drv_sdio.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2017-10-10 Tanek first version
  9. */
  10. #include <rtthread.h>
  11. #include <rthw.h>
  12. #include <drivers/mmcsd_core.h>
  13. #include <board.h>
  14. #include <fsl_usdhc.h>
  15. #include <fsl_gpio.h>
  16. #include <fsl_iomuxc.h>
  17. #include <finsh.h>
  18. #define RT_USING_SDIO1
  19. #define RT_USING_SDIO2
  20. //#define DEBUG
  21. #ifdef DEBUG
  22. static int enable_log = 1;
  23. #define MMCSD_DGB(fmt, ...) \
  24. do \
  25. { \
  26. if (enable_log) \
  27. { \
  28. rt_kprintf(fmt, ##__VA_ARGS__); \
  29. } \
  30. } while (0)
  31. #else
  32. #define MMCSD_DGB(fmt, ...)
  33. #endif
  34. #define CACHE_LINESIZE (32)
  35. #define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
  36. #define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
  37. #define IMXRT_MAX_FREQ (25UL * 1000UL * 1000UL)
  38. #define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
  39. #define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
  40. #define USDHC_READ_BURST_LEN (8U) /*!< number of words USDHC read in a single burst */
  41. #define USDHC_WRITE_BURST_LEN (8U) /*!< number of words USDHC write in a single burst */
  42. #define USDHC_DATA_TIMEOUT (0xFU) /*!< data timeout counter value */
  43. /* Read/write watermark level. The bigger value indicates DMA has higher read/write performance. */
  44. #define USDHC_READ_WATERMARK_LEVEL (0x80U)
  45. #define USDHC_WRITE_WATERMARK_LEVEL (0x80U)
  46. /* DMA mode */
  47. #define USDHC_DMA_MODE kUSDHC_DmaModeAdma2
  48. /* Endian mode. */
  49. #define USDHC_ENDIAN_MODE kUSDHC_EndianModeLittle
  50. ALIGN(USDHC_ADMA2_ADDR_ALIGN) uint32_t g_usdhcAdma2Table[USDHC_ADMA_TABLE_WORDS] SECTION("NonCacheable");
  51. struct imxrt_mmcsd
  52. {
  53. struct rt_mmcsd_host *host;
  54. struct rt_mmcsd_req *req;
  55. struct rt_mmcsd_cmd *cmd;
  56. struct rt_timer timer;
  57. rt_uint32_t *buf;
  58. //USDHC_Type *base;
  59. usdhc_host_t usdhc_host;
  60. clock_div_t usdhc_div;
  61. clock_ip_name_t ip_clock;
  62. uint32_t *usdhc_adma2_table;
  63. };
  64. static void _mmcsd_gpio_init(struct imxrt_mmcsd *mmcsd)
  65. {
  66. CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
  67. }
  68. static void SDMMCHOST_ErrorRecovery(USDHC_Type *base)
  69. {
  70. uint32_t status = 0U;
  71. /* get host present status */
  72. status = USDHC_GetPresentStatusFlags(base);
  73. /* check command inhibit status flag */
  74. if ((status & kUSDHC_CommandInhibitFlag) != 0U)
  75. {
  76. /* reset command line */
  77. USDHC_Reset(base, kUSDHC_ResetCommand, 1000U);
  78. }
  79. /* check data inhibit status flag */
  80. if ((status & kUSDHC_DataInhibitFlag) != 0U)
  81. {
  82. /* reset data line */
  83. USDHC_Reset(base, kUSDHC_ResetData, 1000U);
  84. }
  85. }
  86. static void _mmcsd_host_init(struct imxrt_mmcsd *mmcsd)
  87. {
  88. usdhc_host_t *usdhc_host = &mmcsd->usdhc_host;
  89. /* Initializes SDHC. */
