1
0

drv_crypto.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708
  1. /*
  2. * Copyright (c) 2019 Winner Microelectronics Co., Ltd.
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-07-10 Ernest 1st version
  9. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  10. * 2020-11-26 thread-liu add hash
  11. * 2020-11-26 thread-liu add cryp
  12. */
  13. #include <rtthread.h>
  14. #include <rtdevice.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include "drv_crypto.h"
  18. #include "board.h"
  19. #include "drv_config.h"
  20. struct stm32_hwcrypto_device
  21. {
  22. struct rt_hwcrypto_device dev;
  23. struct rt_mutex mutex;
  24. };
  25. #if defined(BSP_USING_CRC)
  26. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  27. static struct hwcrypto_crc_cfg crc_backup_cfg;
  28. static int reverse_bit(rt_uint32_t n)
  29. {
  30. n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xaaaaaaaa);
  31. n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xcccccccc);
  32. n = ((n >> 4) & 0x0f0f0f0f) | ((n << 4) & 0xf0f0f0f0);
  33. n = ((n >> 8) & 0x00ff00ff) | ((n << 8) & 0xff00ff00);
  34. n = ((n >> 16) & 0x0000ffff) | ((n << 16) & 0xffff0000);
  35. return n;
  36. }
  37. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  38. static rt_uint32_t _crc_update(struct hwcrypto_crc *ctx, const rt_uint8_t *in, rt_size_t length)
  39. {
  40. rt_uint32_t result = 0;
  41. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  42. #if defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  43. CRC_HandleTypeDef *HW_TypeDef = (CRC_HandleTypeDef *)(ctx->parent.contex);
  44. #endif
  45. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  46. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  47. if (memcmp(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg)) != 0)
  48. {
  49. if (HW_TypeDef->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_DISABLE)
  50. {
  51. HW_TypeDef->Init.GeneratingPolynomial = ctx ->crc_cfg.poly;
  52. }
  53. else
  54. {
  55. HW_TypeDef->Init.GeneratingPolynomial = DEFAULT_CRC32_POLY;
  56. }
  57. switch (ctx ->crc_cfg.flags)
  58. {
  59. case 0:
  60. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
  61. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
  62. break;
  63. case CRC_FLAG_REFIN:
  64. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  65. break;
  66. case CRC_FLAG_REFOUT:
  67. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  68. break;
  69. case CRC_FLAG_REFIN|CRC_FLAG_REFOUT:
  70. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  71. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  72. break;
  73. default :
  74. goto _exit;
  75. }
  76. HW_TypeDef->Init.CRCLength = ctx ->crc_cfg.width;
  77. if (HW_TypeDef->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_DISABLE)
  78. {
  79. HW_TypeDef->Init.InitValue = ctx ->crc_cfg.last_val;
  80. }
  81. if (HAL_CRC_Init(HW_TypeDef) != HAL_OK)
  82. {
  83. goto _exit;
  84. }
  85. memcpy(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg));
  86. }
  87. if (HAL_CRC_STATE_READY != HAL_CRC_GetState(HW_TypeDef))
  88. {
  89. goto _exit;
  90. }
  91. #else
