123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260 |
- #include <math.h>
- /*
- * COPYRIGHT: See COPYING in the top level directory
- * PROJECT: ReactOS CRT
- * FILE: lib/crt/math/cos.c
- * PURPOSE: Generic C Implementation of cos
- * PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org)
- */
- #define PRECISION 9
- static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
- static double cos_sign_tbl[] = {1,-1,-1,1};
- static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.};
- static double sin_sign_tbl[] = {1,-1,-1,1};
- double sin(double x)
- {
- int quadrant;
- double x2, result;
- /* Calculate the quadrant */
- quadrant = x * (2./M_PI);
- /* Get offset inside quadrant */
- x = x - quadrant * (M_PI/2.);
- /* Normalize quadrant to [0..3] */
- quadrant = (quadrant - 1) & 0x3;
- /* Fixup value for the generic function */
- x += sin_off_tbl[quadrant];
- /* Calculate the negative of the square of x */
- x2 = - (x * x);
- /* This is an unrolled taylor series using <PRECISION> iterations
- * Example with 4 iterations:
- * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
- * To save multiplications and to keep the precision high, it's performed
- * like this:
- * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
- */
- /* Start with 0, compiler will optimize this away */
- result = 0;
- #if (PRECISION >= 10)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
- result *= x2;
- #endif
- #if (PRECISION >= 9)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
- result *= x2;
- #endif
- #if (PRECISION >= 8)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
- result *= x2;
- #endif
- #if (PRECISION >= 7)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
- result *= x2;
- #endif
- #if (PRECISION >= 6)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
- result *= x2;
- #endif
- #if (PRECISION >= 5)
- result += 1./(1.*2*3*4*5*6*7*8*9*10);
- result *= x2;
- #endif
- result += 1./(1.*2*3*4*5*6*7*8);
- result *= x2;
- result += 1./(1.*2*3*4*5*6);
- result *= x2;
- result += 1./(1.*2*3*4);
- result *= x2;
- result += 1./(1.*2);
- result *= x2;
- result += 1;
- /* Apply correct sign */
- result *= sin_sign_tbl[quadrant];
- return result;
- }
- double cos(double x)
- {
- int quadrant;
- double x2, result;
- /* Calculate the quadrant */
- quadrant = x * (2./M_PI);
- /* Get offset inside quadrant */
- x = x - quadrant * (M_PI/2.);
- /* Normalize quadrant to [0..3] */
- quadrant = quadrant & 0x3;
- /* Fixup value for the generic function */
- x += cos_off_tbl[quadrant];
- /* Calculate the negative of the square of x */
- x2 = - (x * x);
- /* This is an unrolled taylor series using <PRECISION> iterations
- * Example with 4 iterations:
- * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8!
- * To save multiplications and to keep the precision high, it's performed
- * like this:
- * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!))))
- */
- /* Start with 0, compiler will optimize this away */
- result = 0;
- #if (PRECISION >= 10)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20);
- result *= x2;
- #endif
- #if (PRECISION >= 9)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18);
- result *= x2;
- #endif
- #if (PRECISION >= 8)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16);
- result *= x2;
- #endif
- #if (PRECISION >= 7)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14);
- result *= x2;
- #endif
- #if (PRECISION >= 6)
- result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12);
- result *= x2;
- #endif
- #if (PRECISION >= 5)
- result += 1./(1.*2*3*4*5*6*7*8*9*10);
- result *= x2;
- #endif
- result += 1./(1.*2*3*4*5*6*7*8);
- result *= x2;
- result += 1./(1.*2*3*4*5*6);
- result *= x2;
- result += 1./(1.*2*3*4);
- result *= x2;
- result += 1./(1.*2);
- result *= x2;
- result += 1;
- /* Apply correct sign */
- result *= cos_sign_tbl[quadrant];
- return result;
- }
- static const int N = 100;
- double coef(int n)
- {
- double t;
- if (n == 0)
- {
- return 0;
- }
- t = 1.0/n;
- if (n%2 == 0)
- {
- t = -t;
- }
- return t;
- }
- double horner(double x)
- {
- double u = coef(N);
- int i;
- for(i=N-1; i>=0; i--)
- {
- u = u*x + coef(i);
- }
- return u;
- }
- double sqrt(double b)
- {
- double x = 1;
- int step = 0;
- while ((x*x-b<-0.000000000000001 || x*x-b>0.000000000000001) && step<50)
- {
- x = (b/x+x)/2.0;
- step++;
- }
- return x;
- }
- double ln(double x)
- {
- int i;
- if (x > 1.5)
- {
- for(i=0; x>1.25; i++)
- {
- x = sqrt(x);
- }
- return (1<<i)*horner(x-1);
- }
- else if (x<0.7 && x>0)
- {
- for(i=0; x<0.7; i++)
- {
- x = sqrt(x);
- }
- return (1<<i)*horner(x-1);
- }
- else if(x > 0)
- {
- return horner(x-1);
- }
- }
- double exp(double x)
- {
- double sum = 1;
- int i;
- for(i=N; i>0; i--)
- {
- sum /= i;
- sum *= x;
- sum += 1;
- }
- return sum;
- }
- double pow(double m, double n)
- {
- return exp(n*ln(m));
- }
|