spi_core.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. #include <drivers/spi.h>
  2. extern rt_err_t rt_spi_bus_device_init(struct rt_spi_bus* bus, const char* name);
  3. extern rt_err_t rt_spidev_device_init(struct rt_spi_device* dev, const char* name);
  4. rt_err_t rt_spi_bus_register(struct rt_spi_bus* bus, const char* name, const struct rt_spi_ops* ops)
  5. {
  6. rt_err_t result;
  7. result = rt_spi_bus_device_init(bus, name);
  8. if (result != RT_EOK)
  9. return result;
  10. /* initialize mutex lock */
  11. rt_mutex_init(&(bus->lock), name, RT_IPC_FLAG_FIFO);
  12. /* set ops */
  13. bus->ops = ops;
  14. /* initialize owner */
  15. bus->owner = RT_NULL;
  16. return RT_EOK;
  17. }
  18. rt_err_t rt_spi_bus_attach_device(struct rt_spi_device* device, const char* name, const char* bus_name, void* user_data)
  19. {
  20. rt_err_t result;
  21. rt_device_t bus;
  22. /* get physical spi bus */
  23. bus = rt_device_find(bus_name);
  24. if (bus != RT_NULL && bus->type == RT_Device_Class_SPIBUS)
  25. {
  26. device->bus = (struct rt_spi_bus*)bus;
  27. /* initialize spidev device */
  28. result = rt_spidev_device_init(device, name);
  29. if (result != RT_EOK)
  30. return result;
  31. rt_memset(&device->config, 0, sizeof(device->config));
  32. device->parent.user_data = user_data;
  33. return RT_EOK;
  34. }
  35. /* not found the host bus */
  36. return -RT_ERROR;
  37. }
  38. rt_err_t rt_spi_configure(struct rt_spi_device* device, struct rt_spi_configuration* cfg)
  39. {
  40. rt_err_t result;
  41. RT_ASSERT(device != RT_NULL);
  42. /* set configuration */
  43. device->config.data_width = cfg->data_width;
  44. device->config.mode = cfg->mode & RT_SPI_MODE_MASK ;
  45. device->config.max_hz = cfg->max_hz ;
  46. if (device->bus != RT_NULL)
  47. {
  48. result = rt_mutex_take(&(device->bus->lock), RT_WAITING_FOREVER);
  49. if (result == RT_EOK)
  50. {
  51. if (device->bus->owner == device)
  52. {
  53. device->bus->ops->configure(device, &device->config);
  54. }
  55. /* release lock */
  56. rt_mutex_release(&(device->bus->lock));
  57. }
  58. }
  59. return RT_EOK;
  60. }
  61. rt_err_t rt_spi_send_then_send(struct rt_spi_device* device, const void *send_buf1, rt_size_t send_length1,
  62. const void* send_buf2, rt_size_t send_length2)
  63. {
  64. rt_err_t result;
  65. struct rt_spi_message message;
  66. RT_ASSERT(device != RT_NULL);
  67. RT_ASSERT(device->bus != RT_NULL);
  68. result = rt_mutex_take(&(device->bus->lock), RT_WAITING_FOREVER);
  69. if (result == RT_EOK)
  70. {
  71. if (device->bus->owner != device)
  72. {
  73. /* not the same owner as current, re-configure SPI bus */
  74. result = device->bus->ops->configure(device, &device->config);
  75. if (result == RT_EOK)
  76. {
  77. /* set SPI bus owner */
  78. device->bus->owner = device;
  79. }
  80. else
  81. {
  82. /* configure SPI bus failed */
  83. result = -RT_EIO;
  84. goto __exit;
  85. }
  86. }
  87. /* send data1 */
  88. message.send_buf = send_buf1;
  89. message.recv_buf = RT_NULL;
  90. message.length = send_length1;
  91. message.cs_take = 1;
  92. message.cs_release = 0;
  93. message.next = RT_NULL;
  94. result = device->bus->ops->xfer(device, &message);
  95. if (result == 0)
  96. {
  97. result = -RT_EIO;
  98. goto __exit;
  99. }
  100. /* send data2 */
  101. message.send_buf = send_buf2;
  102. message.recv_buf = RT_NULL;
  103. message.length = send_length2;
  104. message.cs_take = 0;
