drv_mmc.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /*
  2. * File : drv_mmc.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2013 - 2015, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2013-03-09 aozima the first version
  13. * 2013-03-29 aozima support Jz4770.
  14. * 2013-04-01 aozima add interrupt support for Jz4770.
  15. */
  16. #include <rthw.h>
  17. #include <rtthread.h>
  18. #include <rtdevice.h>
  19. #include <drivers/mmcsd_core.h>
  20. #include <drivers/sdio.h>
  21. #include "board.h"
  22. #include "drv_gpio.h"
  23. #include "drv_clock.h"
  24. #include "drv_mmc.h"
  25. #include <cache.h>
  26. #include <string.h>
  27. #define DMA_BUFFER
  28. #define DMA_ALIGN (32U)
  29. #define PIO_THRESHOLD 64 /* use pio mode if data length < PIO_THRESHOLD */
  30. #define DBG_TAG "SDIO"
  31. #define DBG_LVL DBG_INFO
  32. #include <rtdbg.h>
  33. /*
  34. * Error status including CRC_READ_ERROR, CRC_WRITE_ERROR,
  35. * CRC_RES_ERR, TIME_OUT_RES, TIME_OUT_READ
  36. */
  37. #define ERROR_STAT 0x3f
  38. #define JZMMC_USE_PIO 2
  39. /* Register access macros */
  40. #define msc_readl(host,reg) \
  41. readl((host)->hw_base + reg)
  42. #define msc_writel(host,reg,value) \
  43. writel((value), (host)->hw_base + (reg))
  44. #define is_pio_mode(host) \
  45. (host->flags & (1 << JZMMC_USE_PIO))
  46. #define enable_pio_mode(host) \
  47. (host->flags |= (1 << JZMMC_USE_PIO))
  48. #define disable_pio_mode(host) \
  49. (host->flags &= ~(1 << JZMMC_USE_PIO))
  50. /*-------------------End structure and macro define------------------------*/
  51. #ifdef DMA_BUFFER
  52. ALIGN(32)
  53. uint8_t _dma_buffer_0[32 * 1024];
  54. ALIGN(32)
  55. uint8_t _dma_buffer_1[32 * 1024];
  56. #endif
  57. struct jzmmc_host *jz_host1 = RT_NULL;
  58. volatile static int stopping_clock = 0;
  59. volatile static int sdio_log = 0;
  60. /*
  61. * Functional functions.
  62. *
  63. * These small function will be called frequently.
  64. */
  65. rt_inline void enable_msc_irq(struct jzmmc_host *host, unsigned long bits)
  66. {
  67. unsigned long imsk;
  68. imsk = msc_readl(host, MSC_IMASK_OFFSET);
  69. imsk &= ~bits;
  70. msc_writel(host, MSC_IMASK_OFFSET, imsk);
  71. }
  72. rt_inline void clear_msc_irq(struct jzmmc_host *host, unsigned long bits)
  73. {
  74. msc_writel(host, MSC_IREG_OFFSET, bits);
  75. }
  76. rt_inline void disable_msc_irq(struct jzmmc_host *host, unsigned long bits)
  77. {
  78. unsigned long imsk;
  79. imsk = msc_readl(host, MSC_IMASK_OFFSET);
  80. imsk |= bits;
  81. msc_writel(host, MSC_IMASK_OFFSET, imsk);
  82. }
  83. static inline int check_error_status(struct jzmmc_host *host, unsigned int status)
  84. {
  85. if (status & ERROR_STAT)
  86. {
  87. LOG_D("Error status->0x%08X: cmd=%d", status, host->cmd->cmd_code);
  88. return -1;
  89. }
  90. return 0;
  91. }
  92. /* Stop the MMC clock and wait while it happens */
  93. rt_inline rt_err_t jzmmc_stop_clock(uint32_t hw_base)
  94. {
  95. uint16_t value;
  96. int timeout = 10000;
  97. stopping_clock = 1;
  98. value = readw(hw_base + MSC_CTRL_OFFSET);
  99. value &= ~MSC_CTRL_CLOCK_CONTROL_MASK;
  100. value |= MSC_CTRL_CLOCK_STOP;
  101. writew(value, hw_base + MSC_CTRL_OFFSET);
  102. while (timeout && (readl(hw_base + MSC_STAT_OFFSET) & MSC_STAT_CLK_EN))
  103. {
  104. timeout--;
  105. if (timeout == 0)
  106. {
  107. rt_kprintf("stop clock timeout!\n");
  108. stopping_clock = 0;
  109. return -RT_ETIMEOUT;
  110. }
  111. rt_thread_delay(1);
  112. }
  113. stopping_clock = 0;
  114. return RT_EOK;
  115. }
  116. /* Start the MMC clock and operation */
  117. rt_inline void jzmmc_start_clock(uint32_t hw_base)
  118. {
  119. uint16_t value;
  120. value = readw(hw_base + MSC_CTRL_OFFSET);
  121. value |= (MSC_CTRL_CLOCK_START | MSC_CTRL_START_OP);
  122. writew(value, hw_base + MSC_CTRL_OFFSET);
  123. }
  124. static int jzmmc_polling_status(struct jzmmc_host *host, unsigned int status)
  125. {
  126. unsigned int cnt = 100 * 1000 * 1000;
  127. while(!(msc_readl(host, MSC_STAT_OFFSET) & (status | ERROR_STAT)) \
  128. && (--cnt));
  129. if (!cnt)
  130. {
  131. LOG_D("polling status(0x%08X) time out, "
  132. "op=%d, status=0x%08X", status,
  133. host->cmd->cmd_code, msc_readl(host, MSC_STAT_OFFSET));
  134. return -1;
  135. }
  136. if (msc_readl(host, MSC_STAT_OFFSET) & ERROR_STAT)
  137. {
  138. LOG_D("polling status(0x%08X) error, "
  139. "op=%d, status=0x%08X", status,
  140. host->cmd->cmd_code, msc_readl(host, MSC_STAT_OFFSET));
  141. return -1;
  142. }
  143. return 0;
  144. }
  145. rt_inline void jzmmc_stop_dma(struct jzmmc_host *host)
  146. {
  147. /*
  148. * Theoretically, DMA can't be stopped when transfering, so we can only
  149. * diable it when it is out of DMA request.
