spi_flash_sfud.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /*
  2. * File : spi_flash_sfud.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006 - 2016, RT-Thread Development Team
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. *
  20. * Change Logs:
  21. * Date Author Notes
  22. * 2016-09-28 armink first version.
  23. */
  24. #include <stdint.h>
  25. #include <rtdevice.h>
  26. #include "spi_flash.h"
  27. #include "spi_flash_sfud.h"
  28. #ifdef RT_USING_SFUD
  29. #ifdef RT_DEBUG_SFUD
  30. #define DEBUG_TRACE rt_kprintf("[SFUD] "); rt_kprintf
  31. #else
  32. #define DEBUG_TRACE(...)
  33. #endif /* RT_DEBUG_SFUD */
  34. #ifndef RT_SFUD_DEFAULT_SPI_CFG
  35. /* read the JEDEC SFDP command must run at 50 MHz or less */
  36. #define RT_SFUD_DEFAULT_SPI_CFG \
  37. { \
  38. .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
  39. .data_width = 8, \
  40. .max_hz = 50 * 1000 * 1000, \
  41. }
  42. #endif
  43. static char log_buf[RT_CONSOLEBUF_SIZE];
  44. void sfud_log_debug(const char *file, const long line, const char *format, ...);
  45. static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
  46. RT_ASSERT(dev != RT_NULL);
  47. switch (cmd) {
  48. case RT_DEVICE_CTRL_BLK_GETGEOME: {
  49. struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
  50. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  51. if (rtt_dev == RT_NULL || geometry == RT_NULL) {
  52. return -RT_ERROR;
  53. }
  54. geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
  55. geometry->sector_count = rtt_dev->geometry.sector_count;
  56. geometry->block_size = rtt_dev->geometry.block_size;
  57. break;
  58. }
  59. case RT_DEVICE_CTRL_BLK_ERASE: {
  60. rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
  61. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  62. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  63. rt_size_t phy_size;
  64. if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
  65. return -RT_ERROR;
  66. }
  67. phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
  68. phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
  69. if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
  70. return -RT_ERROR;
  71. }
  72. break;
  73. }
  74. }
  75. return RT_EOK;
  76. }
  77. static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
  78. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  79. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  80. /* change the block device¡¯s logic address to physical address */
  81. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  82. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  83. if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  84. return 0;
  85. } else {
  86. return size;
  87. }
  88. }
  89. static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
  90. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
  91. sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
  92. /* change the block device¡¯s logic address to physical address */
  93. rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
  94. rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
  95. if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
  96. return 0;
  97. } else {
  98. return size;
  99. }
  100. }
  101. /**
  102. * SPI write data then read data
  103. */
  104. static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
  105. size_t read_size) {
  106. sfud_err result = SFUD_SUCCESS;
  107. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  108. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  109. if (write_size) {
  110. RT_ASSERT(write_buf);
  111. }
  112. if (read_size) {
  113. RT_ASSERT(read_buf);
  114. }
  115. if (write_size && read_size) {
  116. if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
  117. result = SFUD_ERR_TIMEOUT;
  118. }
  119. } else if (write_size) {
  120. if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
  121. result = SFUD_ERR_TIMEOUT;
  122. }
  123. } else {
  124. if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
  125. result = SFUD_ERR_TIMEOUT;
  126. }
  127. }
  128. return result;
  129. }
  130. static void spi_lock(const sfud_spi *spi) {
  131. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  132. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  133. rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
  134. }
  135. static void spi_unlock(const sfud_spi *spi) {
  136. sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
  137. struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
  138. rt_mutex_release(&(rtt_dev->lock));
  139. }
  140. static void retry_delay_100us(void) {
  141. /* 100 microsecond delay */
  142. rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
  143. }
  144. /**
  145. * This function is print debug info.
  146. *
  147. * @param file the file which has call this function
  148. * @param line the line number which has call this function
  149. * @param format output format
  150. * @param ... args
  151. */
  152. void sfud_log_debug(const char *file, const long line, const char *format, ...) {
  153. va_list args;
  154. /* args point to the first variable parameter */
  155. va_start(args, format);
  156. rt_kprintf("[SFUD] (%s:%ld) ", file, line);
  157. /* must use vprintf to print */
  158. vsnprintf(log_buf, sizeof(log_buf), format, args);
  159. rt_kprintf("%s\n", log_buf);
  160. va_end(args);
  161. }
  162. /**
  163. * This function is print routine info.
