sensor_bmx055.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /**************************************************************************//**
  2. *
  3. * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2020-1-16 Wayne First version
  10. *
  11. ******************************************************************************/
  12. #include <rtconfig.h>
  13. #if defined(NU_PKG_USING_BMX055)
  14. #include <string.h>
  15. #include "sensor_bmx055.h"
  16. #define DBG_ENABLE
  17. #define DBG_LEVEL DBG_LOG
  18. #define DBG_SECTION_NAME "sensor.bmx055"
  19. #define DBG_COLOR
  20. #include <rtdbg.h>
  21. struct bmx055
  22. {
  23. /* Structure used for Magnetometer */
  24. struct bmm050_t mag;
  25. /* Structure used for read the mag xyz data*/
  26. struct bmm050_mag_data_s16_t mag_data;
  27. /* Structure used for Accelerometer */
  28. struct bma2x2_t accel;
  29. /* Structure used to read accel xyz and temperature data*/
  30. struct bma2x2_accel_data_temp accel_xyzt;
  31. /* Structure used for Gyroscope */
  32. struct bmg160_t gyro;
  33. /* structure used to read gyro xyz and interrupt status*/
  34. struct bmg160_data_t gyro_xyzi;
  35. } ;
  36. typedef struct bmx055 *bmx055_t;
  37. struct bmx055_param_pair
  38. {
  39. int val;
  40. int reg;
  41. };
  42. typedef struct bmx055_param_pair *bmx055_param_pair_t;
  43. static const struct bmx055_param_pair accel_ranges[] =
  44. {
  45. {2000, BMA2x2_RANGE_2G},
  46. {4000, BMA2x2_RANGE_4G},
  47. {8000, BMA2x2_RANGE_8G},
  48. {16000, BMA2x2_RANGE_16G},
  49. };
  50. static const struct bmx055_param_pair gyro_ranges[] =
  51. {
  52. {125, BMG160_RANGE_125},
  53. {250, BMG160_RANGE_250},
  54. {500, BMG160_RANGE_500},
  55. {1000, BMG160_RANGE_1000},
  56. {2000, BMG160_RANGE_2000},
  57. };
  58. static const struct bmx055_param_pair accel_odr[] =
  59. {
  60. {8, BMA2x2_BW_7_81HZ},
  61. {16, BMA2x2_BW_15_63HZ},
  62. {32, BMA2x2_BW_31_25HZ},
  63. {63, BMA2x2_BW_62_50HZ},
  64. {125, BMA2x2_BW_125HZ},
  65. {250, BMA2x2_BW_250HZ},
  66. {500, BMA2x2_BW_500HZ},
  67. {1000, BMA2x2_BW_1000HZ},
  68. };
  69. static const struct bmx055_param_pair gyro_odr[] =
  70. {
  71. {12, BMG160_BW_12_HZ},
  72. {23, BMG160_BW_23_HZ},
  73. {32, BMG160_BW_32_HZ},
  74. {47, BMG160_BW_47_HZ},
  75. {64, BMG160_BW_64_HZ},
  76. {116, BMG160_BW_116_HZ},
  77. {230, BMG160_BW_230_HZ},
  78. {500, BMG160_BW_500_HZ},
  79. };
  80. static const struct bmx055_param_pair mag_odr[] =
  81. {
  82. {2, BMM050_DR_02HZ},
  83. {6, BMM050_DR_06HZ},
  84. {8, BMM050_DR_08HZ},
  85. {15, BMM050_DR_15HZ},
  86. {20, BMM050_DR_20HZ},
  87. {25, BMM050_DR_25HZ},
  88. {30, BMM050_DR_30HZ},
  89. };
  90. static struct bmx055 g_sbmx055;
  91. static struct rt_i2c_bus_device *i2c_bus_dev;
  92. static uint8_t g_u8Range_accel = 0;
  93. static uint8_t g_u8Range_gyro = 0;
  94. static int8_t bmx055_i2c_write_reg(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint8_t len)