  150. */
  151. msc_writel(host, MSC_DMAC_OFFSET, 0);
  152. }
  153. static void jzmmc_command_done(struct jzmmc_host *host, struct rt_mmcsd_cmd *cmd)
  154. {
  155. int i;
  156. unsigned long res;
  157. uint8_t buf[16];
  158. uint32_t data;
  159. memset(cmd->resp, 0x0, sizeof(cmd->resp));
  160. if ((host->cmdat & MSC_CMDAT_RESP_FORMAT_MASK) == MSC_CMDAT_RESPONSE_R2)
  161. {
  162. res = msc_readl(host, MSC_RES_OFFSET);
  163. for (i = 0 ; i < 4 ; i++) {
  164. cmd->resp[i] = res << 24;
  165. res = msc_readl(host, MSC_RES_OFFSET);
  166. cmd->resp[i] |= res << 8;
  167. res = msc_readl(host, MSC_RES_OFFSET);
  168. cmd->resp[i] |= res >> 8;
  169. }
  170. }
  171. else if ((host->cmdat & MSC_CMDAT_RESP_FORMAT_MASK) == MSC_CMDAT_RESPONSE_NONE)
  172. {
  173. }
  174. else
  175. {
  176. res = msc_readl(host, MSC_RES_OFFSET);
  177. cmd->resp[0] = res << 24;
  178. res = msc_readl(host, MSC_RES_OFFSET);
  179. cmd->resp[0] |= res << 8;
  180. res = msc_readl(host, MSC_RES_OFFSET);
  181. cmd->resp[0] |= res & 0xff;
  182. }
  183. LOG_D("error:%d cmd->resp [%08X, %08X, %08X, %08X]\r\n\r",
  184. cmd->err,
  185. cmd->resp[0],
  186. cmd->resp[1],
  187. cmd->resp[2],
  188. cmd->resp[3]
  189. );
  190. clear_msc_irq(host, IFLG_END_CMD_RES);
  191. }
  192. static void jzmmc_data_done(struct jzmmc_host *host)
  193. {
  194. struct rt_mmcsd_data *data = host->data;
  195. if (host->cmd->err == RT_EOK)
  196. {
  197. data->bytes_xfered = (data->blks * data->blksize);
  198. jzmmc_stop_dma(host);
  199. }
  200. else
  201. {
  202. jzmmc_stop_dma(host);
  203. data->bytes_xfered = 0;
  204. LOG_D("error when request done");
  205. }
  206. }
  207. #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
  208. static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
  209. {
  210. unsigned char *buf = (unsigned char*)ptr;
  211. int i, j;
  212. for (i=0; i<buflen; i+=16)
  213. {
  214. rt_kprintf("%08X: ", i);
  215. for (j=0; j<16; j++)
  216. if (i+j < buflen)
  217. rt_kprintf("%02X ", buf[i+j]);
  218. else
  219. rt_kprintf(" ");
  220. rt_kprintf(" ");
  221. for (j=0; j<16; j++)
  222. if (i+j < buflen)
  223. rt_kprintf("%c", __is_print(buf[i+j]) ? buf[i+j] : '.');
  224. rt_kprintf("\n");
  225. }
  226. }
  227. /*------------------------End functional functions-------------------------*/
  228. rt_inline void jzmmc_submit_dma(struct jzmmc_host *host, struct rt_mmcsd_data *data)
  229. {
  230. host->dma_desc.nda = 0;
  231. host->dma_desc.len = data->blks * data->blksize;
  232. host->dma_desc.da = virt_to_phys(data->buf);
  233. host->dma_desc.dcmd = DMACMD_ENDI; /* only one DMA descriptor */
  234. #ifdef DMA_BUFFER
  235. if ((uint32_t)(data->buf) & (DMA_ALIGN - 1))
  236. {
  237. /* not align */
  238. host->dma_desc.da = virt_to_phys(host->_dma_buffer);
  239. if (data->flags & DATA_DIR_WRITE)
  240. {
  241. LOG_D("%d ->", data->blks * data->blksize);
  242. memcpy(host->_dma_buffer, data->buf, data->blks * data->blksize);
  243. rt_hw_dcache_flush_range((rt_ubase_t)(host->_dma_buffer), data->blks * data->blksize);
  244. LOG_D("| 0x%08x", data->buf);
  245. }
  246. }
  247. else
  248. {
  249. if (data->flags & DATA_DIR_WRITE)
  250. {
  251. rt_hw_dcache_flush_range((rt_ubase_t)(data->buf), data->blks * data->blksize);
  252. }
  253. }
  254. #endif
  255. }
  256. // #define PERFORMANCE_DMA
  257. rt_inline void jzmmc_dma_start(struct jzmmc_host *host, struct rt_mmcsd_data *data)
  258. {
  259. volatile int i = 120;
  260. uint32_t dma_addr = virt_to_phys(data->buf);
  261. unsigned int dma_len = data->blks * data->blksize;