  92. if (ctx->crc_cfg.flags != 0 || ctx->crc_cfg.last_val != 0xFFFFFFFF || ctx->crc_cfg.xorout != 0 || length % 4 != 0)
  93. {
  94. goto _exit;
  95. }
  96. length /= 4;
  97. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  98. result = HAL_CRC_Accumulate(ctx->parent.contex, (rt_uint32_t *)in, length);
  99. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  100. if (HW_TypeDef->Init.OutputDataInversionMode)
  101. {
  102. ctx ->crc_cfg.last_val = reverse_bit(result);
  103. }
  104. else
  105. {
  106. ctx ->crc_cfg.last_val = result;
  107. }
  108. crc_backup_cfg.last_val = ctx ->crc_cfg.last_val;
  109. result = (result ? result ^ (ctx ->crc_cfg.xorout) : result);
  110. #endif /* defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  111. _exit:
  112. rt_mutex_release(&stm32_hw_dev->mutex);
  113. return result;
  114. }
  115. static const struct hwcrypto_crc_ops crc_ops =
  116. {
  117. .update = _crc_update,
  118. };
  119. #endif /* BSP_USING_CRC */
  120. #if defined(BSP_USING_RNG)
  121. static rt_uint32_t _rng_rand(struct hwcrypto_rng *ctx)
  122. {
  123. rt_uint32_t gen_random = 0;
  124. RNG_HandleTypeDef *HW_TypeDef = (RNG_HandleTypeDef *)(ctx->parent.contex);
  125. if (HAL_OK == HAL_RNG_GenerateRandomNumber(HW_TypeDef, &gen_random))
  126. {
  127. return gen_random ;
  128. }
  129. return 0;
  130. }
  131. static const struct hwcrypto_rng_ops rng_ops =
  132. {
  133. .update = _rng_rand,
  134. };
  135. #endif /* BSP_USING_RNG */
  136. #if defined(BSP_USING_HASH)
  137. static rt_err_t _hash_update(struct hwcrypto_hash *ctx, const rt_uint8_t *in, rt_size_t length)
  138. {
  139. rt_uint32_t tickstart = 0;
  140. rt_uint32_t result = RT_EOK;
  141. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  142. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  143. #if defined(SOC_SERIES_STM32MP1)
  144. HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex);
  145. /* Start HASH computation using DMA transfer */
  146. switch (ctx->parent.type)
  147. {
  148. case HWCRYPTO_TYPE_SHA224:
  149. result = HAL_HASHEx_SHA224_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  150. break;
  151. case HWCRYPTO_TYPE_SHA256:
  152. result = HAL_HASHEx_SHA256_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  153. break;
  154. case HWCRYPTO_TYPE_MD5:
  155. result = HAL_HASH_MD5_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  156. break;
  157. case HWCRYPTO_TYPE_SHA1:
  158. result = HAL_HASH_SHA1_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  159. break;
  160. default :
  161. rt_kprintf("not support hash type: %x", ctx->parent.type);
  162. break;
  163. }
  164. if (result != HAL_OK)
  165. {
  166. goto _exit;
  167. }
  168. /* Wait for DMA transfer to complete */
  169. tickstart = rt_tick_get();
  170. while (HAL_HASH_GetState(HW_TypeDef) == HAL_HASH_STATE_BUSY)
  171. {
  172. if (rt_tick_get() - tickstart > 0xFFFF)
  173. {
  174. result = RT_ETIMEOUT;
  175. goto _exit;
  176. }
  177. }
  178. #endif
  179. _exit:
  180. rt_mutex_release(&stm32_hw_dev->mutex);
  181. return result;
  182. }
  183. static rt_err_t _hash_finish(struct hwcrypto_hash *ctx, rt_uint8_t *out, rt_size_t length)
  184. {
  185. rt_uint32_t result = RT_EOK;