  95. {
  96. struct rt_i2c_msg msgs[2];
  97. msgs[0].addr = dev_id; /* Slave address */
  98. msgs[0].flags = RT_I2C_WR; /* Write flag */
  99. msgs[0].buf = (rt_uint8_t *)&reg_addr; /* Slave register address */
  100. msgs[0].len = 1; /* Number of bytes sent */
  101. msgs[1].addr = dev_id; /* Slave address */
  102. msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START; /* Read flag without NO_START */
  103. msgs[1].buf = (rt_uint8_t *)reg_data; /* Read data pointer */
  104. msgs[1].len = len; /* Number of bytes read */
  105. if (rt_i2c_transfer(i2c_bus_dev, &msgs[0], 2) != 2)
  106. {
  107. return -RT_ERROR;
  108. }
  109. return RT_EOK;
  110. }
  111. static int8_t bmx055_i2c_read_reg(uint8_t dev_id, uint8_t reg_addr, uint8_t *reg_data, uint8_t len)
  112. {
  113. struct rt_i2c_msg msgs[3];
  114. msgs[0].addr = dev_id; /* Slave address */
  115. msgs[0].flags = RT_I2C_WR; /* Write flag */
  116. msgs[0].buf = (rt_uint8_t *)&reg_addr; /* Slave register address */
  117. msgs[0].len = 1; /* Number of bytes sent */
  118. msgs[1].addr = dev_id; /* Slave address */
  119. msgs[1].flags = RT_I2C_RD ; /* Read flag */
  120. msgs[1].buf = (rt_uint8_t *)&reg_data[0]; /* Read data pointer */
  121. msgs[1].len = len;
  122. if (rt_i2c_transfer(i2c_bus_dev, &msgs[0], 2) != 2)
  123. {
  124. return -RT_ERROR;
  125. }
  126. return RT_EOK;
  127. }
  128. void bmx055_delay_ms(BMM050_MDELAY_DATA_TYPE ms)
  129. {
  130. rt_thread_mdelay(ms);
  131. }
  132. static int8_t bmx055_init_mag(struct bmm050_t *mag)
  133. {
  134. int8_t com_rslt = 0;
  135. u8 v_data_rate_u8 = BMM050_INIT_VALUE;
  136. mag->dev_addr = BMM050_I2C_ADDRESS;
  137. mag->bus_write = bmx055_i2c_write_reg;
  138. mag->bus_read = bmx055_i2c_read_reg;
  139. mag->delay_msec = bmx055_delay_ms;
  140. com_rslt = bmm050_init(mag);
  141. com_rslt += bmm050_set_functional_state(BMM050_NORMAL_MODE);
  142. com_rslt += bmm050_set_data_rate(BMM050_DATA_RATE_30HZ);
  143. com_rslt += bmm050_get_data_rate(&v_data_rate_u8);
  144. return com_rslt;
  145. }
  146. static int8_t bmx055_init_accel(struct bma2x2_t *accel)
  147. {
  148. int8_t com_rslt = 0;
  149. uint8_t bandwidth = 0x08; // bandwidth of 7.81Hz
  150. accel->dev_addr = BMA2x2_I2C_ADDR1;
  151. accel->bus_write = bmx055_i2c_write_reg;
  152. accel->bus_read = bmx055_i2c_read_reg;
  153. accel->delay_msec = bmx055_delay_ms;
  154. com_rslt = bma2x2_init(accel);
  155. com_rslt += bma2x2_set_power_mode(BMA2x2_MODE_NORMAL);
  156. com_rslt += bma2x2_set_bw(bandwidth);
  157. com_rslt += bma2x2_get_range(&g_u8Range_accel);
  158. return com_rslt;
  159. }
  160. static int8_t bmx055_init_gyro(struct bmg160_t *gyro)
  161. {
  162. int8_t com_rslt = 0;
  163. gyro->dev_addr = BMG160_I2C_ADDR1;
  164. gyro->bus_write = bmx055_i2c_write_reg;
  165. gyro->bus_read = bmx055_i2c_read_reg;
  166. gyro->delay_msec = bmx055_delay_ms;
  167. com_rslt = bmg160_init(gyro);