  262. unsigned int dmac;
  263. #ifdef PERFORMANCE_DMA
  264. dmac = (0x01 << DMAC_INCR_SHF) | DMAC_DMAEN | DMAC_MODE_SEL;
  265. #else
  266. dmac = (0x01 << DMAC_INCR_SHF) | DMAC_DMAEN;
  267. #endif
  268. #ifndef DMA_BUFFER
  269. if ((dma_addr & (DMA_ALIGN - 1)) || (dma_len & (DMA_ALIGN - 1)))
  270. {
  271. LOG_D("DMA align, addr=0x%08x", dma_addr);
  272. dmac |= DMAC_ALIGNEN;
  273. if (dma_addr & (DMA_ALIGN - 1))
  274. {
  275. dmac |= (dma_addr & (DMA_ALIGN - 1)) << DMAC_AOFST_SHF;
  276. }
  277. }
  278. #endif
  279. LOG_D("DMA start: nda 0x%08x, da 0x%08x, len 0x%04x, cmd 0x%08x", virt_to_phys(&(host->dma_desc)),
  280. host->dma_desc.da, host->dma_desc.len, host->dma_desc.dcmd);
  281. rt_hw_dcache_flush_range((rt_ubase_t)(&(host->dma_desc)), 32);
  282. while(i--); //TODO:短暂延时,不延时会发生错误
  283. msc_writel(host, MSC_DMANDA_OFFSET, virt_to_phys(&(host->dma_desc)));
  284. msc_writel(host, MSC_DMAC_OFFSET, dmac);
  285. }
  286. /*----------------------------End DMA handler------------------------------*/
  287. /*
  288. * PIO transfer mode.
  289. *
  290. * Functions of PIO read/write mode that can handle 1, 2 or 3 bytes transfer
  291. * even though the FIFO register is 32-bits width.
  292. * It's better just used for test.
  293. */
  294. static int wait_cmd_response(struct jzmmc_host *host)
  295. {
  296. if (!(msc_readl(host, MSC_IREG_OFFSET) & IFLG_END_CMD_RES))
  297. {
  298. rt_err_t ret;
  299. rt_completion_init(&host->completion);
  300. enable_msc_irq(host, IMASK_TIME_OUT_RES | IMASK_END_CMD_RES);
  301. rt_hw_interrupt_umask(host->irqno);
  302. ret = rt_completion_wait(&host->completion, RT_TICK_PER_SECOND);
  303. clear_msc_irq(host, IFLG_TIMEOUT_RES | IFLG_END_CMD_RES);
  304. disable_msc_irq(host, IFLG_TIMEOUT_RES | IFLG_END_CMD_RES);
  305. if(ret == RT_EOK)
  306. {
  307. LOG_D("wait response OK!\r");
  308. }
  309. else
  310. {
  311. uint32_t value;
  312. value = msc_readl(host, MSC_STAT_OFFSET);
  313. LOG_D("stat=0x%08x", value);
  314. value = msc_readl(host, MSC_IREG_OFFSET);
  315. LOG_D("iflag=0x%08x", value);
  316. host->cmd->err = ret;
  317. LOG_D("wait END_CMD_RES timeout[uncompletion]\r");
  318. return -1;
  319. }
  320. }
  321. msc_writel(host, MSC_IREG_OFFSET, IFLG_END_CMD_RES);
  322. return 0;
  323. }
  324. static void do_pio_read(struct jzmmc_host *host,
  325. unsigned int *addr, unsigned int cnt)
  326. {
  327. int i = 0;
  328. unsigned int status = 0;
  329. for (i = 0; i < cnt / 4; i++)
  330. {
  331. while (((status = msc_readl(host, MSC_STAT_OFFSET))
  332. & MSC_STAT_DATA_FIFO_EMPTY));
  333. if (check_error_status(host, status))
  334. {
  335. host->cmd->err = -RT_EIO;
  336. return;
  337. }
  338. *addr++ = msc_readl(host, MSC_RXFIFO_OFFSET);
  339. }
  340. /*
  341. * These codes handle the last 1, 2 or 3 bytes transfer.
  342. */
  343. if (cnt & 3)
  344. {
  345. uint32_t n = cnt & 3;
  346. uint32_t data = msc_readl(host, MSC_RXFIFO_OFFSET);
  347. uint8_t *p = (u8 *)addr;
  348. while (n--)
  349. {
  350. *p++ = data;
  351. data >>= 8;
  352. }
  353. }
  354. }
  355. static void do_pio_write(struct jzmmc_host *host,
  356. unsigned int *addr, unsigned int cnt)
  357. {
  358. int i = 0;
  359. unsigned int status = 0;
  360. for (i = 0; i < (cnt / 4); i++)
  361. {
  362. while (((status = msc_readl(host, MSC_STAT_OFFSET))
  363. & MSC_STAT_DATA_FIFO_FULL));
  364. if (check_error_status(host, status))
  365. {
  366. host->cmd->err = -RT_EIO;
  367. return;
  368. }
  369. msc_writel(host, MSC_TXFIFO_OFFSET, *addr++);
  370. }
  371. /*
  372. * These codes handle the last 1, 2 or 3 bytes transfer.
