nand.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*
  2. * File : nand.h
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2011-05-25 Bernard first version
  13. */
  14. #include "nand.h"
  15. #include "mb9bf506r.h"
  16. /*
  17. * NandFlash driver for SamSung K9F5608
  18. * 32M x 8bit
  19. */
  20. #define PAGE_SIZE 512
  21. #define PAGE_PER_BLOCK 32
  22. #define BLOCK_NUM 2048
  23. /* device driver debug trace */
  24. /* #define NAND_DEBUG */
  25. #ifdef NAND_DEBUG
  26. #define trace_log rt_kprintf
  27. #else
  28. #define trace_log(...)
  29. #endif
  30. /*
  31. * OOB,
  32. * when block has been erased, OOB is 0xff.
  33. * when block has been written, OOB is 0x00.
  34. */
  35. struct rt_device_nand
  36. {
  37. struct rt_device parent; /* which is inherited from rt_device */
  38. rt_uint16_t block_num; /* total block number in device */
  39. rt_uint16_t page_per_block; /* pages in one block */
  40. rt_uint16_t page_size; /* page size */
  41. /* this buffer which used as to save data before erase block */
  42. rt_uint8_t block_buffer[PAGE_SIZE * PAGE_PER_BLOCK];
  43. };
  44. static struct rt_device_nand _nand;
  45. /* Flash operation definition */
  46. #define NF_CMD(cmd) {*(volatile unsigned char*)(NF_FLASH_BASE_ADDR+NF_CMD_OFFSET) = (unsigned char)(cmd);}
  47. #define NF_ADDR(addr) {*(volatile unsigned char*)(NF_FLASH_BASE_ADDR+NF_ADDR_OFFSET)= (unsigned char)(addr);}
  48. #define NF_RDDATA() (*(volatile unsigned char*)(NF_FLASH_BASE_ADDR+NF_DATA_OFFSET))
  49. #define NF_WRDATA(data) {*(volatile unsigned char*)(NF_FLASH_BASE_ADDR+NF_DATA_OFFSET)= (unsigned char)(data);}
  50. #define NF_CLR_ALE() {*(volatile unsigned char*)(NF_FLASH_BASE_ADDR+NF_ALE_OFFSET) = (unsigned char)0;}
  51. /* Flash Control IO definition */
  52. #define NF_OE_H() {IO_NF_PDOR |= NF_EN;}
  53. #define NF_OE_L() {IO_NF_PDOR &= ~NF_EN;}
  54. #define NF_DATA_OUT() {IO_NF_PDOR &= ~NF_DATA_DIR;}
  55. #define NF_DATA_IN() {IO_NF_PDOR |= NF_DATA_DIR;}
  56. static unsigned char NF_ReadStatus(void);
  57. static void Wait(unsigned int cnt);
  58. static void NF_Reset(void);
  59. static void Wait(unsigned int cnt)
  60. {
  61. while(cnt--);
  62. }
  63. static void NF_Reset(void)
  64. {
  65. NF_OE_L();
  66. NF_DATA_OUT();
  67. NF_CMD(NAND_CMD_RESET);
  68. NF_OE_H();
  69. Wait(10000); /* wait for Trst */
  70. }
  71. static unsigned char NF_ReadStatus(void)
  72. {
  73. unsigned int timeout=0;
  74. NF_DATA_OUT();
  75. NF_CMD(NAND_CMD_STATUS);
  76. NF_DATA_IN();
  77. while(!(NF_RDDATA() & 0x40))
  78. {
  79. timeout++;
  80. if(timeout == 0x00080000)
  81. return FLASH_NG;
  82. }
  83. if(NF_RDDATA() & 0x01)return FLASH_NG;
  84. return FLASH_OK;
  85. }
  86. /*
  87. * @ Funciton: NF_Init
  88. * Parameter: None
  89. * Return: None
  90. */
  91. static void NF_Init(void)
  92. {
  93. FM3_GPIO->PFR5 |= (0x7ff); /* D0-D5, CS7, ALE, CLE, WEX, REX */
  94. FM3_GPIO->PFR3 |= (0x3); /* D6-D7 */