  168. com_rslt += bmg160_set_power_mode(BMG160_MODE_NORMAL);
  169. com_rslt += bmg160_set_bw(C_BMG160_BW_230HZ_U8X);
  170. com_rslt += bmg160_get_range_reg(&g_u8Range_gyro);
  171. return com_rslt;
  172. }
  173. static double get_mg_value(int32_t i32AccelVal)
  174. {
  175. switch (g_u8Range_accel)
  176. {
  177. case BMA2x2_RANGE_2G:
  178. return (double)i32AccelVal * 0.98; //res: 0.98,
  179. case BMA2x2_RANGE_4G:
  180. return (double)i32AccelVal * 1.95;
  181. case BMA2x2_RANGE_8G:
  182. return (double)i32AccelVal * 3.91;
  183. case BMA2x2_RANGE_16G:
  184. return (double)i32AccelVal * 7.81;
  185. }
  186. return 0.0f;
  187. }
  188. static double get_mdps_value(int32_t i32AccelVal)
  189. {
  190. switch (g_u8Range_gyro)
  191. {
  192. case BMG160_RANGE_125:
  193. return (double)i32AccelVal * 3.8;
  194. case BMG160_RANGE_250:
  195. return (double)i32AccelVal * 7.6;
  196. case BMG160_RANGE_500:
  197. return (double)i32AccelVal * 15.3;
  198. case BMG160_RANGE_1000:
  199. return (double)i32AccelVal * 30.5;
  200. case BMG160_RANGE_2000:
  201. return (double)i32AccelVal * 61;
  202. }
  203. return 0.0f;
  204. }
  205. static rt_size_t bmx055_fetch_data(rt_sensor_t sensor, void *buf, rt_size_t len)
  206. {
  207. struct rt_sensor_data *data = (struct rt_sensor_data *)buf;
  208. switch (sensor->info.type)
  209. {
  210. case RT_SENSOR_CLASS_ACCE:
  211. bma2x2_read_accel_xyzt(&g_sbmx055.accel_xyzt);
  212. data->type = RT_SENSOR_CLASS_ACCE;
  213. /* Report mg */
  214. data->data.acce.x = (int32_t)get_mg_value(g_sbmx055.accel_xyzt.x);
  215. data->data.acce.y = (int32_t)get_mg_value(g_sbmx055.accel_xyzt.y);
  216. data->data.acce.z = (int32_t)get_mg_value(g_sbmx055.accel_xyzt.z);
  217. break;
  218. case RT_SENSOR_CLASS_GYRO:
  219. bmg160_get_data_XYZI(&g_sbmx055.gyro_xyzi);
  220. data->type = RT_SENSOR_CLASS_GYRO;
  221. /* Report mdps */
  222. data->data.gyro.x = (int32_t)get_mdps_value(g_sbmx055.gyro_xyzi.datax);
  223. data->data.gyro.y = (int32_t)get_mdps_value(g_sbmx055.gyro_xyzi.datay);
  224. data->data.gyro.z = (int32_t)get_mdps_value(g_sbmx055.gyro_xyzi.dataz);
  225. break;
  226. case RT_SENSOR_CLASS_MAG:
  227. bmm050_read_mag_data_XYZ(&g_sbmx055.mag_data);
  228. data->type = RT_SENSOR_CLASS_MAG;
  229. /* Report mquass */
  230. data->data.mag.x = g_sbmx055.mag_data.datax;
  231. data->data.mag.y = g_sbmx055.mag_data.datay;
  232. data->data.mag.z = g_sbmx055.mag_data.dataz;
  233. break;
  234. default:
  235. return 0;
  236. }
  237. data->timestamp = rt_sensor_get_ts();
  238. return 1;
  239. }
  240. static int find_param_index(const int eng_val, const struct bmx055_param_pair *pairs, const int size)
  241. {
  242. int i = 0;
  243. while (i < size)
  244. {
  245. if (eng_val <= pairs[i].val)
  246. return i;
  247. i++;
  248. }
  249. return i - 1;
  250. }
  251. static rt_err_t bmx055_getid(rt_sensor_t sensor, rt_uint8_t *pu8)
  252. {
