drv_eth.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. /*
  2. * File : application.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2017-06-08 tanek first implementation
  13. */
  14. #include <rtthread.h>
  15. #include "board.h"
  16. #include <rtdevice.h>
  17. #ifdef RT_USING_FINSH
  18. #include <finsh.h>
  19. #endif
  20. #ifdef RT_USING_LWIP
  21. #include <netif/ethernetif.h>
  22. #include "lwipopts.h"
  23. /* debug option */
  24. //#define DEBUG
  25. //#define ETH_RX_DUMP
  26. //#define ETH_TX_DUMP
  27. #ifdef DEBUG
  28. #define STM32_ETH_PRINTF rt_kprintf
  29. #else
  30. #define STM32_ETH_PRINTF(...)
  31. #endif
  32. #define MAX_ADDR_LEN 6
  33. #define DM9161_PHY_ADDRESS 0x01U
  34. /* DP83848C and DM9161 PHY Registers is the same */
  35. #define PHY_REG_BMCR 0x00 /* Basic Mode Control Register */
  36. #define PHY_REG_BMSR 0x01 /* Basic Mode Status Register */
  37. #define PHY_REG_IDR1 0x02 /* PHY Identifier 1 */
  38. #define PHY_REG_IDR2 0x03 /* PHY Identifier 2 */
  39. #define PHY_REG_ANAR 0x04 /* Auto-Negotiation Advertisement */
  40. #define PHY_REG_ANLPAR 0x05 /* Auto-Neg. Link Partner Abitily */
  41. #define PHY_REG_ANER 0x06 /* Auto-Neg. Expansion Register */
  42. #define PHY_REG_ANNPTR 0x07 /* Auto-Neg. Next Page TX .DM9161 NO */
  43. /* PHY Extended Registers only for DP83848C */
  44. #define PHY_REG_STS 0x10 /* Status Register */
  45. #define PHY_REG_MICR 0x11 /* MII Interrupt Control Register */
  46. #define PHY_REG_MISR 0x12 /* MII Interrupt Status Register */
  47. #define PHY_REG_FCSCR 0x14 /* False Carrier Sense Counter */
  48. #define PHY_REG_RECR 0x15 /* Receive Error Counter */
  49. #define PHY_REG_PCSR 0x16 /* PCS Sublayer Config. and Status */
  50. #define PHY_REG_RBR 0x17 /* RMII and Bypass Register */
  51. #define PHY_REG_LEDCR 0x18 /* LED Direct Control Register */
  52. #define PHY_REG_PHYCR 0x19 /* PHY Control Register */
  53. #define PHY_REG_10BTSCR 0x1A /* 10Base-T Status/Control Register */
  54. #define PHY_REG_CDCTRL1 0x1B /* CD Test Control and BIST Extens. */
  55. #define PHY_REG_EDCR 0x1D /* Energy Detect Control Register */
  56. /* PHY Extended Registers only for DM9161 */
  57. #define PHY_REG_DSCR 0x10 /* Specified Congfiguration Register */
  58. #define PHY_REG_DSCSR 0x11 /* Specified Congfiguration and Status Register */
  59. #define PHY_REG_10BTCSR 0x12 /* 10Base-T Status/Control Register */
  60. #define PHY_REG_PWDOR 0x13 /* Power Down Control Register */
  61. #define PHY_REG_CONGFIG 0x14 /* Specified Congfig Register */
  62. #define PHY_REG_INTERRUPT 0x15 /* Specified interrupt Register */
  63. #define PHY_REG_SRECR 0x16 /* Specified Receive Error Counter */
  64. #define PHY_REG_DISCR 0x17 /* Specified Disconnect Counter Register */
  65. #define PHY_REG_RLSR 0x18 /* Hardware reset latch state Register */
  66. #define PHY_REG_PSCR 0x1D /* Power Saving control register */
  67. /* Register BMCR bit defination */
  68. #define PHY_BMCR_FULLD_100M 0x2100 /* Full Duplex 100Mbit */
  69. #define PHY_BMCR_HALFD_100M 0x2000 /* Half Duplex 100Mbit */
  70. #define PHY_BMCR_FULLD_10M 0x0100 /* Full Duplex 10Mbit */
  71. #define PHY_BMCR_HALFD_10M 0x0000 /* Half Duplex 10MBit */
  72. #define PHY_BMCR_AUTO_NEG 0x1000 /* Select Auto Negotiation */
  73. #define PHY_BMCR_RESET ((uint16_t)0x8000U) /*!< PHY Reset */
  74. #define PHY_BMCR_POWERDOWN ((uint16_t)0x0800U) /*!< Select the power down mode */