  186. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  187. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  188. #if defined(SOC_SERIES_STM32MP1)
  189. HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex);
  190. /* Get the computed digest value */
  191. switch (ctx->parent.type)
  192. {
  193. case HWCRYPTO_TYPE_SHA224:
  194. result = HAL_HASHEx_SHA224_Finish(HW_TypeDef, (uint8_t *)out, length);
  195. break;
  196. case HWCRYPTO_TYPE_SHA256:
  197. result = HAL_HASHEx_SHA256_Finish(HW_TypeDef, (uint8_t *)out, length);
  198. break;
  199. case HWCRYPTO_TYPE_MD5:
  200. result = HAL_HASH_MD5_Finish(HW_TypeDef, (uint8_t *)out, length);
  201. break;
  202. case HWCRYPTO_TYPE_SHA1:
  203. result = HAL_HASH_SHA1_Finish(HW_TypeDef, (uint8_t *)out, length);
  204. break;
  205. default :
  206. rt_kprintf("not support hash type: %x", ctx->parent.type);
  207. break;
  208. }
  209. if (result != HAL_OK)
  210. {
  211. goto _exit;
  212. }
  213. #endif
  214. _exit:
  215. rt_mutex_release(&stm32_hw_dev->mutex);
  216. return result;
  217. }
  218. static const struct hwcrypto_hash_ops hash_ops =
  219. {
  220. .update = _hash_update,
  221. .finish = _hash_finish
  222. };
  223. #endif /* BSP_USING_HASH */
  224. #if defined(BSP_USING_CRYP)
  225. static rt_err_t _cryp_crypt(struct hwcrypto_symmetric *ctx,
  226. struct hwcrypto_symmetric_info *info)
  227. {
  228. rt_uint32_t result = RT_EOK;
  229. rt_uint32_t tickstart = 0;
  230. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  231. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  232. #if defined(SOC_SERIES_STM32MP1)
  233. CRYP_HandleTypeDef *HW_TypeDef = (CRYP_HandleTypeDef *)(ctx->parent.contex);
  234. switch (ctx->parent.type)
  235. {
  236. case HWCRYPTO_TYPE_AES_ECB:
  237. HW_TypeDef->Init.Algorithm = CRYP_AES_ECB;
  238. break;
  239. case HWCRYPTO_TYPE_AES_CBC:
  240. HW_TypeDef->Init.Algorithm = CRYP_AES_CBC;
  241. break;
  242. case HWCRYPTO_TYPE_AES_CTR:
  243. HW_TypeDef->Init.Algorithm = CRYP_AES_CTR;
  244. break;
  245. case HWCRYPTO_TYPE_DES_ECB:
  246. HW_TypeDef->Init.Algorithm = CRYP_DES_ECB;
  247. break;
  248. case HWCRYPTO_TYPE_DES_CBC:
  249. HW_TypeDef->Init.Algorithm = CRYP_DES_CBC;
  250. break;
  251. default :
  252. rt_kprintf("not support cryp type: %x", ctx->parent.type);
  253. break;
  254. }
  255. HAL_CRYP_DeInit(HW_TypeDef);
  256. HW_TypeDef->Init.DataType = CRYP_DATATYPE_8B;
  257. HW_TypeDef->Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE;
  258. HW_TypeDef->Init.KeySize = CRYP_KEYSIZE_128B;
  259. HW_TypeDef->Init.pKey = (uint32_t*)ctx->key;
  260. result = HAL_CRYP_Init(HW_TypeDef);
  261. if (result != HAL_OK)
  262. {
  263. /* Initialization Error */
  264. goto _exit;
  265. }
  266. if (info->mode == HWCRYPTO_MODE_ENCRYPT)
  267. {
  268. result = HAL_CRYP_Encrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out);
  269. }
  270. else if (info->mode == HWCRYPTO_MODE_DECRYPT)
  271. {
  272. result = HAL_CRYP_Decrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out);
  273. }
  274. else
  275. {
  276. rt_kprintf("error cryp mode : %02x!\n", info->mode);
  277. result = RT_ERROR;
  278. goto _exit;
  279. }
  280. if (result != HAL_OK)
  281. {
  282. goto _exit;