  253. switch (sensor->info.type)
  254. {
  255. case RT_SENSOR_CLASS_ACCE:
  256. *pu8 = g_sbmx055.accel.chip_id;
  257. break;
  258. case RT_SENSOR_CLASS_GYRO:
  259. *pu8 = g_sbmx055.gyro.chip_id;
  260. break;
  261. case RT_SENSOR_CLASS_MAG:
  262. *pu8 = g_sbmx055.mag.company_id;
  263. break;
  264. }
  265. return -RT_EINVAL;
  266. }
  267. static rt_err_t bmx055_set_power(rt_sensor_t sensor, rt_uint8_t power_mode)
  268. {
  269. uint8_t power_ctr;
  270. switch (sensor->info.type)
  271. {
  272. case RT_SENSOR_CLASS_ACCE:
  273. {
  274. switch (power_mode)
  275. {
  276. case RT_SENSOR_POWER_DOWN:
  277. power_ctr = BMA2x2_MODE_STANDBY;
  278. break;
  279. case RT_SENSOR_POWER_NORMAL:
  280. power_ctr = BMA2x2_MODE_NORMAL;
  281. break;
  282. case RT_SENSOR_POWER_LOW:
  283. power_ctr = BMA2x2_MODE_LOWPOWER1;
  284. break;
  285. default:
  286. return -RT_EINVAL;
  287. }
  288. if (bma2x2_set_power_mode(power_ctr) != 0)
  289. goto exit_bmx055_set_power;
  290. }
  291. break;
  292. case RT_SENSOR_CLASS_GYRO:
  293. {
  294. switch (power_mode)
  295. {
  296. case RT_SENSOR_POWER_DOWN:
  297. power_ctr = BMG160_MODE_DEEPSUSPEND;
  298. break;
  299. case RT_SENSOR_POWER_NORMAL:
  300. power_ctr = BMG160_MODE_NORMAL;
  301. break;
  302. default:
  303. return -RT_EINVAL;
  304. }
  305. if (bmg160_set_power_mode(power_ctr) != 0)
  306. goto exit_bmx055_set_power;
  307. }
  308. break;
  309. case RT_SENSOR_CLASS_MAG:
  310. {
  311. switch (power_mode)
  312. {
  313. case RT_SENSOR_POWER_DOWN:
  314. power_ctr = 0;
  315. break;
  316. case RT_SENSOR_POWER_NORMAL:
  317. power_ctr = 1;
  318. break;
  319. default:
  320. return -RT_EINVAL;
  321. }
  322. if (bmm050_set_power_mode(power_ctr) != 0)
  323. goto exit_bmx055_set_power;
  324. }
  325. break;
  326. default:
  327. return -RT_EINVAL;
  328. }
  329. exit_bmx055_set_power:
  330. return -RT_ERROR;
  331. }
  332. static rt_err_t bmx055_set_range(rt_sensor_t sensor, rt_uint16_t range)
  333. {
  334. int idx;
  335. switch (sensor->info.type)
  336. {
  337. case RT_SENSOR_CLASS_ACCE:
  338. {
  339. idx = find_param_index(range, accel_ranges, sizeof(accel_ranges));
  340. if (bma2x2_set_range(accel_ranges[idx].reg) != 0)
  341. goto exit_bmx055_set_range;
  342. else if (bma2x2_get_range(&g_u8Range_accel) != 0)
  343. goto exit_bmx055_set_range;
  344. }
  345. break;
  346. case RT_SENSOR_CLASS_GYRO:
  347. {
  348. idx = find_param_index(range, gyro_ranges, sizeof(gyro_ranges));
  349. if (bmg160_set_range_reg(gyro_ranges[idx].reg) != 0)
  350. goto exit_bmx055_set_range;
  351. else if (bmg160_get_range_reg(&g_u8Range_gyro) != 0)
  352. goto exit_bmx055_set_range;
  353. }
  354. break;
  355. default:
  356. return -RT_EINVAL;
  357. }
  358. exit_bmx055_set_range:
  359. return -RT_ERROR;
  360. }
  361. static rt_err_t bmx055_set_odr(rt_sensor_t sensor, rt_uint16_t odr_hz)
  362. {
  363. int idx;
  364. switch (sensor->info.type)