  75. #define PHY_BMSR_AUTONEGO_COMPLETE ((uint16_t)0x0020U) /*!< Auto-Negotiation process completed */
  76. #define PHY_BMSR_LINKED_STATUS ((uint16_t)0x0004U) /*!< Valid link established */
  77. #define PHY_DSCSR_100FDX ((uint16_t)0x8000U)
  78. #define PHY_DSCSR_100HDX ((uint16_t)0x4000U)
  79. #define PHY_DSCSR_10FDX ((uint16_t)0x2000U)
  80. #define PHY_DSCSR_10HDX ((uint16_t)0x1000U)
  81. #define PHY_INT_LINK_MASK ((uint16_t)0x0C00U)
  82. #define PHY_INT_LINK_CHANGE ((uint16_t)0x0004U)
  83. struct rt_stm32_eth
  84. {
  85. /* inherit from ethernet device */
  86. struct eth_device parent;
  87. /* interface address info. */
  88. rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
  89. uint32_t ETH_Speed; /*!< @ref ETH_Speed */
  90. uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
  91. };
  92. ALIGN(4) ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB];
  93. ALIGN(4) ETH_DMADescTypeDef DMATxDscrTab[ETH_TXBUFNB];
  94. ALIGN(4) rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE];
  95. ALIGN(4) rt_uint8_t Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
  96. static rt_bool_t tx_is_waiting = RT_FALSE;
  97. static ETH_HandleTypeDef EthHandle;
  98. static struct rt_stm32_eth stm32_eth_device;
  99. static struct rt_semaphore tx_wait;
  100. void HAL_ETH_MspInit(ETH_HandleTypeDef* heth)
  101. {
  102. GPIO_InitTypeDef GPIO_InitStruct;
  103. if(heth->Instance==ETH)
  104. {
  105. /* USER CODE BEGIN ETH_MspInit 0 */
  106. /* USER CODE END ETH_MspInit 0 */
  107. /* Peripheral clock enable */
  108. __HAL_RCC_ETH_CLK_ENABLE();
  109. __HAL_RCC_GPIOA_CLK_ENABLE();
  110. __HAL_RCC_GPIOC_CLK_ENABLE();
  111. __HAL_RCC_GPIOG_CLK_ENABLE();
  112. /**ETH GPIO Configuration
  113. PC1 ------> ETH_MDC
  114. PA1 ------> ETH_REF_CLK
  115. PA2 ------> ETH_MDIO
  116. PA7 ------> ETH_CRS_DV
  117. PC4 ------> ETH_RXD0
  118. PC5 ------> ETH_RXD1
  119. PG11 ------> ETH_TX_EN
  120. PG13 ------> ETH_TXD0
  121. PB13 ------> ETH_TXD1
  122. */
  123. GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7;
  124. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  125. GPIO_InitStruct.Pull = GPIO_NOPULL;
  126. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  127. GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
  128. HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  129. GPIO_InitStruct.Pin = GPIO_PIN_13;
  130. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  131. GPIO_InitStruct.Pull = GPIO_NOPULL;
  132. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  133. GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
  134. HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
  135. GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5;
  136. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  137. GPIO_InitStruct.Pull = GPIO_NOPULL;
  138. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  139. GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
  140. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  141. GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_13;
  142. GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  143. GPIO_InitStruct.Pull = GPIO_NOPULL;
  144. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  145. GPIO_InitStruct.Alternate = GPIO_AF11_ETH;
  146. HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
  147. /* ETH interrupt Init */
  148. HAL_NVIC_SetPriority(ETH_IRQn, 1, 0);
  149. HAL_NVIC_EnableIRQ(ETH_IRQn);
  150. }
  151. }
  152. /* interrupt service routine */
  153. void ETH_IRQHandler(void)