  95. FM3_GPIO->EPFR10 |= (1<<13 /* CS enable */
  96. |1<<6 /* ALE, CLE, WEX, REX enable */
  97. |1<<0); /* D0-D7 enable */
  98. FM3_EXBUS->AREA7 = 0x001f00e0; /* Select CS7 area, 32Mbyte size */
  99. FM3_EXBUS->MODE7 |= (1<<4); /* Nand Flash mode turn on, set 8 bit width */
  100. IO_NF_PFR = IO_NF_PFR & ~(NF_EN|NF_DATA_DIR);
  101. IO_NF_DDR = IO_NF_DDR | (NF_EN|NF_DATA_DIR);
  102. IO_NF_PDOR = IO_NF_PDOR | (NF_EN | NF_DATA_DIR); /* disable Flash operation */
  103. /*Reset NAND*/
  104. NF_Reset();
  105. }
  106. static void NF_UnInit(void)
  107. {
  108. FM3_GPIO->PFR5 &= ~(0x7ff); /* disable D0-D5, CS7, ALE, CLE, WEX, REX */
  109. FM3_GPIO->PFR3 &= ~(0x3); /* disable D6-D7 */
  110. FM3_GPIO->EPFR10 &= ~(1<<13 /* disable CS enable */
  111. |1<<6 /* disable ALE, CLE, WEX, REX enable */
  112. |1<<0); /* disable D0-D7 enable */
  113. FM3_EXBUS->MODE7 &= ~(1<<4);
  114. IO_NF_PFR = IO_NF_PFR & ~(NF_EN|NF_DATA_DIR);
  115. IO_NF_DDR = IO_NF_DDR | (NF_EN|NF_DATA_DIR);
  116. IO_NF_PDOR = IO_NF_PDOR | (NF_EN | NF_DATA_DIR); /* disable Flash operation */
  117. }
  118. /*
  119. * @ Funciton: NF_ReadPage
  120. * Parameter: block (max: 2048)
  121. * page (max:32)
  122. * buffer: pointer to data buffer
  123. * Return: 0: Flash Operation OK
  124. * 1: Flash Operation NG
  125. */
  126. int NF_ReadPage(unsigned int block, unsigned int page, unsigned char *buffer,
  127. unsigned char *oob)
  128. {
  129. unsigned int blockPage,i;
  130. NF_Init();
  131. blockPage=(block<<5)+page; /* 1 block=32 page */
  132. NF_OE_L();
  133. NF_DATA_OUT();
  134. if (buffer != RT_NULL)
  135. {
  136. volatile unsigned char ch;
  137. NF_CMD(NAND_CMD_READ0); /* send read data */
  138. NF_ADDR(0);
  139. NF_ADDR(blockPage & 0xff);
  140. NF_ADDR((blockPage>>8) & 0xff); /* send 3 byte address */
  141. NF_CLR_ALE();
  142. NF_DATA_IN();
  143. Wait(500);
  144. for(i=0;i<512;i++) /* read 512 bytes data */
  145. buffer[i] = NF_RDDATA();
  146. for(i=0;i<16;i++) /* read 16 bytes oob */
  147. if (oob != RT_NULL)
  148. oob[i] = NF_RDDATA();
  149. else
  150. ch = NF_RDDATA();
  151. }
  152. else
  153. {
  154. NF_CMD(NAND_CMD_READOOB); /* send read data */
  155. NF_ADDR(0);
  156. NF_ADDR(blockPage & 0xff);
  157. NF_ADDR((blockPage>>8) & 0xff); /* send 3 byte address */
  158. NF_CLR_ALE();
  159. NF_DATA_IN();
  160. Wait(500);
  161. for (i=0; i<16; i++) /* read 16 bytes oob */
  162. oob[i] = NF_RDDATA();
  163. }
  164. NF_OE_H();
  165. NF_UnInit();
  166. return 0;
  167. }
  168. /*
  169. * @ Funciton: NF_EraseBlock
  170. * Parameter: block (max: 2048)
  171. * Return: 0: Flash Operation OK
  172. * 1: Flash Operation NG
  173. */
  174. int NF_EraseBlock(unsigned int block)
  175. {
  176. rt_uint32_t blockPage;
  177. trace_log("Erase block %d: ", block);
  178. NF_Init();
  179. blockPage = (block << 5);
  180. NF_OE_L();
  181. NF_DATA_OUT();
  182. NF_CMD(NAND_CMD_ERASE1); /* send erase command */