  373. */
  374. if (cnt & 3)
  375. {
  376. uint32_t data = 0;
  377. uint8_t *p = (uint8_t *)addr;
  378. for (i = 0; i < (cnt & 3); i++)
  379. data |= *p++ << (8 * i);
  380. msc_writel(host, MSC_TXFIFO_OFFSET, data);
  381. }
  382. }
  383. static inline void pio_trans_start(struct jzmmc_host *host, struct rt_mmcsd_data *data)
  384. {
  385. unsigned int *addr = (unsigned int *)data->buf;
  386. unsigned int cnt = data->blks * data->blksize;
  387. if (data->flags & DATA_DIR_WRITE)
  388. do_pio_write(host, addr, cnt);
  389. else
  390. do_pio_read(host, addr, cnt);
  391. }
  392. static void pio_trans_done(struct jzmmc_host *host, struct rt_mmcsd_data *data)
  393. {
  394. if (host->cmd->err == RT_EOK)
  395. data->bytes_xfered = data->blks * data->blksize;
  396. else
  397. data->bytes_xfered = 0;
  398. if (host->req->stop)
  399. {
  400. if (jzmmc_polling_status(host, MSC_STAT_AUTO_CMD_DONE) < 0)
  401. host->cmd->err = -RT_EIO;
  402. }
  403. if (data->flags & DATA_DIR_WRITE)
  404. {
  405. if (jzmmc_polling_status(host, MSC_STAT_PRG_DONE) < 0)
  406. {
  407. host->cmd->err = -RT_EIO;
  408. }
  409. clear_msc_irq(host, IFLG_PRG_DONE);
  410. }
  411. else
  412. {
  413. if (jzmmc_polling_status(host, MSC_STAT_DATA_TRAN_DONE) < 0)
  414. {
  415. host->cmd->err = -RT_EIO;
  416. }
  417. clear_msc_irq(host, IFLG_DATA_TRAN_DONE);
  418. }
  419. }
  420. /*-------------------------End PIO transfer mode---------------------------*/
  421. /*
  422. * Achieve mmc_request here.
  423. */
  424. static void jzmmc_data_pre(struct jzmmc_host *host, struct rt_mmcsd_data *data)
  425. {
  426. unsigned int nob = data->blks;
  427. unsigned long cmdat,imsk;
  428. msc_writel(host, MSC_RDTO_OFFSET, 0xffffff);
  429. msc_writel(host, MSC_NOB_OFFSET, nob);
  430. msc_writel(host, MSC_BLKLEN_OFFSET, data->blksize);
  431. cmdat = MSC_CMDAT_DATA_EN;
  432. msc_writel(host, MSC_CMDAT_OFFSET, MSC_CMDAT_DATA_EN);
  433. if (data->flags & DATA_DIR_WRITE)
  434. {
  435. cmdat |= MSC_CMDAT_WRITE;
  436. imsk = IMASK_WR_ALL_DONE | IMASK_CRC_WRITE_ERR;
  437. }
  438. else if (data->flags & DATA_DIR_READ)
  439. {
  440. cmdat &= ~MSC_CMDAT_WRITE;
  441. imsk = IMASK_DMA_DATA_DONE | IMASK_TIME_OUT_READ | IMASK_CRC_READ_ERR;
  442. }
  443. else
  444. {
  445. rt_kprintf("data direction confused\n");
  446. }
  447. host->cmdat |= cmdat;
  448. if (!is_pio_mode(host))
  449. {
  450. jzmmc_submit_dma(host, data);
  451. clear_msc_irq(host, IFLG_PRG_DONE);
  452. enable_msc_irq(host, imsk);
  453. }
  454. }
  455. static void jzmmc_data_start(struct jzmmc_host *host, struct rt_mmcsd_data *data)
  456. {
  457. if (is_pio_mode(host))
  458. {
  459. pio_trans_start(host, data);
  460. pio_trans_done(host, data);
  461. disable_pio_mode(host);
  462. }
  463. else
  464. {
  465. rt_err_t ret;
  466. rt_completion_init(&host->completion);
  467. /* start DMA */
  468. disable_msc_irq(host, IFLG_END_CMD_RES);
  469. jzmmc_dma_start(host, data);
  470. rt_hw_interrupt_umask(host->irqno);
  471. ret = rt_completion_wait(&host->completion, RT_TICK_PER_SECOND);
  472. if (ret != RT_EOK)
  473. {
  474. rt_kprintf("warning: msc dma timeout\n");
  475. }
  476. else
  477. {
  478. LOG_D("msc status: 0x%08x", msc_readl(host, MSC_STAT_OFFSET));
  479. clear_msc_irq(host, IFLG_DATA_TRAN_DONE | IFLG_DMAEND | IFLG_DMA_DATA_DONE | IFLG_TIMEOUT_RES);
  480. disable_msc_irq(host, IMASK_DMA_DATA_DONE | IMASK_CRC_READ_ERR);
  481. #ifdef DMA_BUFFER
  482. if ((data->flags & DATA_DIR_READ))
  483. {
  484. if((uint32_t)data->buf & (DMA_ALIGN - 1))
  485. {
  486. rt_hw_dcache_invalidate_range((rt_ubase_t)(host->_dma_buffer), data->blks * data->blksize);
  487. memcpy(data->buf, host->_dma_buffer, data->blks * data->blksize);