  365. {
  366. case RT_SENSOR_CLASS_ACCE:
  367. {
  368. idx = find_param_index(odr_hz, accel_odr, sizeof(accel_odr));
  369. if (bma2x2_set_bw(accel_odr[idx].reg) != 0)
  370. goto exit_bmx055_set_power;
  371. }
  372. break;
  373. case RT_SENSOR_CLASS_GYRO:
  374. {
  375. idx = find_param_index(odr_hz, gyro_odr, sizeof(gyro_odr));
  376. if (bmg160_set_bw(gyro_odr[idx].reg) != 0)
  377. goto exit_bmx055_set_power;
  378. }
  379. break;
  380. case RT_SENSOR_CLASS_MAG:
  381. {
  382. idx = find_param_index(odr_hz, mag_odr, sizeof(mag_odr));
  383. if (bmm050_set_data_rate(mag_odr[idx].reg) != 0)
  384. goto exit_bmx055_set_power;
  385. }
  386. break;
  387. default:
  388. return -RT_EINVAL;
  389. }
  390. return RT_EOK;
  391. exit_bmx055_set_power:
  392. return -RT_ERROR;
  393. }
  394. static rt_err_t bmx055_control(rt_sensor_t sensor, int cmd, void *args)
  395. {
  396. RT_ASSERT(sensor != RT_NULL);
  397. RT_ASSERT(args != RT_NULL);
  398. switch (cmd)
  399. {
  400. case RT_SENSOR_CTRL_GET_ID:
  401. {
  402. rt_uint8_t *pu8id = (rt_uint8_t *)args;
  403. return bmx055_getid(sensor, pu8id);
  404. }
  405. case RT_SENSOR_CTRL_SET_RANGE:
  406. return bmx055_set_range(sensor, (rt_uint32_t)args);
  407. case RT_SENSOR_CTRL_SET_POWER:
  408. return bmx055_set_power(sensor, ((rt_uint32_t)args & 0xff));
  409. case RT_SENSOR_CTRL_SET_ODR:
  410. return bmx055_set_odr(sensor, ((rt_uint32_t)args & 0xff));
  411. }
  412. return -RT_EINVAL;
  413. }
  414. static struct rt_sensor_ops sensor_ops =
  415. {
  416. bmx055_fetch_data,
  417. bmx055_control
  418. };
  419. static int rt_hw_bmx055_accel_init(const char *name, struct rt_sensor_config *cfg)
  420. {
  421. rt_int8_t result;
  422. rt_sensor_t sensor = RT_NULL;
  423. sensor = rt_calloc(1, sizeof(struct rt_sensor_device));
  424. if (sensor == RT_NULL)
  425. return -(RT_ENOMEM);
  426. sensor->info.type = RT_SENSOR_CLASS_ACCE;
  427. sensor->info.vendor = RT_SENSOR_VENDOR_BOSCH;
  428. sensor->info.model = "bmx055_acce";
  429. sensor->info.unit = RT_SENSOR_UNIT_MG;
  430. sensor->info.intf_type = RT_SENSOR_INTF_I2C;
  431. sensor->info.range_max = 16000;
  432. sensor->info.range_min = 2000;
  433. sensor->info.period_min = 100;
  434. rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config));
  435. sensor->ops = &sensor_ops;
  436. result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDWR, RT_NULL);
  437. if (result != RT_EOK)
  438. {
  439. LOG_E("device register: %d", result);
  440. rt_free(sensor);
  441. return -RT_ERROR;
  442. }
  443. return RT_EOK;
  444. }
  445. static int rt_hw_bmx055_gyro_init(const char *name, struct rt_sensor_config *cfg)
  446. {
  447. rt_int8_t result;
  448. rt_sensor_t sensor = RT_NULL;
  449. sensor = rt_calloc(1, sizeof(struct rt_sensor_device));
  450. if (sensor == RT_NULL)
  451. return -(RT_ENOMEM);
  452. sensor->info.type = RT_SENSOR_CLASS_GYRO;
  453. sensor->info.vendor = RT_SENSOR_VENDOR_BOSCH;