  154. {
  155. /* enter interrupt */
  156. rt_interrupt_enter();
  157. HAL_ETH_IRQHandler(&EthHandle);
  158. /* leave interrupt */
  159. rt_interrupt_leave();
  160. }
  161. void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth)
  162. {
  163. if (tx_is_waiting == RT_TRUE)
  164. {
  165. tx_is_waiting = RT_FALSE;
  166. rt_sem_release(&tx_wait);
  167. }
  168. }
  169. void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
  170. {
  171. rt_err_t result;
  172. result = eth_device_ready(&(stm32_eth_device.parent));
  173. if( result != RT_EOK )
  174. rt_kprintf("RX err =%d\n", result );
  175. }
  176. void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
  177. {
  178. rt_kprintf("eth err\n");
  179. }
  180. /**
  181. * @brief This function handles EXTI line[9:5] interrupts.
  182. */
  183. void EXTI9_5_IRQHandler(void)
  184. {
  185. HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_6);
  186. }
  187. void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
  188. {
  189. uint32_t reg_value = 0;
  190. int i = 10;
  191. if (GPIO_Pin == GPIO_PIN_6)
  192. {
  193. HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_INTERRUPT, &reg_value);
  194. if (reg_value & PHY_INT_LINK_CHANGE)
  195. {
  196. do
  197. {
  198. HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMSR, &reg_value);
  199. if (reg_value & PHY_BMSR_LINKED_STATUS)
  200. {
  201. eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
  202. STM32_ETH_PRINTF("eth phy link up\n");
  203. return ;
  204. }
  205. }
  206. while (i--);
  207. eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
  208. STM32_ETH_PRINTF("eth phy link down\n");
  209. }
  210. }
  211. }
  212. static void phy_register_read(int reg)
  213. {
  214. uint32_t value;
  215. if (reg > 0xFF || reg < 0)
  216. rt_kprintf("reg address error: %d", reg);
  217. HAL_ETH_ReadPHYRegister(&EthHandle, reg, &value);
  218. rt_kprintf("reg: %02X ==> %08X\n", reg, value);
  219. }
  220. #ifdef RT_USING_FINSH
  221. FINSH_FUNCTION_EXPORT_ALIAS(phy_register_read, phyrd, read phy registers);
  222. #endif
  223. static void phy_register_write(rt_uint16_t reg, rt_uint32_t value)
  224. {
  225. if (reg > 0xFF)
  226. rt_kprintf("reg address error: %d", reg);
  227. HAL_ETH_WritePHYRegister(&EthHandle, reg, value);
  228. rt_kprintf("reg: %02X ==> %08X\n", reg, value);
  229. }
  230. #ifdef RT_USING_FINSH
  231. FINSH_FUNCTION_EXPORT_ALIAS(phy_register_write, phywr, write phy registers);
  232. #endif
  233. void eth_link_exit_config(void)
  234. {
  235. GPIO_InitTypeDef GPIO_InitStruct;
  236. __HAL_RCC_GPIOH_CLK_ENABLE();
  237. /*Configure GPIO pin : PH6 */
  238. GPIO_InitStruct.Pin = GPIO_PIN_6;
  239. GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  240. GPIO_InitStruct.Pull = GPIO_NOPULL;
  241. HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
  242. /* EXTI9_5_IRQn interrupt configuration */
  243. HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0);
  244. HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
  245. }
  246. rt_err_t eth_phy_init(void)
  247. {
  248. uint32_t reg_value = 0;
  249. int i, j, k;
  250. HAL_ETH_WritePHYRegister(&EthHandle, PHY_REG_BMCR, PHY_RESET);
  251. for (i = 0x10000; i > 0; i--)
  252. {
  253. HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMCR, &reg_value);
  254. if (!(reg_value & (PHY_BMCR_RESET | PHY_BMCR_POWERDOWN)))
  255. {
  256. STM32_ETH_PRINTF("PHY Reset Finsh\n");
  257. break;