  488. LOG_D("0x%08x <-| %d", data->buf, data->blks * data->blksize);
  489. }
  490. else
  491. {
  492. rt_hw_dcache_invalidate_range((rt_ubase_t)(data->buf), data->blks * data->blksize);
  493. }
  494. }
  495. #endif
  496. }
  497. jzmmc_data_done(host);
  498. }
  499. }
  500. static void jzmmc_command_start(struct jzmmc_host *host, struct rt_mmcsd_cmd *cmd)
  501. {
  502. unsigned long cmdat = 0;
  503. unsigned long imsk;
  504. /* auto send stop */
  505. if (host->req->stop) cmdat |= MSC_CMDAT_SEND_AS_STOP;
  506. /* handle response type */
  507. switch (cmd->flags & RESP_MASK)
  508. {
  509. #define _CASE(S,D) case RESP_##S: cmdat |= MSC_CMDAT_RESPONSE_##D; break
  510. _CASE(R1, R1); /* r1 */
  511. _CASE(R2, R2);
  512. _CASE(R3, R3); /* r3 */
  513. _CASE(R4, R4); /* r4 */
  514. _CASE(R5, R5);
  515. _CASE(R6, R6);
  516. _CASE(R7, R7);
  517. default:
  518. break;
  519. #undef _CASE
  520. }
  521. if ((cmd->flags & RESP_MASK) == RESP_R1B) cmdat |= MSC_CMDAT_BUSY;
  522. host->cmdat |= cmdat;
  523. if (!is_pio_mode(host))
  524. {
  525. imsk = IMASK_TIME_OUT_RES | IMASK_END_CMD_RES;
  526. enable_msc_irq(host, imsk);
  527. }
  528. LOG_D("dat: 0x%08x", host->cmdat);
  529. LOG_D("resp type: %d", cmd->flags & RESP_MASK);
  530. writel(0xFF, host->hw_base + MSC_RESTO_OFFSET);
  531. writel(0xFFFFFFFF, host->hw_base + MSC_RDTO_OFFSET);
  532. msc_writel(host, MSC_CMD_OFFSET, cmd->cmd_code);
  533. msc_writel(host, MSC_ARG_OFFSET, cmd->arg);
  534. msc_writel(host, MSC_CMDAT_OFFSET, host->cmdat);
  535. msc_writel(host, MSC_CTRL_OFFSET, MSC_CTRL_START_OP);
  536. jzmmc_start_clock(host->hw_base);
  537. cmd->err = RT_EOK;
  538. if (is_pio_mode(host))
  539. {
  540. wait_cmd_response(host);
  541. jzmmc_command_done(host, host->cmd);
  542. }
  543. }
  544. static void jzmmc_sdio_request(struct rt_mmcsd_host *mmc, struct rt_mmcsd_req *req)
  545. {
  546. struct jzmmc_host *host = mmc->private_data;
  547. char direction = '\0';
  548. host->req = req;
  549. host->data = req->data;
  550. host->cmd = req->cmd;
  551. host->cmdat = 0;
  552. LOG_D("CMD: %d ARG: %08X", req->cmd->cmd_code, req->cmd->arg);
  553. if (host->data)
  554. {
  555. direction = (host->data->flags & DATA_DIR_WRITE)? 'w' : 'r';
  556. }
  557. jzmmc_stop_clock(host->hw_base);
  558. /* disable pio mode firstly */
  559. disable_pio_mode(host);
  560. /* clear status */
  561. writew(0xFFFF, host->hw_base + MSC_IREG_OFFSET);
  562. disable_msc_irq(host, 0xffffffff);
  563. if (host->flags & MSC_CMDAT_BUS_WIDTH_4BIT)
  564. {
  565. host->cmdat |= MSC_CMDAT_BUS_WIDTH_4BIT;
  566. }
  567. if(req->cmd->cmd_code == GO_IDLE_STATE)
  568. {
  569. host->cmdat |= MSC_CMDAT_INIT;
  570. }
  571. if(host->data)
  572. {
  573. LOG_D("with data, datalen = %d", host->data->blksize * host->data->blks);
  574. if (host->data->blksize * host->data->blks < PIO_THRESHOLD)
  575. {
  576. LOG_D(" pio mode!");
  577. enable_pio_mode(host);
  578. }
  579. jzmmc_data_pre(host, host->data);
  580. }
  581. else
  582. {
  583. writew(0, host->hw_base + MSC_BLKLEN_OFFSET);
  584. writew(0, host->hw_base + MSC_NOB_OFFSET);
  585. enable_pio_mode(host);
  586. }
  587. jzmmc_command_start(host, host->cmd);
  588. if (host->data)
  589. {
  590. jzmmc_data_start(host, host->data);
  591. }
  592. mmcsd_req_complete(mmc);
  593. }
  594. static void jzmmc_isr(int irqno, void* param)
  595. {
  596. uint32_t pending;
  597. uint32_t pending_;
  598. struct jzmmc_host * host = (struct jzmmc_host *)param;
  599. pending_ = msc_readl(host, MSC_IREG_OFFSET);
  600. pending = msc_readl(host, MSC_IREG_OFFSET) & (~ msc_readl(host, MSC_IMASK_OFFSET));
  601. if(pending_ & IFLG_CRC_RES_ERR)
  602. {
  603. LOG_W("RES CRC err");
  604. }