  90. usdhc_host->config.dataTimeout = USDHC_DATA_TIMEOUT;
  91. usdhc_host->config.endianMode = USDHC_ENDIAN_MODE;
  92. usdhc_host->config.readWatermarkLevel = USDHC_READ_WATERMARK_LEVEL;
  93. usdhc_host->config.writeWatermarkLevel = USDHC_WRITE_WATERMARK_LEVEL;
  94. usdhc_host->config.readBurstLen = USDHC_READ_BURST_LEN;
  95. usdhc_host->config.writeBurstLen = USDHC_WRITE_BURST_LEN;
  96. USDHC_Init(usdhc_host->base, &(usdhc_host->config));
  97. }
  98. static void _mmcsd_clk_init(struct imxrt_mmcsd *mmcsd)
  99. {
  100. CLOCK_EnableClock(mmcsd->ip_clock);
  101. CLOCK_SetDiv(mmcsd->usdhc_div, 5U);
  102. }
  103. static void _mmcsd_isr_init(struct imxrt_mmcsd *mmcsd)
  104. {
  105. //NVIC_SetPriority(USDHC1_IRQn, 5U);
  106. }
  107. static void _mmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  108. {
  109. struct imxrt_mmcsd *mmcsd;
  110. struct rt_mmcsd_cmd *cmd;
  111. struct rt_mmcsd_data *data;
  112. status_t error;
  113. usdhc_adma_config_t dmaConfig;
  114. usdhc_transfer_t fsl_content = {0};
  115. usdhc_command_t fsl_command = {0};
  116. usdhc_data_t fsl_data = {0};
  117. rt_uint32_t *buf = NULL;
  118. RT_ASSERT(host != RT_NULL);
  119. RT_ASSERT(req != RT_NULL);
  120. mmcsd = (struct imxrt_mmcsd *)host->private_data;
  121. RT_ASSERT(mmcsd != RT_NULL);
  122. cmd = req->cmd;
  123. RT_ASSERT(cmd != RT_NULL);
  124. MMCSD_DGB("\tcmd->cmd_code: %02d, cmd->arg: %08x, cmd->flags: %08x --> ", cmd->cmd_code, cmd->arg, cmd->flags);
  125. data = cmd->data;
  126. memset(&dmaConfig, 0, sizeof(usdhc_adma_config_t));
  127. /* config adma */
  128. dmaConfig.dmaMode = USDHC_DMA_MODE;
  129. dmaConfig.burstLen = kUSDHC_EnBurstLenForINCR;
  130. dmaConfig.admaTable = mmcsd->usdhc_adma2_table;
  131. dmaConfig.admaTableWords = USDHC_ADMA_TABLE_WORDS;
  132. fsl_command.index = cmd->cmd_code;
  133. fsl_command.argument = cmd->arg;
  134. if (cmd->cmd_code == STOP_TRANSMISSION)
  135. fsl_command.type = kCARD_CommandTypeAbort;
  136. else
  137. fsl_command.type = kCARD_CommandTypeNormal;
  138. switch (cmd->flags & RESP_MASK)
  139. {
  140. case RESP_NONE:
  141. fsl_command.responseType = kCARD_ResponseTypeNone;
  142. break;
  143. case RESP_R1:
  144. fsl_command.responseType = kCARD_ResponseTypeR1;
  145. break;
  146. case RESP_R1B:
  147. fsl_command.responseType = kCARD_ResponseTypeR1b;
  148. break;
  149. case RESP_R2:
  150. fsl_command.responseType = kCARD_ResponseTypeR2;
  151. break;
  152. case RESP_R3:
  153. fsl_command.responseType = kCARD_ResponseTypeR3;
  154. break;
  155. case RESP_R4:
  156. fsl_command.responseType = kCARD_ResponseTypeR4;
  157. break;
  158. case RESP_R6:
  159. fsl_command.responseType = kCARD_ResponseTypeR6;
  160. break;
  161. case RESP_R7:
  162. fsl_command.responseType = kCARD_ResponseTypeR7;
  163. break;
  164. case RESP_R5:
  165. fsl_command.responseType = kCARD_ResponseTypeR5;
  166. break;
  167. default:
  168. RT_ASSERT(NULL);
  169. }
  170. fsl_command.flags = 0;