  105. message.cs_release = 1;
  106. message.next = RT_NULL;
  107. result = device->bus->ops->xfer(device, &message);
  108. if (result == 0)
  109. {
  110. result = -RT_EIO;
  111. goto __exit;
  112. }
  113. result = RT_EOK;
  114. }
  115. else
  116. {
  117. return -RT_EIO;
  118. }
  119. __exit:
  120. rt_mutex_release(&(device->bus->lock));
  121. return result;
  122. }
  123. rt_err_t rt_spi_send_then_recv(struct rt_spi_device* device, const void *send_buf, rt_size_t send_length,
  124. void* recv_buf, rt_size_t recv_length)
  125. {
  126. rt_err_t result;
  127. struct rt_spi_message message;
  128. RT_ASSERT(device != RT_NULL);
  129. RT_ASSERT(device->bus != RT_NULL);
  130. result = rt_mutex_take(&(device->bus->lock), RT_WAITING_FOREVER);
  131. if (result == RT_EOK)
  132. {
  133. if (device->bus->owner != device)
  134. {
  135. /* not the same owner as current, re-configure SPI bus */
  136. result = device->bus->ops->configure(device, &device->config);
  137. if (result == RT_EOK)
  138. {
  139. /* set SPI bus owner */
  140. device->bus->owner = device;
  141. }
  142. else
  143. {
  144. /* configure SPI bus failed */
  145. result = -RT_EIO;
  146. goto __exit;
  147. }
  148. }
  149. /* send data */
  150. message.send_buf = send_buf;
  151. message.recv_buf = RT_NULL;
  152. message.length = send_length;
  153. message.cs_take = 1;
  154. message.cs_release = 0;
  155. message.next = RT_NULL;
  156. result = device->bus->ops->xfer(device, &message);
  157. if (result == 0)
  158. {
  159. result = -RT_EIO;
  160. goto __exit;
  161. }
  162. /* recv data */
  163. message.send_buf = RT_NULL;
  164. message.recv_buf = recv_buf;
  165. message.length = recv_length;
  166. message.cs_take = 0;
  167. message.cs_release = 1;
  168. message.next = RT_NULL;
  169. result = device->bus->ops->xfer(device, &message);
  170. if (result == 0)
  171. {
  172. result = -RT_EIO;
  173. goto __exit;
  174. }
  175. result = RT_EOK;
  176. }
  177. else
  178. {
  179. return -RT_EIO;
  180. }
  181. __exit:
  182. rt_mutex_release(&(device->bus->lock));
  183. return result;
  184. }
  185. rt_size_t rt_spi_transfer(struct rt_spi_device* device, const void *send_buf,
  186. void* recv_buf, rt_size_t length)
  187. {
  188. rt_err_t result;
  189. struct rt_spi_message message;
  190. RT_ASSERT(device != RT_NULL);
  191. RT_ASSERT(device->bus != RT_NULL);
  192. result = rt_mutex_take(&(device->bus->lock), RT_WAITING_FOREVER);
  193. if (result == RT_EOK)
  194. {
  195. if (device->bus->owner != device)
  196. {
  197. /* not the same owner as current, re-configure SPI bus */
  198. result = device->bus->ops->configure(device, &device->config);
  199. if (result == RT_EOK)
  200. {
  201. /* set SPI bus owner */
  202. device->bus->owner = device;
  203. }
  204. else
  205. {
  206. /* configure SPI bus failed */
  207. rt_set_errno(-RT_EIO);
  208. result = 0;
  209. goto __exit;
  210. }
  211. }
  212. /* initial message */
  213. message.send_buf = send_buf;
  214. message.recv_buf = recv_buf;
  215. message.length = length;
  216. message.cs_take = message.cs_release = 1;
  217. message.next = RT_NULL;
  218. /* transfer message */
  219. result = device->bus->ops->xfer(device, &message);
  220. if (result == 0)
  221. {
  222. rt_set_errno(-RT_EIO);
  223. goto __exit;
  224. }
  225. }
  226. else
  227. {
  228. rt_set_errno(-RT_EIO);
  229. return 0;
  230. }
  231. __exit:
  232. rt_mutex_release(&(device->bus->lock));