  283. }
  284. tickstart = rt_tick_get();
  285. while (HAL_CRYP_GetState(HW_TypeDef) != HAL_CRYP_STATE_READY)
  286. {
  287. if (rt_tick_get() - tickstart > 0xFFFF)
  288. {
  289. result = RT_ETIMEOUT;
  290. goto _exit;
  291. }
  292. }
  293. #endif
  294. if (result != HAL_OK)
  295. {
  296. goto _exit;
  297. }
  298. _exit:
  299. rt_mutex_release(&stm32_hw_dev->mutex);
  300. return result;
  301. }
  302. static const struct hwcrypto_symmetric_ops cryp_ops =
  303. {
  304. .crypt = _cryp_crypt
  305. };
  306. #endif
  307. static rt_err_t _crypto_create(struct rt_hwcrypto_ctx *ctx)
  308. {
  309. rt_err_t res = RT_EOK;
  310. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  311. {
  312. #if defined(BSP_USING_RNG)
  313. case HWCRYPTO_TYPE_RNG:
  314. {
  315. RNG_HandleTypeDef *hrng = rt_calloc(1, sizeof(RNG_HandleTypeDef));
  316. if (RT_NULL == hrng)
  317. {
  318. res = -RT_ERROR;
  319. break;
  320. }
  321. #if defined(SOC_SERIES_STM32MP1)
  322. hrng->Instance = RNG2;
  323. #else
  324. hrng->Instance = RNG;
  325. #endif
  326. HAL_RNG_Init(hrng);
  327. ctx->contex = hrng;
  328. ((struct hwcrypto_rng *)ctx)->ops = &rng_ops;
  329. break;
  330. }
  331. #endif /* BSP_USING_RNG */
  332. #if defined(BSP_USING_CRC)
  333. case HWCRYPTO_TYPE_CRC:
  334. {
  335. CRC_HandleTypeDef *hcrc = rt_calloc(1, sizeof(CRC_HandleTypeDef));
  336. if (RT_NULL == hcrc)
  337. {
  338. res = -RT_ERROR;
  339. break;
  340. }
  341. #if defined(SOC_SERIES_STM32MP1)
  342. hcrc->Instance = CRC2;
  343. #else
  344. hcrc->Instance = CRC;
  345. #endif
  346. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  347. hcrc->Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_ENABLE;
  348. hcrc->Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE;
  349. hcrc->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  350. hcrc->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  351. hcrc->InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
  352. #else
  353. if (HAL_CRC_Init(hcrc) != HAL_OK)
  354. {
  355. res = -RT_ERROR;
  356. }
  357. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  358. ctx->contex = hcrc;
  359. ((struct hwcrypto_crc *)ctx)->ops = &crc_ops;
  360. break;
  361. }
  362. #endif /* BSP_USING_CRC */
  363. #if defined(BSP_USING_HASH)
  364. case HWCRYPTO_TYPE_MD5:
  365. case HWCRYPTO_TYPE_SHA1:
  366. case HWCRYPTO_TYPE_SHA2:
  367. {
  368. HASH_HandleTypeDef *hash = rt_calloc(1, sizeof(HASH_HandleTypeDef));
  369. if (RT_NULL == hash)
  370. {
  371. res = -RT_ERROR;
  372. break;
  373. }
  374. #if defined(SOC_SERIES_STM32MP1)
  375. /* enable dma for hash */
  376. __HAL_RCC_DMA2_CLK_ENABLE();
  377. HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 0);
  378. HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);
  379. hash->Init.DataType = HASH_DATATYPE_8B;
  380. if (HAL_HASH_Init(hash) != HAL_OK)
  381. {
  382. res = -RT_ERROR;
  383. }
  384. #endif
  385. ctx->contex = hash;
  386. ((struct hwcrypto_hash *)ctx)->ops = &hash_ops;
  387. break;
  388. }
  389. #endif /* BSP_USING_HASH */
  390. #if defined(BSP_USING_CRYP)
  391. case HWCRYPTO_TYPE_AES:
  392. case HWCRYPTO_TYPE_DES:
  393. case HWCRYPTO_TYPE_3DES:
  394. case HWCRYPTO_TYPE_RC4:
  395. case HWCRYPTO_TYPE_GCM:
  396. {
  397. CRYP_HandleTypeDef *cryp = rt_calloc(1, sizeof(CRYP_HandleTypeDef));
  398. if (RT_NULL == cryp)
  399. {
  400. res = -RT_ERROR;
  401. break;
  402. }
  403. #if defined(SOC_SERIES_STM32MP1)
  404. cryp->Instance = CRYP2;
  405. /* enable dma for cryp */
  406. __HAL_RCC_DMA2_CLK_ENABLE();
  407. HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 2, 0);
  408. HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn);
  409. HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 2, 0);
  410. HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
  411. if (HAL_CRYP_Init(cryp) != HAL_OK)
  412. {
  413. res = -RT_ERROR;
  414. }
  415. #endif
  416. ctx->contex = cryp;
  417. ((struct hwcrypto_symmetric *)ctx)->ops = &cryp_ops;
  418. break;
  419. }
  420. #endif /* BSP_USING_CRYP */
  421. default:
  422. res = -RT_ERROR;
  423. break;
  424. }
  425. return res;
  426. }
  427. static void _crypto_destroy(struct rt_hwcrypto_ctx *ctx)
  428. {
  429. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  430. {
  431. #if defined(BSP_USING_RNG)
  432. case HWCRYPTO_TYPE_RNG:
  433. break;
  434. #endif /* BSP_USING_RNG */
  435. #if defined(BSP_USING_CRC)
  436. case HWCRYPTO_TYPE_CRC:
  437. __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
  438. HAL_CRC_DeInit((CRC_HandleTypeDef *)(ctx->contex));
  439. break;
  440. #endif /* BSP_USING_CRC */
  441. #if defined(BSP_USING_HASH)
  442. case HWCRYPTO_TYPE_MD5:
  443. case HWCRYPTO_TYPE_SHA1:
  444. case HWCRYPTO_TYPE_SHA2:
  445. __HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex));
  446. HAL_HASH_DeInit((HASH_HandleTypeDef *)(ctx->contex));
  447. break;
  448. #endif /* BSP_USING_HASH */
  449. #if defined(BSP_USING_CRYP)
  450. case HWCRYPTO_TYPE_AES:
  451. case HWCRYPTO_TYPE_DES:
  452. case HWCRYPTO_TYPE_3DES:
  453. case HWCRYPTO_TYPE_RC4:
  454. case HWCRYPTO_TYPE_GCM:
  455. HAL_CRYP_DeInit((CRYP_HandleTypeDef *)(ctx->contex));
  456. break;
  457. #endif /* BSP_USING_CRYP */
  458. default:
  459. break;
  460. }
  461. rt_free(ctx->contex);
  462. }
  463. static rt_err_t _crypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
  464. {
  465. rt_err_t res = RT_EOK;
  466. switch (src->type & HWCRYPTO_MAIN_TYPE_MASK)
  467. {
  468. #if defined(BSP_USING_RNG)
  469. case HWCRYPTO_TYPE_RNG:
  470. if (des->contex && src->contex)
  471. {
  472. rt_memcpy(des->contex, src->contex, sizeof(RNG_HandleTypeDef));
  473. }
  474. break;
  475. #endif /* BSP_USING_RNG */
  476. #if defined(BSP_USING_CRC)
  477. case HWCRYPTO_TYPE_CRC:
  478. if (des->contex && src->contex)
  479. {
  480. rt_memcpy(des->contex, src->contex, sizeof(CRC_HandleTypeDef));
  481. }
  482. break;
  483. #endif /* BSP_USING_CRC */
  484. #if defined(BSP_USING_HASH)
  485. case HWCRYPTO_TYPE_MD5:
  486. case HWCRYPTO_TYPE_SHA1:
  487. case HWCRYPTO_TYPE_SHA2:
  488. if (des->contex && src->contex)
  489. {
  490. rt_memcpy(des->contex, src->contex, sizeof(HASH_HandleTypeDef));
  491. }
  492. break;
  493. #endif /* BSP_USING_HASH */
  494. #if defined(BSP_USING_CRYP)
  495. case HWCRYPTO_TYPE_AES:
  496. case HWCRYPTO_TYPE_DES:
  497. case HWCRYPTO_TYPE_3DES:
  498. case HWCRYPTO_TYPE_RC4:
  499. case HWCRYPTO_TYPE_GCM:
  500. if (des->contex && src->contex)
  501. {
  502. rt_memcpy(des->contex, src->contex, sizeof(CRYP_HandleTypeDef));
  503. }
  504. break;
  505. #endif /* BSP_USING_CRYP */
  506. default:
  507. res = -RT_ERROR;
  508. break;
  509. }
  510. return res;
  511. }
  512. static void _crypto_reset(struct rt_hwcrypto_ctx *ctx)
  513. {
  514. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  515. {
  516. #if defined(BSP_USING_RNG)
  517. case HWCRYPTO_TYPE_RNG:
  518. break;
  519. #endif /* BSP_USING_RNG */
  520. #if defined(BSP_USING_CRC)
  521. case HWCRYPTO_TYPE_CRC:
  522. __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
  523. break;
  524. #endif /* BSP_USING_CRC */
  525. #if defined(BSP_USING_HASH)
  526. case HWCRYPTO_TYPE_MD5:
  527. case HWCRYPTO_TYPE_SHA1:
  528. case HWCRYPTO_TYPE_SHA2:
  529. __HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex));
  530. break;
  531. #endif /* BSP_USING_HASH*/
  532. #if defined(BSP_USING_CRYP)
  533. case HWCRYPTO_TYPE_AES:
  534. case HWCRYPTO_TYPE_DES:
  535. case HWCRYPTO_TYPE_3DES:
  536. case HWCRYPTO_TYPE_RC4:
  537. case HWCRYPTO_TYPE_GCM:
  538. break;
  539. #endif /* BSP_USING_CRYP */
  540. default:
  541. break;
  542. }
  543. }
  544. void HASH2_DMA_IN_IRQHandler(void)
  545. {
  546. extern DMA_HandleTypeDef hdma_hash_in;
  547. /* enter interrupt */
  548. rt_interrupt_enter();
  549. HAL_DMA_IRQHandler(&hdma_hash_in);
  550. /* leave interrupt */
  551. rt_interrupt_leave();
  552. }
  553. void CRYP2_DMA_IN_IRQHandler(void)
  554. {
  555. extern DMA_HandleTypeDef hdma_cryp_in;
  556. /* enter interrupt */
  557. rt_interrupt_enter();
  558. HAL_DMA_IRQHandler(&hdma_cryp_in);
  559. /* leave interrupt */
  560. rt_interrupt_leave();
  561. }
  562. void CRYP2_DMA_OUT_IRQHandler(void)
  563. {
  564. extern DMA_HandleTypeDef hdma_cryp_out;
  565. /* enter interrupt */
  566. rt_interrupt_enter();
  567. HAL_DMA_IRQHandler(&hdma_cryp_out);
  568. /* leave interrupt */
  569. rt_interrupt_leave();
  570. }
  571. static const struct rt_hwcrypto_ops _ops =
  572. {
  573. .create = _crypto_create,
  574. .destroy = _crypto_destroy,
  575. .copy = _crypto_clone,
  576. .reset = _crypto_reset,
  577. };
  578. int stm32_hw_crypto_device_init(void)
  579. {
  580. static struct stm32_hwcrypto_device _crypto_dev;
  581. rt_uint32_t cpuid[3] = {0};
  582. _crypto_dev.dev.ops = &_ops;
  583. #if defined(BSP_USING_UDID)
  584. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  585. cpuid[0] = HAL_GetUIDw0();
  586. cpuid[1] = HAL_GetUIDw1();
  587. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  588. cpuid[0] = HAL_GetREVID();
  589. cpuid[1] = HAL_GetDEVID();
  590. #endif
  591. #endif /* BSP_USING_UDID */
  592. _crypto_dev.dev.id = 0;
  593. rt_memcpy(&_crypto_dev.dev.id, cpuid, 8);
  594. _crypto_dev.dev.user_data = &_crypto_dev;
  595. if (rt_hwcrypto_register(&_crypto_dev.dev, RT_HWCRYPTO_DEFAULT_NAME) != RT_EOK)
  596. {
  597. return -1;
  598. }
  599. rt_mutex_init(&_crypto_dev.mutex, RT_HWCRYPTO_DEFAULT_NAME, RT_IPC_FLAG_FIFO);
  600. return 0;
  601. }
  602. INIT_DEVICE_EXPORT(stm32_hw_crypto_device_init);