  258. }
  259. }
  260. if (i <= 0)
  261. {
  262. STM32_ETH_PRINTF("PHY Power Up Error: %08X\n", reg_value);
  263. return -RT_ETIMEOUT;
  264. }
  265. HAL_ETH_WritePHYRegister(&EthHandle, PHY_REG_BMCR, PHY_AUTONEGOTIATION);
  266. for (j = 0x10000; j > 0; j--)
  267. {
  268. HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMSR, &reg_value);
  269. if (reg_value & PHY_BMSR_AUTONEGO_COMPLETE)
  270. {
  271. STM32_ETH_PRINTF("Autonegotiation Complete\n");
  272. /* Autonegotiation Complete. */
  273. break;
  274. }
  275. }
  276. if (j <= 0)
  277. {
  278. STM32_ETH_PRINTF("Autonegotiation failed: %08X\n", reg_value);
  279. return -RT_ETIMEOUT;
  280. }
  281. /* Check the link status. */
  282. for (k = 0x10000; k > 0; k--)
  283. {
  284. HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_BMSR, &reg_value);
  285. if (reg_value & PHY_LINKED_STATUS)
  286. {
  287. /* Link */
  288. /* Link is on, get connection info */
  289. HAL_ETH_ReadPHYRegister(&EthHandle, PHY_REG_DSCSR, &reg_value);
  290. if ((reg_value & (PHY_DSCSR_100FDX | PHY_DSCSR_100HDX)))
  291. STM32_ETH_PRINTF("100M ");
  292. else
  293. STM32_ETH_PRINTF("10M ");
  294. if ((reg_value & (PHY_DSCSR_100FDX | PHY_DSCSR_10FDX)))
  295. STM32_ETH_PRINTF("Full");
  296. else
  297. STM32_ETH_PRINTF("Half");
  298. STM32_ETH_PRINTF(" Duplex Operation Mode\n");
  299. break;
  300. }
  301. }
  302. if (k <= 0)
  303. {
  304. STM32_ETH_PRINTF("check link status failed: %08X\n", reg_value);
  305. return -RT_ETIMEOUT;
  306. }
  307. HAL_ETH_WritePHYRegister(&EthHandle, PHY_REG_INTERRUPT, PHY_INT_LINK_MASK);
  308. STM32_ETH_PRINTF("Reset try: %d\n", i);
  309. STM32_ETH_PRINTF("Autonegotiation try: %d\n", j);
  310. STM32_ETH_PRINTF("Check try: %d\n", k);
  311. return RT_EOK;
  312. }
  313. /* initialize the interface */
  314. static rt_err_t rt_stm32_eth_init(rt_device_t dev)
  315. {
  316. STM32_ETH_PRINTF("rt_stm32_eth_init...\n");
  317. __HAL_RCC_ETH_CLK_ENABLE();
  318. /* ETHERNET Configuration --------------------------------------------------*/
  319. EthHandle.Instance = ETH;
  320. EthHandle.Init.MACAddr = (rt_uint8_t*)&stm32_eth_device.dev_addr[0];
  321. EthHandle.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
  322. EthHandle.Init.Speed = ETH_SPEED_100M;
  323. EthHandle.Init.DuplexMode = ETH_MODE_FULLDUPLEX;
  324. EthHandle.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;
  325. EthHandle.Init.RxMode = ETH_RXINTERRUPT_MODE;
  326. EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_SOFTWARE;
  327. //EthHandle.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;
  328. EthHandle.Init.PhyAddress = DM9161_PHY_ADDRESS;
  329. HAL_ETH_DeInit(&EthHandle);
  330. /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
  331. if (HAL_ETH_Init(&EthHandle) == HAL_OK)
  332. {
  333. STM32_ETH_PRINTF("eth hardware init sucess...\n");
  334. }
  335. else
  336. {
  337. STM32_ETH_PRINTF("eth hardware init faild...\n");
  338. }
  339. /* Initialize Tx Descriptors list: Chain Mode */
  340. HAL_ETH_DMATxDescListInit(&EthHandle, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
  341. /* Initialize Rx Descriptors list: Chain Mode */
  342. HAL_ETH_DMARxDescListInit(&EthHandle, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
  343. /* Enable MAC and DMA transmission and reception */
  344. if (HAL_ETH_Start(&EthHandle) == HAL_OK)
  345. {
  346. STM32_ETH_PRINTF("eth hardware start success...\n");
  347. }
  348. else
  349. {