  183. NF_ADDR(blockPage & 0xff);
  184. NF_ADDR((blockPage >> 8) & 0xff);
  185. NF_CMD(NAND_CMD_ERASE2); /* start erase */
  186. if(NF_ReadStatus())
  187. {
  188. NF_Reset();
  189. NF_OE_H();
  190. NF_UnInit();
  191. trace_log("Failed\n");
  192. rt_kprintf("erase block failed\n");
  193. return FLASH_NG;
  194. }
  195. NF_OE_H();
  196. NF_UnInit();
  197. trace_log("OK\n");
  198. return FLASH_OK;
  199. }
  200. /*
  201. * @ Funciton: NF_WritePage
  202. * Parameter: block (max: 2048)
  203. * page (max:32)
  204. * buffer: pointer to data buffer
  205. * Return: 0: Flash Operation OK
  206. * 1: Flash Operation NG
  207. */
  208. int NF_WritePage(unsigned block, unsigned page, const rt_uint8_t *buffer)
  209. {
  210. unsigned int blockPage,i;
  211. unsigned char se[16] = {0};
  212. unsigned char data;
  213. blockPage = (block<<5)+page;
  214. NF_Init();
  215. NF_OE_L();
  216. NF_DATA_OUT();
  217. NF_CMD(0x00); /* set programming area */
  218. NF_CMD(NAND_CMD_SEQIN); /* send write command */
  219. NF_ADDR(0);
  220. NF_ADDR(blockPage & 0xff);
  221. NF_ADDR((blockPage>>8) & 0xff);
  222. NF_CLR_ALE();
  223. for(i=0;i<512;i++) NF_WRDATA(buffer[i]); /* write data */
  224. for(i=0;i<16;i++) NF_WRDATA(se[i]); /* dummy write */
  225. NF_CMD(NAND_CMD_PAGEPROG); /* start programming */
  226. if(NF_ReadStatus())
  227. {
  228. NF_Reset();
  229. NF_OE_H();
  230. NF_UnInit();
  231. trace_log("write failed\n");
  232. return FLASH_NG;
  233. }
  234. /* verify the write data */
  235. NF_DATA_OUT();
  236. NF_CMD(NAND_CMD_READ0); /* send read command */
  237. NF_ADDR(0);
  238. NF_ADDR(blockPage & 0xff);
  239. NF_ADDR((blockPage>>8) & 0xff);
  240. NF_CLR_ALE();
  241. NF_DATA_IN();
  242. Wait(500);
  243. for(i=0; i<512; i++)
  244. {
  245. data=NF_RDDATA(); /* verify 1-512 byte */
  246. if(data != buffer[i])
  247. {
  248. trace_log("block %d, page %d\n", block , page);
  249. trace_log("write data failed[%d]: %02x %02x\n", i, data, buffer[i]);
  250. NF_Reset();
  251. NF_OE_H();
  252. NF_UnInit();
  253. return FLASH_NG;
  254. }
  255. }
  256. for(i=0; i<16; i++)
  257. {
  258. data=NF_RDDATA(); /* verify 16 byte dummy data */
  259. if(data != se[i])
  260. {
  261. trace_log("block %d, page %d\n", block , page);
  262. trace_log("write oob failed[%d]: %02x %02x\n", i, data, se[i]);
  263. NF_Reset();
  264. NF_OE_H();
  265. NF_UnInit();
  266. return FLASH_NG;
  267. }
  268. }
  269. NF_OE_H();
  270. NF_UnInit();
  271. return FLASH_OK;
  272. }
  273. /*
  274. * @ Funciton: NF_ReadID
  275. * Parameter: id: pointer to device ID
  276. * Return: None
  277. */
  278. void NF_ReadID(unsigned char *id)
  279. {
  280. unsigned char maker_code;
  281. NF_Init();
  282. NF_OE_L();
  283. NF_DATA_OUT();
  284. NF_CMD(NAND_CMD_READID);
  285. NF_ADDR(0x00);
  286. NF_CLR_ALE();
  287. Wait(10);
  288. NF_DATA_IN();
  289. maker_code = NF_RDDATA();
  290. maker_code = maker_code;
