  320. nand_hw_init();
  321. /* initialize mutex */
  322. if (rt_mutex_init(&nand, "nand", RT_IPC_FLAG_FIFO) != RT_EOK)
  323. {
  324. rt_kprintf("init nand lock mutex failed\n");
  325. }
  326. /* the first partition of nand */
  327. nand_part[0].page_size = PAGE_DATA_SIZE;
  328. nand_part[0].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  329. nand_part[0].block_start = 0;
  330. nand_part[0].block_end = 255;
  331. nand_part[0].oob_size = 64;
  332. nand_part[0].ops = &k9f1g08_mtd_ops;
  333. rt_mtd_nand_register_device("nand0", &nand_part[0]);
  334. /* the second partition of nand */
  335. nand_part[1].page_size = PAGE_DATA_SIZE;
  336. nand_part[1].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  337. nand_part[1].block_start = 256;
  338. nand_part[1].block_end = 512-1;
  339. nand_part[1].oob_size = 64;
  340. nand_part[1].ops = &k9f1g08_mtd_ops;
  341. rt_mtd_nand_register_device("nand1", &nand_part[1]);
  342. /* the third partition of nand */
  343. nand_part[2].page_size = PAGE_DATA_SIZE;
  344. nand_part[2].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  345. nand_part[2].block_start = 512;
  346. nand_part[2].block_end = 512+256-1;
  347. nand_part[2].oob_size = 64;
  348. nand_part[2].ops = &k9f1g08_mtd_ops;
  349. rt_mtd_nand_register_device("nand2", &nand_part[2]);
  350. /* the 4th partition of nand */
  351. nand_part[3].page_size = PAGE_DATA_SIZE;
  352. nand_part[3].block_size = PAGE_DATA_SIZE*64;//don't caculate oob size
  353. nand_part[3].block_start = 512+256;
  354. nand_part[3].block_end = 1024-1;
  355. nand_part[3].oob_size = 64;
  356. nand_part[3].ops = &k9f1g08_mtd_ops;
  357. rt_mtd_nand_register_device("nand3", &nand_part[3]);
  358. }
  359. #include "finsh.h"
  360. static char buf[PAGE_DATA_SIZE+64];
  361. static char spare[64];
  362. void nand_erase(int start, int end)
  363. {
  364. int page;
  365. for(; start <= end; start ++)
  366. {
  367. page = start * 64;
  368. rt_memset(buf, 0, PAGE_DATA_SIZE);
  369. rt_memset(spare, 0, 64);
  370. k9f1g08_mtd_erase_block(RT_NULL, start);
  371. k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
  372. if (spare[0] != 0xFF)
  373. {
  374. rt_kprintf("block %d is bad, mark it bad\n", start);
  375. //rt_memset(spare, 0xFF, 64);
  376. if (spare[4] == 0xFF)
  377. {
  378. spare[4] = 0x00;
  379. k9f1g08_mtd_write(RT_NULL, page, RT_NULL, 0, spare, 64);
  380. }
  381. }
  382. }
  383. }
  384. int nand_read(int page)
  385. {
  386. int i;
  387. int res;
  388. rt_memset(buf, 0, sizeof(buf));
  389. // rt_memset(spare, 0, 64);
  390. // res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
  391. res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE+64, RT_NULL, 0);
  392. rt_kprintf("block=%d, page=%d\n", page/64, page%64);
  393. for(i=0; i<PAGE_DATA_SIZE; i++)
  394. {
  395. rt_kprintf("%02x ", buf[i]);
  396. if((i+1)%16 == 0)
  397. rt_kprintf("\n");
  398. }
  399. rt_kprintf("spare:\n");
  400. for(i=0; i<64; i++)
  401. {
  402. // rt_kprintf("%02x ", spare[i]);
  403. rt_kprintf("%02x ", buf[2048+i]);
  404. if((i+1)%8 == 0)
  405. rt_kprintf("\n");
  406. }
  407. return res;
  408. }
  409. int nand_write(int page)
  410. {
  411. int i;
  412. rt_memset(buf, 0, PAGE_DATA_SIZE);
  413. for(i=0; i<PAGE_DATA_SIZE; i++)
  414. buf[i] = (i % 2) + i / 2;
  415. return k9f1g08_mtd_write(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
  416. }
  417. int nand_read2(int page)
  418. {
  419. int i;
  420. int res;
  421. rt_memset(buf, 0, sizeof(buf));
  422. res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, RT_NULL, 0);
  423. rt_kprintf("block=%d, page=%d\n", page/64, page%64);
  424. for(i=0; i<PAGE_DATA_SIZE; i++)
  425. {
  426. rt_kprintf("%02x ", buf[i]);
  427. if((i+1)%16 == 0)
  428. rt_kprintf("\n");
  429. }
  430. rt_memset(spare, 0, 64);
  431. res = k9f1g08_mtd_read(RT_NULL, page, RT_NULL, 0, spare, 64);
  432. rt_kprintf("spare:\n");
  433. for(i=0; i<64; i++)
  434. {
  435. rt_kprintf("%02x ", spare[i]);
  436. if((i+1)%8 == 0)
  437. rt_kprintf("\n");
  438. }
  439. return res;
  440. }
  441. int nand_read3(int page)
  442. {
  443. int i;
  444. int res;
  445. rt_memset(buf, 0, sizeof(buf));
  446. rt_memset(spare, 0, 64);
  447. res = k9f1g08_mtd_read(RT_NULL, page, buf, PAGE_DATA_SIZE, spare, 64);
  448. rt_kprintf("block=%d, page=%d\n", page/64, page%64);
  449. for(i=0; i<PAGE_DATA_SIZE; i++)
  450. {
  451. rt_kprintf("%02x ", buf[i]);
  452. if((i+1)%16 == 0)
  453. rt_kprintf("\n");
  454. }
  455. rt_kprintf("spare:\n");
  456. for(i=0; i<64; i++)
  457. {
  458. rt_kprintf("%02x ", spare[i]);
  459. if((i+1)%8 == 0)
  460. rt_kprintf("\n");
  461. }
  462. return res;
  463. }
  464. FINSH_FUNCTION_EXPORT(nand_read, nand_read(1).);
  465. FINSH_FUNCTION_EXPORT(nand_read2, nand_read(1).);
  466. FINSH_FUNCTION_EXPORT(nand_read3, nand_read(1).);
  467. FINSH_FUNCTION_EXPORT(nand_write, nand_write(1).);
  468. FINSH_FUNCTION_EXPORT(nand_erase, nand_erase(100, 200). erase block in nand);