  164. *
  165. * @param format output format
  166. * @param ... args
  167. */
  168. void sfud_log_info(const char *format, ...) {
  169. va_list args;
  170. /* args point to the first variable parameter */
  171. va_start(args, format);
  172. rt_kprintf("[SFUD] ");
  173. /* must use vprintf to print */
  174. vsnprintf(log_buf, sizeof(log_buf), format, args);
  175. rt_kprintf("%s\n", log_buf);
  176. va_end(args);
  177. }
  178. sfud_err sfud_spi_port_init(sfud_flash *flash) {
  179. sfud_err result = SFUD_SUCCESS;
  180. /* port SPI device interface */
  181. flash->spi.wr = spi_write_read;
  182. flash->spi.lock = spi_lock;
  183. flash->spi.unlock = spi_unlock;
  184. flash->spi.user_data = flash;
  185. if (RT_TICK_PER_SECOND < 1000) {
  186. rt_kprintf("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.\n", RT_TICK_PER_SECOND);
  187. }
  188. /* 100 microsecond delay */
  189. flash->retry.delay = retry_delay_100us;
  190. /* 60 seconds timeout */
  191. flash->retry.times = 60 * 10000;
  192. return result;
  193. }
  194. /**
  195. * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
  196. *
  197. * @param spi_flash_dev_name the name which will create SPI flash device
  198. * @param spi_dev_name using SPI device name
  199. *
  200. * @return probed SPI flash device, probe failed will return RT_NULL
  201. */
  202. rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) {
  203. rt_spi_flash_device_t rtt_dev = RT_NULL;
  204. sfud_flash *sfud_dev = RT_NULL;
  205. char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
  206. /* using default flash SPI configuration for initialize SPI Flash
  207. * @note you also can change the SPI to other configuration after initialized finish */
  208. struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
  209. extern sfud_err sfud_device_init(sfud_flash *flash);
  210. RT_ASSERT(spi_flash_dev_name);
  211. RT_ASSERT(spi_dev_name);
  212. rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
  213. sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
  214. spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
  215. spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
  216. if (rtt_dev) {
  217. rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
  218. /* initialize lock */
  219. rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO);
  220. }
  221. if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
  222. rt_memset(sfud_dev, 0, sizeof(sfud_flash));
  223. rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
  224. rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
  225. /* make string end sign */
  226. spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
  227. spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
  228. /* SPI configure */
  229. {
  230. /* RT-Thread SPI device initialize */
  231. rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
  232. if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
  233. rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name);
  234. goto error;
  235. }
  236. sfud_dev->spi.name = spi_dev_name_bak;
  237. rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
  238. }
  239. /* SFUD flash device initialize */
  240. {
  241. sfud_dev->name = spi_flash_dev_name_bak;
  242. /* accessed each other */
  243. rtt_dev->user_data = sfud_dev;
  244. rtt_dev->flash_device.user_data = rtt_dev;
  245. sfud_dev->user_data = rtt_dev;
  246. /* initialize SFUD device */
  247. if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
  248. rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name);
  249. goto error;
  250. }
  251. /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
  252. rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
  253. rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
  254. rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
  255. }
  256. /* register device */
  257. rtt_dev->flash_device.type = RT_Device_Class_Block;
  258. rtt_dev->flash_device.init = RT_NULL;
  259. rtt_dev->flash_device.open = RT_NULL;
  260. rtt_dev->flash_device.close = RT_NULL;
  261. rtt_dev->flash_device.read = rt_sfud_read;
  262. rtt_dev->flash_device.write = rt_sfud_write;
  263. rtt_dev->flash_device.control = rt_sfud_control;
  264. rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
  265. DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name);
  266. return rtt_dev;