  291. *id = NF_RDDATA();
  292. NF_OE_H();
  293. NF_UnInit();
  294. }
  295. static rt_err_t rt_nand_init (rt_device_t dev)
  296. {
  297. /* empty implementation */
  298. return RT_EOK;
  299. }
  300. static rt_err_t rt_nand_open(rt_device_t dev, rt_uint16_t oflag)
  301. {
  302. /* empty implementation */
  303. return RT_EOK;
  304. }
  305. static rt_err_t rt_nand_close(rt_device_t dev)
  306. {
  307. /* empty implementation */
  308. return RT_EOK;
  309. }
  310. /* nand device read */
  311. static rt_size_t rt_nand_read (rt_device_t dev, rt_off_t pos, void* buffer,
  312. rt_size_t size)
  313. {
  314. rt_ubase_t block; /* block of position */
  315. rt_ubase_t page, index; /* page in block of position */
  316. rt_uint8_t *page_ptr, oob[16];
  317. struct rt_device_nand *nand;
  318. /* get nand device */
  319. nand = (struct rt_device_nand*) dev;
  320. RT_ASSERT(nand != RT_NULL);
  321. /* get block and page */
  322. block = pos / nand->page_per_block;
  323. page = pos % nand->page_per_block;
  324. trace_log("nand read: position %d, block %d, page %d, size %d\n",
  325. pos, block, page, size);
  326. /* set page buffer pointer */
  327. page_ptr = (rt_uint8_t*) buffer;
  328. for (index = 0; index < size; index ++)
  329. {
  330. NF_ReadPage(block, page + index, page_ptr, oob);
  331. page_ptr += nand->page_size;
  332. if (page + index > nand->page_per_block)
  333. {
  334. block += 1;
  335. page = 0;
  336. }
  337. }
  338. /* return read size (count of block) */
  339. return size;
  340. }
  341. /*
  342. * write pages by erase block first
  343. * @param nand the nand device driver
  344. * @param block the block of page
  345. * @param page the page
  346. * @param buffer the data buffer to be written
  347. * @param pages the number of pages to be written
  348. */
  349. static int rt_nand_eraseblock_writepage(struct rt_device_nand* nand,
  350. rt_ubase_t block, rt_ubase_t page,
  351. const rt_uint8_t *buffer, rt_ubase_t pages)
  352. {
  353. rt_ubase_t index;
  354. rt_uint32_t page_status;
  355. rt_uint8_t *page_ptr, oob[16];
  356. /* set page status */
  357. page_status = 0;
  358. /* read each page in block */
  359. page_ptr = nand->block_buffer;
  360. for (index = 0; index < nand->page_per_block; index ++)
  361. {
  362. NF_ReadPage(block, index, page_ptr, oob);
  363. if (!oob[0])
  364. page_status |= (1 << index);
  365. page_ptr += nand->page_size;
  366. }
  367. /* erase block */
  368. NF_EraseBlock(block);
  369. page_ptr = &(nand->block_buffer[page * nand->page_size]);
  370. /* merge buffer to page buffer */
  371. for (index = 0; index < pages; index ++)
  372. {
  373. rt_memcpy(page_ptr, buffer, nand->page_size);
  374. /* set page status */
  375. page_status |= (1 << (page + index));
  376. /* move to next page */
  377. page_ptr += nand->page_size;
  378. buffer += nand->page_size;
  379. }
  380. /* write to flash */
  381. page_ptr = nand->block_buffer;