  605. if(pending_ & IFLG_CRC_READ_ERR)
  606. {
  607. LOG_W("READ CRC err");
  608. }
  609. if(pending_ & IFLG_CRC_WRITE_ERR)
  610. {
  611. LOG_W("WRITE CRC err");
  612. }
  613. if (pending & IFLG_TIMEOUT_RES)
  614. {
  615. host->cmd->err = -RT_ETIMEOUT;
  616. LOG_D("TIMEOUT");
  617. }
  618. else if (pending & IFLG_CRC_READ_ERR)
  619. {
  620. host->cmd->err = -RT_EIO;
  621. LOG_W("CRC READ");
  622. }
  623. else if (pending & (IFLG_CRC_RES_ERR | IFLG_CRC_WRITE_ERR | IFLG_TIMEOUT_READ))
  624. {
  625. LOG_E("MSC ERROR, pending=0x%08x", pending);
  626. }
  627. if (pending & (IFLG_DMA_DATA_DONE | IFLG_WR_ALL_DONE))
  628. {
  629. LOG_D("msc DMA end!");
  630. /* disable interrupt */
  631. rt_hw_interrupt_mask(host->irqno);
  632. rt_completion_done(&host->completion);
  633. }
  634. else if (pending & (MSC_TIME_OUT_RES | MSC_END_CMD_RES))
  635. {
  636. /* disable interrupt */
  637. rt_hw_interrupt_mask(host->irqno);
  638. rt_completion_done(&host->completion);
  639. }
  640. }
  641. rt_inline void jzmmc_clk_autoctrl(struct jzmmc_host *host, unsigned int on)
  642. {
  643. if(on)
  644. {
  645. if(!clk_is_enabled(host->clock))
  646. clk_enable(host->clock);
  647. if(!clk_is_enabled(host->clock_gate))
  648. clk_enable(host->clock_gate);
  649. }
  650. else
  651. {
  652. if(clk_is_enabled(host->clock_gate))
  653. clk_disable(host->clock_gate);
  654. if(clk_is_enabled(host->clock))
  655. clk_disable(host->clock);
  656. }
  657. }
  658. static int jzmmc_hardware_init(struct jzmmc_host *jz_sdio)
  659. {
  660. uint32_t hw_base = jz_sdio->hw_base;
  661. uint32_t value;
  662. /* reset mmc/sd controller */
  663. value = readl(hw_base + MSC_CTRL_OFFSET);
  664. value |= MSC_CTRL_RESET;
  665. writel(value, hw_base + MSC_CTRL_OFFSET);
  666. rt_thread_delay(1);
  667. value &= ~MSC_CTRL_RESET;
  668. writel(value, hw_base + MSC_CTRL_OFFSET);
  669. while(readl(hw_base + MSC_STAT_OFFSET) & MSC_STAT_IS_RESETTING);
  670. /* mask all IRQs */
  671. writel(0xffffffff, hw_base + MSC_IMASK_OFFSET);
  672. writel(0xffffffff, hw_base + MSC_IREG_OFFSET);
  673. /* set timeout */
  674. writel(0x100, hw_base + MSC_RESTO_OFFSET);
  675. writel(0x1ffffff, hw_base + MSC_RDTO_OFFSET);
  676. /* stop MMC/SD clock */
  677. jzmmc_stop_clock(hw_base);
  678. return 0;
  679. }
  680. /* RT-Thread SDIO interface */
  681. static void jzmmc_sdio_set_iocfg(struct rt_mmcsd_host *host,
  682. struct rt_mmcsd_io_cfg *io_cfg)
  683. {
  684. struct jzmmc_host * jz_sdio = host->private_data;
  685. rt_uint32_t clkdiv;
  686. LOG_D("set_iocfg clock: %d", io_cfg->clock);
  687. if (io_cfg->bus_width == MMCSD_BUS_WIDTH_4)
  688. {
  689. LOG_D("MMC: Setting controller bus width to 4");
  690. jz_sdio->flags |= MSC_CMDAT_BUS_WIDTH_4BIT;
  691. }
  692. else
  693. {
  694. jz_sdio->flags &= ~(MSC_CMDAT_BUS_WIDTH_4BIT);
  695. LOG_D("MMC: Setting controller bus width to 1");
  696. }
  697. if (io_cfg->clock)
  698. {
  699. unsigned int clk_set = 0, clkrt = 0;
  700. unsigned int clk_want = io_cfg->clock;
  701. unsigned int lpm = 0;
  702. if (io_cfg->clock > 1 * 1000 * 1000)
  703. {
  704. io_cfg->clock = 1000 * 1000;
  705. }
  706. jzmmc_clk_autoctrl(jz_sdio, 1);
  707. if (clk_want > 3000000)
  708. {
  709. clk_set_rate(jz_sdio->clock, io_cfg->clock);
  710. }
  711. else
  712. {
  713. clk_set_rate(jz_sdio->clock, 24000000);
  714. }
  715. clk_set = clk_get_rate(jz_sdio->clock);
  716. while (clk_want < clk_set)
  717. {
  718. clkrt++;
  719. clk_set >>= 1;
  720. }
  721. if (clkrt > 7)
  722. {
  723. LOG_E("invalid value of CLKRT: "
  724. "ios->clock=%d clk_want=%d "
  725. "clk_set=%d clkrt=%X,",
  726. io_cfg->clock, clk_want, clk_set, clkrt);
  727. return;
  728. }
  729. if (!clkrt)
  730. {