  267. } else {
  268. rt_kprintf("ERROR: Low memory.\n");
  269. goto error;
  270. }
  271. error:
  272. if (rtt_dev) {
  273. rt_mutex_detach(&(rtt_dev->lock));
  274. }
  275. /* may be one of objects memory was malloc success, so need free all */
  276. rt_free(rtt_dev);
  277. rt_free(sfud_dev);
  278. rt_free(spi_flash_dev_name_bak);
  279. rt_free(spi_dev_name_bak);
  280. return RT_NULL;
  281. }
  282. /**
  283. * Delete SPI flash device
  284. *
  285. * @param spi_flash_dev SPI flash device
  286. *
  287. * @return the operation status, RT_EOK on successful
  288. */
  289. rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
  290. sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
  291. RT_ASSERT(spi_flash_dev);
  292. RT_ASSERT(sfud_flash_dev);
  293. rt_device_unregister(&(spi_flash_dev->flash_device));
  294. rt_mutex_detach(&(spi_flash_dev->lock));
  295. rt_free(sfud_flash_dev->spi.name);
  296. rt_free(sfud_flash_dev->name);
  297. rt_free(sfud_flash_dev);
  298. rt_free(spi_flash_dev);
  299. return RT_EOK;
  300. }
  301. #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
  302. #include <finsh.h>
  303. static void sf(uint8_t argc, char **argv) {
  304. #define CMD_PROBE_INDEX 0
  305. #define CMD_READ_INDEX 1
  306. #define CMD_WRITE_INDEX 2
  307. #define CMD_ERASE_INDEX 3
  308. #define CMD_RW_STATUS_INDEX 4
  309. #define CMD_BENCH_INDEX 5
  310. sfud_err result = SFUD_SUCCESS;
  311. static const sfud_flash *sfud_dev = NULL;
  312. static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
  313. size_t i = 0;
  314. const char* sf_help_info[] = {
  315. [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'",
  316. [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
  317. [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
  318. [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
  319. [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
  320. [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!",
  321. };
  322. if (argc < 2) {
  323. rt_kprintf("Usage:\n");
  324. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  325. rt_kprintf("%s\n", sf_help_info[i]);
  326. }
  327. rt_kprintf("\n");
  328. } else {
  329. const char *operator = argv[1];
  330. uint32_t addr, size;
  331. if (!strcmp(operator, "probe")) {
  332. if (argc < 3) {
  333. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
  334. } else {
  335. char *spi_dev_name = argv[2];
  336. rtt_dev_bak = rtt_dev;
  337. rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
  338. if (!rtt_dev) {
  339. return;
  340. }
  341. /* already probe then delete the old SPI flash device */
  342. if(rtt_dev_bak) {
  343. rt_sfud_flash_delete(rtt_dev_bak);
  344. }
  345. sfud_dev = (sfud_flash_t)rtt_dev->user_data;
  346. if (sfud_dev->chip.capacity < 1024 * 1024) {
  347. rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
  348. } else {
  349. rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
  350. sfud_dev->name);
  351. }
  352. }
  353. } else {
  354. if (!sfud_dev) {
  355. rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
  356. return;
  357. }
  358. if (!rt_strcmp(operator, "read")) {
  359. if (argc < 4) {
  360. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
  361. return;
  362. } else {
  363. addr = atol(argv[2]);
  364. size = atol(argv[3]);
  365. uint8_t *data = rt_malloc(size);
  366. if (data) {
  367. result = sfud_read(sfud_dev, addr, size, data);
  368. if (result == SFUD_SUCCESS) {
  369. rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
  370. sfud_dev->name, addr, size);
  371. rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
  372. for (i = 0; i < size; i++) {
  373. if (i % 16 == 0) {
  374. rt_kprintf("[%08X] ", addr + i);
  375. }
  376. rt_kprintf("%02X ", data[i]);
  377. if (((i + 1) % 16 == 0) || i == size - 1) {
  378. rt_kprintf("\n");
  379. }
  380. }
  381. rt_kprintf("\n");
  382. }
  383. rt_free(data);
  384. } else {
  385. rt_kprintf("Low memory!\n");
  386. }
  387. }
  388. } else if (!rt_strcmp(operator, "write")) {
  389. if (argc < 4) {
  390. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
  391. return;
  392. } else {
  393. addr = atol(argv[2]);
  394. size = argc - 3;
  395. uint8_t *data = rt_malloc(size);
  396. if (data) {
  397. for (i = 0; i < size; i++) {
  398. data[i] = atoi(argv[3 + i]);
  399. }