  382. for (index = 0; index < nand->page_per_block; index ++)
  383. {
  384. if (page_status & (1 << index))
  385. NF_WritePage(block, index, page_ptr);
  386. /* move to next page */
  387. page_ptr += nand->page_size;
  388. }
  389. return 0;
  390. }
  391. /* nand device write */
  392. static rt_size_t rt_nand_write (rt_device_t dev, rt_off_t pos,
  393. const void* buffer, rt_size_t size)
  394. {
  395. rt_ubase_t block, page;
  396. rt_uint8_t oob[16];
  397. struct rt_device_nand *nand;
  398. nand = (struct rt_device_nand*) dev;
  399. RT_ASSERT(nand != RT_NULL);
  400. /* get block and page */
  401. block = pos / nand->page_per_block;
  402. page = pos % nand->page_per_block;
  403. trace_log("nand write: position %d, block %d, page %d, size %d\n",
  404. pos, block, page, size);
  405. if (size == 1)
  406. {
  407. /* write one page */
  408. /* read oob to get page status */
  409. NF_ReadPage(block, page, RT_NULL, oob);
  410. if (oob[0])
  411. NF_WritePage(block, page, buffer);
  412. else
  413. /* erase block and then write page */
  414. rt_nand_eraseblock_writepage(nand, block, page, buffer, 1);
  415. }
  416. else if (size > 1)
  417. {
  418. rt_ubase_t index;
  419. rt_ubase_t need_erase_block;
  420. const rt_uint8_t *page_ptr;
  421. rt_ubase_t chunk_pages, pages;
  422. pages = size;
  423. page_ptr = (const rt_uint8_t*) buffer;
  424. do
  425. {
  426. need_erase_block = 0;
  427. /* calculate pages in current chunk */
  428. if (pages > nand->page_per_block - page)
  429. chunk_pages = nand->page_per_block - page;
  430. else
  431. chunk_pages = pages;
  432. /* get page status in current block */
  433. for (index = page; index < page + chunk_pages; index ++)
  434. {
  435. NF_ReadPage(block, index, RT_NULL, oob);
  436. if (!oob[0])
  437. {
  438. /* this page has data, need erase this block firstly */
  439. need_erase_block = 1;
  440. break;
  441. }
  442. }
  443. if (need_erase_block)
  444. {
  445. /* erase block and then write it */
  446. rt_nand_eraseblock_writepage(nand, block, page, page_ptr, chunk_pages);
  447. page_ptr += chunk_pages * nand->page_size;
  448. }
  449. else
  450. {
  451. /* write pages directly */
  452. for (index = page; index < page + chunk_pages; index ++)
  453. {
  454. NF_WritePage(block, index, page_ptr);
  455. page_ptr += nand->page_size;
  456. }
  457. }
  458. pages -= chunk_pages;
  459. page = 0; block ++; /* move to next block */
  460. }
  461. while (pages);
  462. }
  463. return size;
  464. }
  465. static rt_err_t rt_nand_control (rt_device_t dev, int cmd, void *args)
  466. {
  467. struct rt_device_nand *nand;
  468. nand = (struct rt_device_nand*) dev;
  469. RT_ASSERT(dev != RT_NULL);
  470. switch (cmd)
  471. {
  472. case RT_DEVICE_CTRL_BLK_GETGEOME:
  473. {
  474. struct rt_device_blk_geometry *geometry;
  475. geometry = (struct rt_device_blk_geometry *)args;
  476. if (geometry == RT_NULL) return -RT_ERROR;
