drv_flexspi_hyper.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. /*
  2. * File : code_run.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2017, RT-Thread Development Team
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERsrcANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along
  17. * with this program; if not, write to the Free Software Foundation, Inc.,
  18. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  19. *
  20. * srcange Logs:
  21. * Date Author Notes
  22. * 2018-07-05 ZYH the first version
  23. */
  24. #include <rtthread.h>
  25. #define PRINTF rt_kprintf
  26. #include "board.h"
  27. #include <rthw.h>
  28. #include "drv_flexspi.h"
  29. #define DBG_ENABLE
  30. #define DBG_SECTION_NAME "[Hyper]"
  31. #define DBG_LEVEL DBG_LOG
  32. #define DBG_COLOR
  33. #include <rtdbg.h>
  34. #define FLEXSPI_CLOCK kCLOCK_FlexSpi
  35. #define HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA 0
  36. #define HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA 1
  37. #define HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS 2
  38. #define HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE 4
  39. #define HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR 6
  40. #define HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM 10
  41. #define CUSTOM_LUT_LENGTH 48
  42. static flexspi_device_config_t deviceconfig = {
  43. .flexspiRootClk = 42000000, /* 42MHZ SPI serial clock */
  44. .isSck2Enabled = false,
  45. .flashSize = FLASH_SIZE,
  46. .CSIntervalUnit = kFLEXSPI_CsIntervalUnit1SckCycle,
  47. .CSInterval = 2,
  48. .CSHoldTime = 0,
  49. .CSSetupTime = 3,
  50. .dataValidTime = 1,
  51. .columnspace = 3,
  52. .enableWordAddress = true,
  53. .AWRSeqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA,
  54. .AWRSeqNumber = 1,
  55. .ARDSeqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA,
  56. .ARDSeqNumber = 1,
  57. .AHBWriteWaitUnit = kFLEXSPI_AhbWriteWaitUnit2AhbCycle,
  58. .AHBWriteWaitInterval = 20,
  59. };
  60. static uint32_t customLUT[CUSTOM_LUT_LENGTH] = {
  61. /* Read Data */
  62. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA] =
  63. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
  64. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA + 1] = FLEXSPI_LUT_SEQ(
  65. kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04),
  66. /* Write Data */
  67. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA] =
  68. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
  69. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA + 1] = FLEXSPI_LUT_SEQ(
  70. kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x02),
  71. /* Read Status */
  72. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS] =
  73. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  74. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 1] = FLEXSPI_LUT_SEQ(
  75. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
  76. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 2] =
  77. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
  78. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 3] = FLEXSPI_LUT_SEQ(
  79. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x70), // DATA 0x70
  80. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 4] =
  81. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
  82. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 5] = FLEXSPI_LUT_SEQ(
  83. kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_DUMMY_RWDS_DDR, kFLEXSPI_8PAD, 0x0B),
  84. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 6] =
  85. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
  86. /* Write Enable */
  87. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE] =
  88. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  89. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 1] = FLEXSPI_LUT_SEQ(
  90. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
  91. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 2] =
  92. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
  93. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 3] = FLEXSPI_LUT_SEQ(
  94. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // DATA 0xAA
  95. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 4] =
  96. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  97. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 5] =