  233. return result;
  234. }
  235. struct rt_spi_message *rt_spi_transfer_message(struct rt_spi_device* device,
  236. struct rt_spi_message *message)
  237. {
  238. rt_err_t result;
  239. struct rt_spi_message* index;
  240. RT_ASSERT(device != RT_NULL);
  241. /* get first message */
  242. index = message;
  243. if (index == RT_NULL) return index;
  244. result = rt_mutex_take(&(device->bus->lock), RT_WAITING_FOREVER);
  245. if (result != RT_EOK)
  246. {
  247. rt_set_errno(-RT_EBUSY);
  248. return index;
  249. }
  250. /* reset errno */
  251. rt_set_errno(RT_EOK);
  252. /* configure SPI bus */
  253. if (device->bus->owner != device)
  254. {
  255. /* not the same owner as current, re-configure SPI bus */
  256. result = device->bus->ops->configure(device, &device->config);
  257. if (result == RT_EOK)
  258. {
  259. /* set SPI bus owner */
  260. device->bus->owner = device;
  261. }
  262. else
  263. {
  264. /* configure SPI bus failed */
  265. rt_set_errno(-RT_EIO);
  266. result = 0;
  267. goto __exit;
  268. }
  269. }
  270. /* transmit each SPI message */
  271. while (index != RT_NULL)
  272. {
  273. /* transmit SPI message */
  274. result = device->bus->ops->xfer(device, index);
  275. if (result == 0)
  276. {
  277. rt_set_errno(-RT_EIO);
  278. break;
  279. }
  280. index = index->next;
  281. }
  282. __exit:
  283. /* release bus lock */
  284. rt_mutex_release(&(device->bus->lock));
  285. return index;
  286. }
  287. rt_err_t rt_spi_take_bus(struct rt_spi_device* device)
  288. {
  289. rt_err_t result = RT_EOK;
  290. RT_ASSERT(device != RT_NULL);
  291. RT_ASSERT(device->bus != RT_NULL);
  292. result = rt_mutex_take(&(device->bus->lock), RT_WAITING_FOREVER);
  293. if (result != RT_EOK)
  294. {
  295. rt_set_errno(-RT_EBUSY);
  296. return -RT_EBUSY;
  297. }
  298. /* reset errno */
  299. rt_set_errno(RT_EOK);
  300. /* configure SPI bus */
  301. if (device->bus->owner != device)
  302. {
  303. /* not the same owner as current, re-configure SPI bus */
  304. result = device->bus->ops->configure(device, &device->config);
  305. if (result == RT_EOK)
  306. {
  307. /* set SPI bus owner */
  308. device->bus->owner = device;
  309. }
  310. else
  311. {
  312. /* configure SPI bus failed */
  313. rt_set_errno(-RT_EIO);
  314. /* release lock */
  315. rt_mutex_release(&(device->bus->lock));
  316. return -RT_EIO;
  317. }
  318. }
  319. return result;
  320. }
  321. rt_err_t rt_spi_release_bus(struct rt_spi_device* device)
  322. {
  323. RT_ASSERT(device != RT_NULL);
  324. RT_ASSERT(device->bus != RT_NULL);
  325. RT_ASSERT(device->bus->owner != device);
  326. /* release lock */
  327. rt_mutex_release(&(device->bus->lock));
  328. return RT_EOK;
  329. }
  330. rt_err_t rt_spi_take(struct rt_spi_device* device)
  331. {
  332. rt_err_t result;
  333. struct rt_spi_message message;
  334. RT_ASSERT(device != RT_NULL);
  335. RT_ASSERT(device->bus != RT_NULL);
  336. rt_memset(&message, 0, sizeof(message));
  337. message.cs_take = 1;
  338. result = device->bus->ops->xfer(device, &message);
  339. return result;
  340. }
  341. rt_err_t rt_spi_release(struct rt_spi_device* device)
  342. {
  343. rt_err_t result;
  344. struct rt_spi_message message;
  345. RT_ASSERT(device != RT_NULL);
  346. RT_ASSERT(device->bus != RT_NULL);
  347. rt_memset(&message, 0, sizeof(message));
  348. message.cs_release = 1;
  349. result = device->bus->ops->xfer(device, &message);
  350. return result;
  351. }