  477. geometry->bytes_per_sector = nand->page_size;
  478. geometry->block_size = nand->page_size * nand->page_per_block;
  479. geometry->sector_count = nand->block_num * nand->page_per_block;
  480. }
  481. break;
  482. }
  483. return RT_EOK;
  484. }
  485. void rt_hw_nand_init(void)
  486. {
  487. /* initialize nand flash structure */
  488. _nand.block_num = BLOCK_NUM;
  489. _nand.page_per_block = PAGE_PER_BLOCK;
  490. _nand.page_size = PAGE_SIZE;
  491. rt_memset(_nand.block_buffer, 0, sizeof(_nand.block_buffer));
  492. _nand.parent.type = RT_Device_Class_MTD;
  493. _nand.parent.rx_indicate = RT_NULL;
  494. _nand.parent.tx_complete = RT_NULL;
  495. _nand.parent.init = rt_nand_init;
  496. _nand.parent.open = rt_nand_open;
  497. _nand.parent.close = rt_nand_close;
  498. _nand.parent.read = rt_nand_read;
  499. _nand.parent.write = rt_nand_write;
  500. _nand.parent.control = rt_nand_control;
  501. /* register a MTD device */
  502. rt_device_register(&(_nand.parent), "nand", RT_DEVICE_FLAG_RDWR);
  503. }
  504. #ifdef NAND_DEBUG
  505. #include <finsh.h>
  506. unsigned char nand_buffer[512];
  507. unsigned char nand_oob[16];
  508. void dump_mem(unsigned char* buffer, int length)
  509. {
  510. int i;
  511. if (length > 64) length = 64;
  512. for (i = 0; i < length; i ++)
  513. {
  514. rt_kprintf("%02x ", *buffer++);
  515. if (((i+1) % 16) == 0)
  516. rt_kprintf("\n");
  517. }
  518. rt_kprintf("\n");
  519. }
  520. void nand_read(int block, int page)
  521. {
  522. rt_kprintf("read block %d, page %d\n", block, page);
  523. NF_ReadPage(block, page, nand_buffer, nand_oob);
  524. rt_kprintf("page data:\n");
  525. dump_mem(nand_buffer, 512);
  526. rt_kprintf("oob data:\n");
  527. dump_mem(nand_oob, 16);
  528. }
  529. FINSH_FUNCTION_EXPORT_ALIAS(nand_read, read_page, read page[block/page]);
  530. void nand_write(int block, int page)
  531. {
  532. int i;
  533. for (i = 0; i < 512; i ++)
  534. nand_buffer[i] = i;
  535. NF_WritePage(block, page, nand_buffer);
  536. }
  537. FINSH_FUNCTION_EXPORT_ALIAS(nand_write, write_page, write page[block/page]);
  538. void nand_erase(int block)
  539. {
  540. NF_EraseBlock(block);
  541. }
  542. FINSH_FUNCTION_EXPORT_ALIAS(nand_erase, erase_block, erase block[block]);
  543. void nand_readoob(int block, int page)
  544. {
  545. rt_kprintf("read oob on block %d, page %d\n", block, page);
  546. NF_ReadPage(block, page, RT_NULL, (unsigned char*)nand_oob);
  547. rt_kprintf("oob data:\n");
  548. dump_mem(nand_oob, 16);
  549. }
  550. FINSH_FUNCTION_EXPORT_ALIAS(nand_readoob, readoob, read oob[block/page]);
  551. void nand_erase_chip()
  552. {
  553. int i;
  554. unsigned char id;
  555. NF_ReadID(&id);
  556. rt_kprintf("id: %02x\n", id);
  557. for (i = 0; i < 2048; i ++)
  558. {
  559. NF_EraseBlock(i);
  560. }
  561. }
  562. FINSH_FUNCTION_EXPORT_ALIAS(nand_erase_chip, erase_chip, erase whole chip);
  563. #endif