  350. STM32_ETH_PRINTF("eth hardware start faild...\n");
  351. }
  352. eth_phy_init();
  353. eth_link_exit_config();
  354. return RT_EOK;
  355. }
  356. static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
  357. {
  358. STM32_ETH_PRINTF("rt_stm32_eth_open...\n");
  359. return RT_EOK;
  360. }
  361. static rt_err_t rt_stm32_eth_close(rt_device_t dev)
  362. {
  363. STM32_ETH_PRINTF("rt_stm32_eth_close...\n");
  364. return RT_EOK;
  365. }
  366. static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
  367. {
  368. STM32_ETH_PRINTF("rt_stm32_eth_read...\n");
  369. rt_set_errno(-RT_ENOSYS);
  370. return 0;
  371. }
  372. static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
  373. {
  374. STM32_ETH_PRINTF("rt_stm32_eth_write...\n");
  375. rt_set_errno(-RT_ENOSYS);
  376. return 0;
  377. }
  378. static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
  379. {
  380. STM32_ETH_PRINTF("rt_stm32_eth_control...\n");
  381. switch(cmd)
  382. {
  383. case NIOCTL_GADDR:
  384. /* get mac address */
  385. if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
  386. else return -RT_ERROR;
  387. break;
  388. default :
  389. break;
  390. }
  391. return RT_EOK;
  392. }
  393. /* ethernet device interface */
  394. /* transmit packet. */
  395. rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
  396. {
  397. rt_err_t ret = RT_ERROR;
  398. HAL_StatusTypeDef state;
  399. struct pbuf *q;
  400. uint8_t *buffer = (uint8_t *)(EthHandle.TxDesc->Buffer1Addr);
  401. __IO ETH_DMADescTypeDef *DmaTxDesc;
  402. uint32_t framelength = 0;
  403. uint32_t bufferoffset = 0;
  404. uint32_t byteslefttocopy = 0;
  405. uint32_t payloadoffset = 0;
  406. DmaTxDesc = EthHandle.TxDesc;
  407. bufferoffset = 0;
  408. STM32_ETH_PRINTF("rt_stm32_eth_tx...\n");
  409. /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
  410. while ((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  411. {
  412. rt_err_t result;
  413. rt_uint32_t level;
  414. level = rt_hw_interrupt_disable();
  415. tx_is_waiting = RT_TRUE;
  416. rt_hw_interrupt_enable(level);
  417. /* it's own bit set, wait it */
  418. result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
  419. if (result == RT_EOK) break;
  420. if (result == -RT_ERROR) return -RT_ERROR;
  421. }
  422. /* copy frame from pbufs to driver buffers */
  423. for(q = p; q != NULL; q = q->next)
  424. {
  425. /* Is this buffer available? If not, goto error */
  426. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  427. {
  428. STM32_ETH_PRINTF("buffer not valid ...\n");
  429. ret = ERR_USE;
  430. goto error;
  431. }
  432. STM32_ETH_PRINTF("copy one frame\n");
  433. /* Get bytes in current lwIP buffer */
  434. byteslefttocopy = q->len;
  435. payloadoffset = 0;
  436. /* Check if the length of data to copy is bigger than Tx buffer size*/
  437. while( (byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE )
  438. {
  439. /* Copy data to Tx buffer*/
  440. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset),
  441. (uint8_t*)((uint8_t*)q->payload + payloadoffset),
  442. (ETH_TX_BUF_SIZE - bufferoffset) );
  443. /* Point to next descriptor */
  444. DmaTxDesc = (ETH_DMADescTypeDef *)(DmaTxDesc->Buffer2NextDescAddr);
  445. /* Check if the buffer is available */
  446. if((DmaTxDesc->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
  447. {
  448. STM32_ETH_PRINTF("dmatxdesc buffer not valid ...\n");
  449. ret = ERR_USE;
  450. goto error;
  451. }