  98. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
  99. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 6] =
  100. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x02),
  101. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 7] =
  102. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
  103. /* Erase Sector */
  104. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR] =
  105. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  106. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 1] = FLEXSPI_LUT_SEQ(
  107. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
  108. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 2] =
  109. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
  110. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 3] = FLEXSPI_LUT_SEQ(
  111. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x80), // DATA 0x80
  112. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 4] =
  113. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  114. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 5] =
  115. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
  116. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 6] =
  117. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
  118. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 7] = FLEXSPI_LUT_SEQ(
  119. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
  120. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 8] =
  121. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  122. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 9] =
  123. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
  124. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 10] =
  125. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x02),
  126. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 11] =
  127. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
  128. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 12] =
  129. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
  130. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 13] =
  131. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  132. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 14] =
  133. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x30, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x00),
  134. /* program page */
  135. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM] =
  136. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
  137. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 1] = FLEXSPI_LUT_SEQ(
  138. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
  139. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 2] =
  140. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
  141. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 3] = FLEXSPI_LUT_SEQ(
  142. kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0), // DATA 0xA0
  143. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 4] =
  144. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
  145. [4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 5] = FLEXSPI_LUT_SEQ(
  146. kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x80),
  147. };
  148. SECTION("itcm") status_t flexspi_nor_hyperbus_read(FLEXSPI_Type *base, uint32_t addr, uint32_t *buffer, uint32_t bytes)
  149. {
  150. flexspi_transfer_t flashXfer;
  151. status_t status;
  152. flashXfer.deviceAddress = addr * 2;
  153. flashXfer.port = kFLEXSPI_PortA1;
  154. flashXfer.cmdType = kFLEXSPI_Read;
  155. flashXfer.SeqNumber = 1;
  156. flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA;
  157. flashXfer.data = buffer;
  158. flashXfer.dataSize = bytes;
  159. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  160. if (status != kStatus_Success)
  161. {
  162. return status;
  163. }
  164. return status;
  165. }
  166. SECTION("itcm") status_t flexspi_nor_hyperbus_write(FLEXSPI_Type *base, uint32_t addr, uint32_t *buffer, uint32_t bytes)
  167. {
  168. flexspi_transfer_t flashXfer;
  169. status_t status;
  170. flashXfer.deviceAddress = addr * 2;
  171. flashXfer.port = kFLEXSPI_PortA1;
  172. flashXfer.cmdType = kFLEXSPI_Write;
  173. flashXfer.SeqNumber = 1;
  174. flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA;
  175. flashXfer.data = buffer;
  176. flashXfer.dataSize = bytes;
  177. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  178. if (status != kStatus_Success)