  454. sensor->info.model = "bmx055_gyro";
  455. sensor->info.unit = RT_SENSOR_UNIT_MDPS;
  456. sensor->info.intf_type = RT_SENSOR_INTF_I2C;
  457. sensor->info.range_max = 2000;
  458. sensor->info.range_min = 125;
  459. sensor->info.period_min = 100;
  460. rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config));
  461. sensor->ops = &sensor_ops;
  462. result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDWR, RT_NULL);
  463. if (result != RT_EOK)
  464. {
  465. LOG_E("device register: %d", result);
  466. rt_free(sensor);
  467. return -RT_ERROR;
  468. }
  469. return RT_EOK;
  470. }
  471. static int rt_hw_bmx055_mag_init(const char *name, struct rt_sensor_config *cfg)
  472. {
  473. rt_int8_t result;
  474. rt_sensor_t sensor = RT_NULL;
  475. sensor = rt_calloc(1, sizeof(struct rt_sensor_device));
  476. if (sensor == RT_NULL)
  477. return -(RT_ENOMEM);
  478. sensor->info.type = RT_SENSOR_CLASS_MAG;
  479. sensor->info.vendor = RT_SENSOR_VENDOR_BOSCH;
  480. sensor->info.model = "bmx055_mag";
  481. sensor->info.unit = RT_SENSOR_UNIT_MGAUSS;
  482. sensor->info.intf_type = RT_SENSOR_INTF_I2C;
  483. sensor->info.range_max = 25000; // 1uT = 10*mGauss, X/Y: 1300uT=13000mGauss, Z: 2500uT=25000mG
  484. sensor->info.range_min = 0;
  485. sensor->info.period_min = 100;
  486. rt_memcpy(&sensor->config, cfg, sizeof(struct rt_sensor_config));
  487. sensor->ops = &sensor_ops;
  488. result = rt_hw_sensor_register(sensor, name, RT_DEVICE_FLAG_RDWR, RT_NULL);
  489. if (result != RT_EOK)
  490. {
  491. LOG_E("device register: %d", result);
  492. rt_free(sensor);
  493. return -RT_ERROR;
  494. }
  495. return RT_EOK;
  496. }
  497. int rt_hw_bmx055_init(const char *name, struct rt_sensor_config *cfg)
  498. {
  499. struct rt_sensor_intf *intf;
  500. rt_err_t ret = -RT_ERROR;
  501. RT_ASSERT(name != NULL);
  502. RT_ASSERT(cfg != NULL);
  503. intf = &cfg->intf;
  504. /* Find I2C bus */
  505. i2c_bus_dev = (struct rt_i2c_bus_device *)rt_device_find(intf->dev_name);
  506. if (i2c_bus_dev == RT_NULL)
  507. {
  508. LOG_E("Can't found I2C bus..!\n");
  509. goto exit_rt_hw_bmx055_init;
  510. }
  511. if (bmx055_init_mag(&g_sbmx055.mag) != 0)
  512. {
  513. LOG_E("Init mag..!\n");
  514. }
  515. else if ((ret = rt_hw_bmx055_mag_init(name, cfg)) != RT_EOK)
  516. {
  517. LOG_E("Register mag..!\n");
  518. }
  519. if (bmx055_init_accel(&g_sbmx055.accel) != 0)
  520. {
  521. LOG_E("Init accel..!\n");
  522. }
  523. else if ((ret = rt_hw_bmx055_accel_init(name, cfg)) != RT_EOK)
  524. {
  525. LOG_E("Register accel..!\n");
  526. }
  527. if (bmx055_init_gyro(&g_sbmx055.gyro) != 0)
  528. {
  529. LOG_E("Init gyro..!\n");
  530. }
  531. else if ((ret = rt_hw_bmx055_gyro_init(name, cfg)) != RT_EOK)
  532. {
  533. LOG_E("Register gyro..!\n");
  534. }
  535. exit_rt_hw_bmx055_init:
  536. return ret;
  537. }
  538. #endif //#if defined(NU_PKG_USING_BMX055)