  452. buffer = (uint8_t *)(DmaTxDesc->Buffer1Addr);
  453. byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
  454. payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
  455. framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
  456. bufferoffset = 0;
  457. }
  458. /* Copy the remaining bytes */
  459. memcpy( (uint8_t*)((uint8_t*)buffer + bufferoffset),
  460. (uint8_t*)((uint8_t*)q->payload + payloadoffset),
  461. byteslefttocopy );
  462. bufferoffset = bufferoffset + byteslefttocopy;
  463. framelength = framelength + byteslefttocopy;
  464. }
  465. #ifdef ETH_TX_DUMP
  466. {
  467. rt_uint32_t i;
  468. rt_uint8_t *ptr = buffer;
  469. STM32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
  470. for(i=0; i<p->tot_len; i++)
  471. {
  472. STM32_ETH_PRINTF("%02x ",*ptr);
  473. ptr++;
  474. if(((i+1)%8) == 0)
  475. {
  476. STM32_ETH_PRINTF(" ");
  477. }
  478. if(((i+1)%16) == 0)
  479. {
  480. STM32_ETH_PRINTF("\r\n");
  481. }
  482. }
  483. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  484. }
  485. #endif
  486. /* Prepare transmit descriptors to give to DMA */
  487. STM32_ETH_PRINTF("transmit frame, length: %d\n", framelength);
  488. state = HAL_ETH_TransmitFrame(&EthHandle, framelength);
  489. if (state != HAL_OK)
  490. {
  491. STM32_ETH_PRINTF("eth transmit frame faild: %d\n", state);
  492. }
  493. ret = ERR_OK;
  494. error:
  495. /* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
  496. if ((EthHandle.Instance->DMASR & ETH_DMASR_TUS) != (uint32_t)RESET)
  497. {
  498. /* Clear TUS ETHERNET DMA flag */
  499. EthHandle.Instance->DMASR = ETH_DMASR_TUS;
  500. /* Resume DMA transmission*/
  501. EthHandle.Instance->DMATPDR = 0;
  502. }
  503. return ret;
  504. }
  505. /* reception packet. */
  506. struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
  507. {
  508. struct pbuf *p = NULL;
  509. struct pbuf *q = NULL;
  510. HAL_StatusTypeDef state;
  511. uint16_t len = 0;
  512. uint8_t *buffer;
  513. __IO ETH_DMADescTypeDef *dmarxdesc;
  514. uint32_t bufferoffset = 0;
  515. uint32_t payloadoffset = 0;
  516. uint32_t byteslefttocopy = 0;
  517. uint32_t i=0;
  518. STM32_ETH_PRINTF("rt_stm32_eth_rx\n");
  519. /* Get received frame */
  520. state = HAL_ETH_GetReceivedFrame_IT(&EthHandle);
  521. if (state != HAL_OK)
  522. {
  523. //STM32_ETH_PRINTF("receive frame faild\n");
  524. return NULL;
  525. }
  526. /* Obtain the size of the packet and put it into the "len" variable. */
  527. len = EthHandle.RxFrameInfos.length;
  528. buffer = (uint8_t *)EthHandle.RxFrameInfos.buffer;
  529. STM32_ETH_PRINTF("receive frame len : %d\n", len);
  530. if (len > 0)
  531. {
  532. /* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
  533. p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
  534. }
  535. #ifdef ETH_RX_DUMP
  536. {
  537. rt_uint32_t i;
  538. rt_uint8_t *ptr = buffer;
  539. STM32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
  540. for (i = 0; i < len; i++)
  541. {
  542. STM32_ETH_PRINTF("%02x ", *ptr);
  543. ptr++;
  544. if (((i + 1) % 8) == 0)
  545. {
  546. STM32_ETH_PRINTF(" ");
  547. }
  548. if (((i + 1) % 16) == 0)
  549. {
  550. STM32_ETH_PRINTF("\r\n");
  551. }
  552. }
  553. STM32_ETH_PRINTF("\r\ndump done!\r\n");
  554. }
  555. #endif
  556. if (p != NULL)
  557. {
  558. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  559. bufferoffset = 0;
  560. for(q = p; q != NULL; q = q->next)
  561. {
  562. byteslefttocopy = q->len;