  179. {
  180. return status;
  181. }
  182. return status;
  183. }
  184. SECTION("itcm") status_t flexspi_nor_write_enable(FLEXSPI_Type *base, uint32_t baseAddr)
  185. {
  186. flexspi_transfer_t flashXfer;
  187. status_t status;
  188. /* Write neable */
  189. flashXfer.deviceAddress = baseAddr;
  190. flashXfer.port = kFLEXSPI_PortA1;
  191. flashXfer.cmdType = kFLEXSPI_Command;
  192. flashXfer.SeqNumber = 2;
  193. flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE;
  194. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  195. return status;
  196. }
  197. SECTION("itcm") status_t flexspi_nor_wait_bus_busy(FLEXSPI_Type *base)
  198. {
  199. /* Wait status ready. */
  200. bool isBusy;
  201. uint32_t readValue;
  202. status_t status;
  203. flexspi_transfer_t flashXfer;
  204. flashXfer.deviceAddress = 0;
  205. flashXfer.port = kFLEXSPI_PortA1;
  206. flashXfer.cmdType = kFLEXSPI_Read;
  207. flashXfer.SeqNumber = 2;
  208. flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS;
  209. flashXfer.data = &readValue;
  210. flashXfer.dataSize = 2;
  211. do
  212. {
  213. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  214. if (status != kStatus_Success)
  215. {
  216. return status;
  217. }
  218. if (readValue & 0x8000)
  219. {
  220. isBusy = false;
  221. }
  222. else
  223. {
  224. isBusy = true;
  225. }
  226. if (readValue & 0x3200)
  227. {
  228. status = kStatus_Fail;
  229. break;
  230. }
  231. } while (isBusy);
  232. return status;
  233. }
  234. SECTION("itcm") status_t flexspi_nor_flash_erase_sector(FLEXSPI_Type *base, uint32_t address)
  235. {
  236. status_t status;
  237. flexspi_transfer_t flashXfer;
  238. rt_uint32_t level;
  239. level = rt_hw_interrupt_disable();
  240. FLEXSPI_Enable(FLEXSPI, false);
  241. CLOCK_DisableClock(FLEXSPI_CLOCK);
  242. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 3); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  243. CLOCK_EnableClock(FLEXSPI_CLOCK);
  244. FLEXSPI_Enable(FLEXSPI, true);
  245. /* Write enable */
  246. status = flexspi_nor_write_enable(base, address);
  247. if (status != kStatus_Success)
  248. {
  249. FLEXSPI_Enable(FLEXSPI, false);
  250. CLOCK_DisableClock(FLEXSPI_CLOCK);
  251. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  252. CLOCK_EnableClock(FLEXSPI_CLOCK);
  253. FLEXSPI_Enable(FLEXSPI, true);
  254. FLEXSPI_SoftwareReset(FLEXSPI);
  255. rt_hw_interrupt_enable(level);
  256. return status;
  257. }
  258. flashXfer.deviceAddress = address;
  259. flashXfer.port = kFLEXSPI_PortA1;
  260. flashXfer.cmdType = kFLEXSPI_Command;
  261. flashXfer.SeqNumber = 4;
  262. flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR;
  263. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  264. if (status != kStatus_Success)
  265. {
  266. FLEXSPI_Enable(FLEXSPI, false);
  267. CLOCK_DisableClock(FLEXSPI_CLOCK);
  268. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  269. CLOCK_EnableClock(FLEXSPI_CLOCK);
  270. FLEXSPI_Enable(FLEXSPI, true);
  271. FLEXSPI_SoftwareReset(FLEXSPI);
  272. rt_hw_interrupt_enable(level);
  273. return status;
  274. }
  275. status = flexspi_nor_wait_bus_busy(base);
  276. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLEXSPI_NOR_SECTOR_SIZE);
  277. rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLEXSPI_NOR_SECTOR_SIZE);
  278. FLEXSPI_Enable(FLEXSPI, false);
  279. CLOCK_DisableClock(FLEXSPI_CLOCK);
  280. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  281. CLOCK_EnableClock(FLEXSPI_CLOCK);
  282. FLEXSPI_Enable(FLEXSPI, true);
  283. FLEXSPI_SoftwareReset(FLEXSPI);
  284. rt_hw_interrupt_enable(level);
  285. return status;
  286. }
  287. SECTION("itcm") status_t flexspi_nor_flash_page_program(FLEXSPI_Type *base, uint32_t address, const uint32_t *src)
  288. {
  289. status_t status;
  290. flexspi_transfer_t flashXfer;
  291. rt_uint32_t level;
  292. level = rt_hw_interrupt_disable();
  293. FLEXSPI_Enable(FLEXSPI, false);
  294. CLOCK_DisableClock(FLEXSPI_CLOCK);
  295. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 3); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  296. CLOCK_EnableClock(FLEXSPI_CLOCK);
  297. FLEXSPI_Enable(FLEXSPI, true);
  298. /* Write neable */
  299. status = flexspi_nor_write_enable(base, address);
  300. if (status != kStatus_Success)
  301. {
  302. rt_hw_interrupt_enable(level);
  303. return status;
  304. }