  731. LOG_D("clk_want: %u, clk_set: %luHz", io_cfg->clock, clk_get_rate(jz_sdio->clock));
  732. }
  733. writel(clkrt, jz_sdio->hw_base + MSC_CLKRT_OFFSET);
  734. if (clk_set > 25000000)
  735. {
  736. lpm = (0x2 << LPM_DRV_SEL_SHF) | LPM_SMP_SEL;
  737. }
  738. if(jz_sdio->sdio_clk)
  739. {
  740. writel(lpm, jz_sdio->hw_base + MSC_LPM_OFFSET);
  741. writel(MSC_CTRL_CLOCK_START, jz_sdio->hw_base + MSC_CTRL_OFFSET);
  742. }
  743. else
  744. {
  745. lpm |= LPM_LPM;
  746. writel(lpm, jz_sdio->hw_base + MSC_LPM_OFFSET);
  747. }
  748. }
  749. else
  750. {
  751. jzmmc_clk_autoctrl(jz_sdio, 0);
  752. }
  753. /* maybe switch power to the card */
  754. switch (io_cfg->power_mode)
  755. {
  756. case MMCSD_POWER_OFF:
  757. LOG_D("MMCSD_POWER_OFF\r");
  758. break;
  759. case MMCSD_POWER_UP:
  760. LOG_D("MMCSD_POWER_UP\r");
  761. break;
  762. case MMCSD_POWER_ON:
  763. LOG_D("MMCSD_POWER_ON\r");
  764. jzmmc_hardware_init(jz_sdio);
  765. // jz_mmc_set_clock(jz_sdio, io_cfg->clock);
  766. break;
  767. default:
  768. LOG_D("unknown power_mode %d", io_cfg->power_mode);
  769. break;
  770. }
  771. }
  772. static rt_int32_t jzmmc_sdio_detect(struct rt_mmcsd_host *host)
  773. {
  774. LOG_D("jz47xx_SD_Detect");
  775. return 0;
  776. }
  777. static void jzmmc_sdio_enable_sdio_irq(struct rt_mmcsd_host *host,
  778. rt_int32_t enable)
  779. {
  780. LOG_D("jz47xx_sdio_enable_sdio_irq, enable:%d", enable);
  781. }
  782. static const struct rt_mmcsd_host_ops ops =
  783. {
  784. jzmmc_sdio_request,
  785. jzmmc_sdio_set_iocfg,
  786. jzmmc_sdio_detect,
  787. jzmmc_sdio_enable_sdio_irq,
  788. };
  789. int jzmmc_sdio_init(void)
  790. {
  791. struct rt_mmcsd_host *host = RT_NULL;
  792. struct jzmmc_host *jz_host = RT_NULL;
  793. #ifdef RT_USING_MSC0
  794. host = mmcsd_alloc_host();
  795. jz_host = rt_malloc_align(sizeof(struct jzmmc_host), 32);
  796. if(!(host && jz_host))
  797. {
  798. goto err;
  799. }
  800. rt_memset(jz_host, 0, sizeof(struct jzmmc_host));
  801. /* set hardware base firstly */
  802. jz_host->hw_base = MSC0_BASE;
  803. jz_host->clock = clk_get("cgu_msc0");
  804. jz_host->clock_gate = clk_get("msc0");
  805. #ifdef DMA_BUFFER
  806. jz_host->_dma_buffer = _dma_buffer_0;
  807. #endif
  808. /* init GPIO (msc0 boot)
  809. * name pin fun
  810. * X1000 MSC0_D0: PA23 1
  811. * X1000 MSC0_D1: PA22 1
  812. * X1000 MSC0_D2: PA21 1
  813. * X1000 MSC0_D3: PA20 1
  814. * X1000 MSC0_CMD: PA25 1
  815. * X1000 MSC0_CLK: PA24 1
  816. */
  817. {
  818. gpio_set_func(GPIO_PORT_A, GPIO_Pin_20, GPIO_FUNC_1);
  819. gpio_set_func(GPIO_PORT_A, GPIO_Pin_21, GPIO_FUNC_1);
  820. gpio_set_func(GPIO_PORT_A, GPIO_Pin_22, GPIO_FUNC_1);
  821. gpio_set_func(GPIO_PORT_A, GPIO_Pin_23, GPIO_FUNC_1);
  822. gpio_set_func(GPIO_PORT_A, GPIO_Pin_24, GPIO_FUNC_1);
  823. gpio_set_func(GPIO_PORT_A, GPIO_Pin_25, GPIO_FUNC_1);
  824. }
  825. /* enable MSC0 clock gate. */
  826. clk_enable(jz_host->clock_gate);
  827. jz_host->msc_clock = 25UL * 1000 * 1000; /* 25Mhz */
  828. host->freq_min = 400 * 1000; /* min 400Khz. */
  829. host->freq_max = 25 * 1000 * 1000; /* max 25Mhz. */
  830. // jz_host->msc_clock = 400 * 1000; /* 25Mhz */
  831. // host->freq_min = 400 * 1000; /* min 400Khz. */
  832. // host->freq_max = 400 * 1000; /* max 25Mhz. */
  833. /* set clock */
  834. clk_set_rate(jz_host->clock, 50000000);
  835. host->ops = &ops;
  836. host->valid_ocr = VDD_27_28 | VDD_28_29 | VDD_29_30 | VDD_30_31 | VDD_31_32 |
  837. VDD_32_33 | VDD_33_34 | VDD_34_35 | VDD_35_36;
  838. // host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ | MMCSD_SUP_HIGHSPEED;
  839. host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ | MMCSD_SUP_HIGHSPEED;
  840. host->max_seg_size = 65535;
  841. host->max_dma_segs = 2;