  400. result = sfud_write(sfud_dev, addr, size, data);
  401. if (result == SFUD_SUCCESS) {
  402. rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
  403. sfud_dev->name, addr, size);
  404. rt_kprintf("Write data: ");
  405. for (i = 0; i < size; i++) {
  406. rt_kprintf("%d ", data[i]);
  407. }
  408. rt_kprintf(".\n");
  409. }
  410. rt_free(data);
  411. } else {
  412. rt_kprintf("Low memory!\n");
  413. }
  414. }
  415. } else if (!rt_strcmp(operator, "erase")) {
  416. if (argc < 4) {
  417. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
  418. return;
  419. } else {
  420. addr = atol(argv[2]);
  421. size = atol(argv[3]);
  422. result = sfud_erase(sfud_dev, addr, size);
  423. if (result == SFUD_SUCCESS) {
  424. rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
  425. addr, size);
  426. }
  427. }
  428. } else if (!rt_strcmp(operator, "status")) {
  429. if (argc < 3) {
  430. uint8_t status;
  431. result = sfud_read_status(sfud_dev, &status);
  432. if (result == SFUD_SUCCESS) {
  433. rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
  434. }
  435. } else if (argc == 4) {
  436. bool is_volatile = atoi(argv[2]);
  437. uint8_t status = atoi(argv[3]);
  438. result = sfud_write_status(sfud_dev, is_volatile, status);
  439. if (result == SFUD_SUCCESS) {
  440. rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
  441. }
  442. } else {
  443. rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
  444. return;
  445. }
  446. } else if (!rt_strcmp(operator, "bench")) {
  447. if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
  448. rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
  449. return;
  450. }
  451. /* full chip benchmark test */
  452. addr = 0;
  453. size = sfud_dev->chip.capacity;
  454. uint32_t start_time, time_cast;
  455. size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = 4096;
  456. uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
  457. if (write_data && read_data) {
  458. rt_memset(write_data, 0x55, write_size);
  459. /* benchmark testing */
  460. rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  461. start_time = rt_tick_get();
  462. result = sfud_erase(sfud_dev, addr, size);
  463. if (result == SFUD_SUCCESS) {
  464. time_cast = rt_tick_get() - start_time;
  465. rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  466. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  467. } else {
  468. rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
  469. }
  470. /* write test */
  471. rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  472. start_time = rt_tick_get();
  473. for (i = 0; i < size; i += write_size) {
  474. result = sfud_write(sfud_dev, addr + i, write_size, write_data);
  475. if (result != SFUD_SUCCESS) {
  476. break;
  477. }
  478. }
  479. if (result == SFUD_SUCCESS) {
  480. time_cast = rt_tick_get() - start_time;
  481. rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  482. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  483. } else {
  484. rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
  485. }
  486. /* read test */
  487. rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
  488. start_time = rt_tick_get();
  489. for (i = 0; i < size; i += read_size) {
  490. if (i + read_size <= size) {
  491. result = sfud_read(sfud_dev, addr + i, read_size, read_data);
  492. } else {
  493. result = sfud_read(sfud_dev, addr + i, size - i, read_data);
  494. }
  495. if (result != SFUD_SUCCESS) {
  496. break;
  497. }
  498. }
  499. if (result == SFUD_SUCCESS) {
  500. time_cast = rt_tick_get() - start_time;
  501. rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
  502. time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
  503. } else {
  504. rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
  505. }
  506. } else {
  507. rt_kprintf("Low memory!\n");
  508. }
  509. rt_free(write_data);
  510. rt_free(read_data);
  511. } else {
  512. rt_kprintf("Usage:\n");
  513. for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
  514. rt_kprintf("%s\n", sf_help_info[i]);
  515. }
  516. rt_kprintf("\n");
  517. return;
  518. }
  519. if (result != SFUD_SUCCESS) {
  520. rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
  521. }
  522. }
  523. }
  524. }
  525. MSH_CMD_EXPORT(sf, SPI Flash operate.);
  526. #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
  527. #endif /* RT_USING_SFUD */