  563. payloadoffset = 0;
  564. /* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
  565. while( (byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE )
  566. {
  567. /* Copy data to pbuf */
  568. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
  569. /* Point to next descriptor */
  570. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  571. buffer = (uint8_t *)(dmarxdesc->Buffer1Addr);
  572. byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
  573. payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
  574. bufferoffset = 0;
  575. }
  576. /* Copy remaining data in pbuf */
  577. memcpy( (uint8_t*)((uint8_t*)q->payload + payloadoffset), (uint8_t*)((uint8_t*)buffer + bufferoffset), byteslefttocopy);
  578. bufferoffset = bufferoffset + byteslefttocopy;
  579. }
  580. }
  581. /* Release descriptors to DMA */
  582. /* Point to first descriptor */
  583. dmarxdesc = EthHandle.RxFrameInfos.FSRxDesc;
  584. /* Set Own bit in Rx descriptors: gives the buffers back to DMA */
  585. for (i=0; i< EthHandle.RxFrameInfos.SegCount; i++)
  586. {
  587. dmarxdesc->Status |= ETH_DMARXDESC_OWN;
  588. dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);
  589. }
  590. /* Clear Segment_Count */
  591. EthHandle.RxFrameInfos.SegCount =0;
  592. /* When Rx Buffer unavailable flag is set: clear it and resume reception */
  593. if ((EthHandle.Instance->DMASR & ETH_DMASR_RBUS) != (uint32_t)RESET)
  594. {
  595. /* Clear RBUS ETHERNET DMA flag */
  596. EthHandle.Instance->DMASR = ETH_DMASR_RBUS;
  597. /* Resume DMA reception */
  598. EthHandle.Instance->DMARPDR = 0;
  599. }
  600. return p;
  601. }
  602. static int rt_hw_stm32_eth_init(void)
  603. {
  604. rt_err_t state;
  605. stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
  606. stm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
  607. /* OUI 00-80-E1 STMICROELECTRONICS. */
  608. stm32_eth_device.dev_addr[0] = 0x00;
  609. stm32_eth_device.dev_addr[1] = 0x80;
  610. stm32_eth_device.dev_addr[2] = 0xE1;
  611. /* generate MAC addr from 96bit unique ID (only for test). */
  612. stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(UID_BASE+4);
  613. stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(UID_BASE+2);
  614. stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(UID_BASE+0);
  615. stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
  616. stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
  617. stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
  618. stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
  619. stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
  620. stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
  621. stm32_eth_device.parent.parent.user_data = RT_NULL;
  622. stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
  623. stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
  624. STM32_ETH_PRINTF("sem init: tx_wait\r\n");
  625. /* init tx semaphore */
  626. rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
  627. /* register eth device */
  628. STM32_ETH_PRINTF("eth_device_init start\r\n");
  629. state = eth_device_init(&(stm32_eth_device.parent), "e0");
  630. if (RT_EOK == state)
  631. {
  632. STM32_ETH_PRINTF("eth_device_init success\r\n");
  633. }
  634. else
  635. {
  636. STM32_ETH_PRINTF("eth_device_init faild: %d\r\n", state);
  637. }
  638. return state;
  639. }
  640. INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);
  641. #endif