  842. host->max_blk_size = 512;
  843. host->max_blk_count = 4096;
  844. host->private_data = jz_host;
  845. jz_host->host = host;
  846. jz_host->irqno = IRQ_MSC0;
  847. rt_hw_interrupt_install(jz_host->irqno, jzmmc_isr, jz_host, "msc0");
  848. rt_hw_interrupt_mask(jz_host->irqno);
  849. mmcsd_change(host);
  850. #endif // RT_USING_MSC0
  851. #ifdef RT_USING_MSC1
  852. host = mmcsd_alloc_host();
  853. jz_host = rt_malloc(sizeof(struct jzmmc_host));
  854. if(!(host && jz_host))
  855. {
  856. goto err;
  857. }
  858. jz_host1 = jz_host; // for debug
  859. rt_memset(jz_host, 0, sizeof(struct jzmmc_host));
  860. jz_host->hw_base = MSC1_BASE;
  861. jz_host->clock = clk_get("cgu_msc1");
  862. jz_host->clock_gate = clk_get("msc1");
  863. #ifdef DMA_BUFFER
  864. jz_host->_dma_buffer = _dma_buffer_1;
  865. #endif
  866. /* init GPIO (paladin msc1 SDIO wifi)
  867. * name pin fun
  868. * X1000 MSC1_D0: PC02 0
  869. * X1000 MSC1_D1: PC03 0
  870. * X1000 MSC1_D2: PC04 0
  871. * X1000 MSC1_D3: PC05 0
  872. * X1000 MSC1_CMD: PC01 0
  873. * X1000 MSC1_CLK: PC00 0
  874. *
  875. */
  876. {
  877. gpio_set_func(GPIO_PORT_C, GPIO_Pin_0, GPIO_FUNC_0);
  878. gpio_set_func(GPIO_PORT_C, GPIO_Pin_1, GPIO_FUNC_0);
  879. gpio_set_func(GPIO_PORT_C, GPIO_Pin_2, GPIO_FUNC_0);
  880. gpio_set_func(GPIO_PORT_C, GPIO_Pin_3, GPIO_FUNC_0);
  881. gpio_set_func(GPIO_PORT_C, GPIO_Pin_4, GPIO_FUNC_0);
  882. gpio_set_func(GPIO_PORT_C, GPIO_Pin_5, GPIO_FUNC_0);
  883. }
  884. /* enable MSC1 clock gate. */
  885. clk_enable(jz_host->clock_gate);
  886. jz_host->msc_clock = 25UL * 1000 * 1000; /* 25Mhz */
  887. host->freq_min = 400 * 1000; /* min 400Khz. */
  888. host->freq_max = 25 * 1000 * 1000; /* max 25Mhz. */
  889. /* set clock */
  890. clk_set_rate(jz_host->clock, BOARD_EXTAL_CLK);
  891. host->ops = &ops;
  892. host->valid_ocr = VDD_27_28 | VDD_28_29 | VDD_29_30 | VDD_30_31 | VDD_31_32 |
  893. VDD_32_33 | VDD_33_34 | VDD_34_35 | VDD_35_36;
  894. host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ | MMCSD_SUP_HIGHSPEED;
  895. host->max_seg_size = 65535;
  896. host->max_dma_segs = 2;
  897. host->max_blk_size = 512;
  898. host->max_blk_count = 4096;
  899. host->private_data = jz_host;
  900. jz_host->host = host;
  901. jz_host->irqno = IRQ_MSC1;
  902. rt_hw_interrupt_install(jz_host->irqno, jzmmc_isr, jz_host, "msc1");
  903. rt_hw_interrupt_mask(jz_host->irqno);
  904. mmcsd_change(host);
  905. #endif // RT_USING_MSC1
  906. return RT_EOK;
  907. err:
  908. if(host)
  909. {
  910. mmcsd_free_host(host);
  911. }
  912. if(jz_host)
  913. {
  914. rt_free(jz_host);
  915. }
  916. return -RT_ENOMEM;
  917. }
  918. INIT_DEVICE_EXPORT(jzmmc_sdio_init);
  919. #include <finsh.h>
  920. int msc_status(void)
  921. {
  922. uint32_t value;
  923. if (jz_host1)
  924. {
  925. value = msc_readl(jz_host1, MSC_STAT_OFFSET);
  926. rt_kprintf("status: 0x%08x\n", value);
  927. value = msc_readl(jz_host1, MSC_IMASK_OFFSET);
  928. rt_kprintf("mask : 0x%08x -> 0x%08x\n", value, ~value);
  929. value = msc_readl(jz_host1, MSC_IREG_OFFSET);
  930. rt_kprintf("iflag : 0x%08x\n", value);
  931. rt_kprintf("dma : nda 0x%08x, da 0x%08x, len 0x%04x, cmd 0x%08x\n", msc_readl(jz_host1, MSC_DMANDA_OFFSET),
  932. msc_readl(jz_host1, MSC_DMADA_OFFSET),
  933. msc_readl(jz_host1, MSC_DMALEN_OFFSET),
  934. msc_readl(jz_host1, MSC_DMACMD_OFFSET));
  935. rt_kprintf("clock : %s\n", (stopping_clock == 1)? "stopping" : "none stopping");
  936. }
  937. return 0;
  938. }
  939. MSH_CMD_EXPORT(msc_status, dump msc status);
  940. int msc_log(int argc, char** argv)
  941. {
  942. if (argc == 2)
  943. sdio_log = atoi(argv[1]);
  944. return 0;
  945. }
  946. MSH_CMD_EXPORT(msc_log, set msc log enable);