  171. fsl_content.command = &fsl_command;
  172. if (data)
  173. {
  174. if (req->stop != NULL)
  175. fsl_data.enableAutoCommand12 = true;
  176. else
  177. fsl_data.enableAutoCommand12 = false;
  178. fsl_data.enableAutoCommand23 = false;
  179. fsl_data.enableIgnoreError = false;
  180. fsl_data.dataType = kUSDHC_TransferDataNormal; //todo : update data type
  181. fsl_data.blockSize = data->blksize;
  182. fsl_data.blockCount = data->blks;
  183. MMCSD_DGB(" blksize:%d, blks:%d ", fsl_data.blockSize, fsl_data.blockCount);
  184. if (((rt_uint32_t)data->buf & (CACHE_LINESIZE - 1)) || // align cache(32byte)
  185. ((rt_uint32_t)data->buf > 0x00000000 && (rt_uint32_t)data->buf < 0x00080000) /*|| // ITCM
  186. ((rt_uint32_t)data->buf >= 0x20000000 && (rt_uint32_t)data->buf < 0x20080000)*/) // DTCM
  187. {
  188. buf = rt_malloc_align(fsl_data.blockSize * fsl_data.blockCount, CACHE_LINESIZE);
  189. RT_ASSERT(buf != RT_NULL);
  190. MMCSD_DGB(" malloc buf: %p, data->buf:%p, %d ", buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
  191. }
  192. if ((cmd->cmd_code == WRITE_BLOCK) || (cmd->cmd_code == WRITE_MULTIPLE_BLOCK))
  193. {
  194. if (buf)
  195. {
  196. MMCSD_DGB(" write(data->buf to buf) ");
  197. rt_memcpy(buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
  198. fsl_data.txData = (uint32_t const *)buf;
  199. }
  200. else
  201. {
  202. fsl_data.txData = (uint32_t const *)data->buf;
  203. }
  204. fsl_data.rxData = NULL;
  205. }
  206. else
  207. {
  208. if (buf)
  209. {
  210. fsl_data.rxData = (uint32_t *)buf;
  211. }
  212. else
  213. {
  214. fsl_data.rxData = (uint32_t *)data->buf;
  215. }
  216. fsl_data.txData = NULL;
  217. }
  218. fsl_content.data = &fsl_data;
  219. }
  220. else
  221. {
  222. fsl_content.data = NULL;
  223. }
  224. error = USDHC_TransferBlocking(mmcsd->usdhc_host.base, &dmaConfig, &fsl_content);
  225. if (error == kStatus_Fail)
  226. {
  227. SDMMCHOST_ErrorRecovery(mmcsd->usdhc_host.base);
  228. MMCSD_DGB(" ***USDHC_TransferBlocking error: %d*** --> \n", error);
  229. cmd->err = -RT_ERROR;
  230. }
  231. if (buf)
  232. {
  233. if (fsl_data.rxData)
  234. {
  235. MMCSD_DGB("read copy buf to data->buf ");
  236. rt_memcpy(data->buf, buf, fsl_data.blockSize * fsl_data.blockCount);
  237. }
  238. rt_free_align(buf);
  239. }
  240. if ((cmd->flags & RESP_MASK) == RESP_R2)
  241. {
  242. cmd->resp[3] = fsl_command.response[0];
  243. cmd->resp[2] = fsl_command.response[1];
  244. cmd->resp[1] = fsl_command.response[2];
  245. cmd->resp[0] = fsl_command.response[3];
  246. MMCSD_DGB(" resp 0x%08X 0x%08X 0x%08X 0x%08X\n",
  247. cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
  248. }
  249. else
  250. {
  251. cmd->resp[0] = fsl_command.response[0];
  252. MMCSD_DGB(" resp 0x%08X\n", cmd->resp[0]);
  253. }
  254. mmcsd_req_complete(host);
  255. return;
  256. }
  257. static void _mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  258. {
  259. struct imxrt_mmcsd *mmcsd;
  260. unsigned int usdhc_clk;
  261. unsigned int bus_width;
  262. uint32_t src_clk;
  263. RT_ASSERT(host != RT_NULL);
  264. RT_ASSERT(host->private_data != RT_NULL);
  265. RT_ASSERT(io_cfg != RT_NULL);
  266. mmcsd = (struct imxrt_mmcsd *)host->private_data;
  267. usdhc_clk = io_cfg->clock;
  268. bus_width = io_cfg->bus_width;
  269. if (usdhc_clk > IMXRT_MAX_FREQ)
  270. usdhc_clk = IMXRT_MAX_FREQ;
  271. src_clk = (CLOCK_GetSysPfdFreq(kCLOCK_Pfd2) / (CLOCK_GetDiv(mmcsd->usdhc_div) + 1U));
  272. MMCSD_DGB("\tsrc_clk: %d, usdhc_clk: %d, bus_width: %d\n", src_clk, usdhc_clk, bus_width);
  273. if (usdhc_clk)
  274. {
  275. USDHC_SetSdClock(mmcsd->usdhc_host.base, src_clk, usdhc_clk);
  276. /* Change bus width */
  277. if (bus_width == MMCSD_BUS_WIDTH_8)
  278. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth8Bit);
  279. else if (bus_width == MMCSD_BUS_WIDTH_4)
  280. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth4Bit);
  281. else if (bus_width == MMCSD_BUS_WIDTH_1)
  282. USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth1Bit);
  283. else
  284. RT_ASSERT(RT_NULL);
  285. }
  286. }
  287. #ifdef DEBUG
  288. static void log_toggle(int en)
  289. {
  290. enable_log = en;
  291. }
  292. FINSH_FUNCTION_EXPORT(log_toggle, toglle log dumple);
  293. #endif
  294. static const struct rt_mmcsd_host_ops ops =
  295. {
  296. _mmc_request,
  297. _mmc_set_iocfg,
  298. RT_NULL,//_mmc_get_card_status,
  299. RT_NULL,//_mmc_enable_sdio_irq,
  300. };
  301. rt_int32_t _imxrt_mci_init(void)
  302. {
  303. struct rt_mmcsd_host *host;
  304. struct imxrt_mmcsd *mmcsd;
  305. host = mmcsd_alloc_host();
  306. if (!host)
  307. {
  308. return -RT_ERROR;
  309. }
  310. mmcsd = rt_malloc(sizeof(struct imxrt_mmcsd));
  311. if (!mmcsd)
  312. {
  313. rt_kprintf("alloc mci failed\n");
  314. goto err;
  315. }
  316. rt_memset(mmcsd, 0, sizeof(struct imxrt_mmcsd));
  317. mmcsd->usdhc_host.base = USDHC1;
  318. mmcsd->usdhc_div = kCLOCK_Usdhc1Div;
  319. mmcsd->usdhc_adma2_table = g_usdhcAdma2Table;
  320. host->ops = &ops;
  321. host->freq_min = 375000;
  322. host->freq_max = 25000000;
  323. host->valid_ocr = VDD_32_33 | VDD_33_34;
  324. host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | \
  325. MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
  326. host->max_seg_size = 65535;
  327. host->max_dma_segs = 2;
  328. host->max_blk_size = 512;
  329. host->max_blk_count = 4096;
  330. mmcsd->host = host;
  331. _mmcsd_clk_init(mmcsd);
  332. _mmcsd_isr_init(mmcsd);
  333. _mmcsd_gpio_init(mmcsd);
  334. _mmcsd_host_init(mmcsd);
  335. host->private_data = mmcsd;
  336. mmcsd_change(host);
  337. return 0;
  338. err:
  339. mmcsd_free_host(host);
  340. return -RT_ENOMEM;
  341. }
  342. int imxrt_mci_init(void)
  343. {
  344. /* initilize sd card */
  345. _imxrt_mci_init();
  346. return 0;
  347. }
  348. INIT_DEVICE_EXPORT(imxrt_mci_init);