  305. /* Prepare page program command */
  306. flashXfer.deviceAddress = address;
  307. flashXfer.port = kFLEXSPI_PortA1;
  308. flashXfer.cmdType = kFLEXSPI_Write;
  309. flashXfer.SeqNumber = 2;
  310. flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM;
  311. flashXfer.data = (uint32_t *)src;
  312. flashXfer.dataSize = FLASH_PAGE_SIZE;
  313. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  314. if (status != kStatus_Success)
  315. {
  316. rt_hw_interrupt_enable(level);
  317. return status;
  318. }
  319. status = flexspi_nor_wait_bus_busy(base);
  320. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLASH_PAGE_SIZE);
  321. rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLASH_PAGE_SIZE);
  322. FLEXSPI_Enable(FLEXSPI, false);
  323. CLOCK_DisableClock(FLEXSPI_CLOCK);
  324. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  325. CLOCK_EnableClock(FLEXSPI_CLOCK);
  326. FLEXSPI_Enable(FLEXSPI, true);
  327. FLEXSPI_SoftwareReset(FLEXSPI);
  328. rt_hw_interrupt_enable(level);
  329. return status;
  330. }
  331. SECTION("itcm") status_t flexspi_nor_hyperflash_cfi(FLEXSPI_Type *base)
  332. {
  333. /*
  334. * Read ID-CFI Parameters
  335. */
  336. // CFI Entry
  337. status_t status;
  338. uint32_t buffer[2];
  339. uint32_t data = 0x9800;
  340. status = flexspi_nor_hyperbus_write(base, 0x555, &data, 2);
  341. if (status != kStatus_Success)
  342. {
  343. return status;
  344. }
  345. // ID-CFI Read
  346. // Read Query Unique ASCII String
  347. status = flexspi_nor_hyperbus_read(base, 0x10, &buffer[0], sizeof(buffer));
  348. if (status != kStatus_Success)
  349. {
  350. return status;
  351. }
  352. buffer[1] &= 0xFFFF;
  353. // Check that the data read out is unicode "QRY" in big-endian order
  354. if ((buffer[0] != 0x52005100) || (buffer[1] != 0x5900))
  355. {
  356. status = kStatus_Fail;
  357. return status;
  358. }
  359. // ASO Exit
  360. data = 0xF000;
  361. status = flexspi_nor_hyperbus_write(base, 0x0, &data, 2);
  362. if (status != kStatus_Success)
  363. {
  364. return status;
  365. }
  366. return status;
  367. }
  368. SECTION("itcm") int rt_hw_flexspi_init(void)
  369. {
  370. flexspi_config_t config;
  371. status_t status;
  372. rt_uint32_t level;
  373. level = rt_hw_interrupt_disable();
  374. // Set flexspi root clock to 166MHZ.
  375. const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
  376. CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
  377. CLOCK_InitUsb1Pfd(kCLOCK_Pfd0, 26); /* Set PLL3 PFD0 clock 332MHZ. */
  378. CLOCK_SetMux(kCLOCK_FlexspiMux, 0x3); /* Choose PLL3 PFD0 clock as flexspi source clock. */
  379. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 3); /* flexspi clock 83M, DDR mode, internal clock 42M. */
  380. /*Get FLEXSPI default settings and configure the flexspi. */
  381. FLEXSPI_GetDefaultConfig(&config);
  382. /*Set AHB buffer size for reading data through AHB bus. */
  383. config.ahbConfig.enableAHBPrefetch = true;
  384. /*Allow AHB read start address do not follow the alignment requirement. */
  385. config.ahbConfig.enableReadAddressOpt = true;
  386. /* enable diff clock and DQS */
  387. config.enableSckBDiffOpt = true;
  388. config.rxSampleClock = kFLEXSPI_ReadSampleClkExternalInputFromDqsPad;
  389. config.enableCombination = true;
  390. FLEXSPI_Init(FLEXSPI, &config);
  391. /* Configure flash settings according to serial flash feature. */
  392. FLEXSPI_SetFlashConfig(FLEXSPI, &deviceconfig, kFLEXSPI_PortA1);
  393. /* Update LUT table. */
  394. FLEXSPI_UpdateLUT(FLEXSPI, 0, customLUT, CUSTOM_LUT_LENGTH);
  395. /* Do software reset. */
  396. FLEXSPI_SoftwareReset(FLEXSPI);
  397. status = flexspi_nor_hyperflash_cfi(FLEXSPI);
  398. /* Get vendor ID. */
  399. if (status != kStatus_Success)
  400. {
  401. FLEXSPI_Enable(FLEXSPI, false);
  402. CLOCK_DisableClock(FLEXSPI_CLOCK);
  403. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  404. CLOCK_EnableClock(FLEXSPI_CLOCK);
  405. FLEXSPI_Enable(FLEXSPI, true);
  406. FLEXSPI_SoftwareReset(FLEXSPI);
  407. rt_hw_interrupt_enable(level);
  408. return status;
  409. }
  410. FLEXSPI_Enable(FLEXSPI, false);
  411. CLOCK_DisableClock(FLEXSPI_CLOCK);
  412. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
  413. CLOCK_EnableClock(FLEXSPI_CLOCK);
  414. FLEXSPI_Enable(FLEXSPI, true);
  415. FLEXSPI_SoftwareReset(FLEXSPI);
  416. rt_hw_interrupt_enable(level);
  417. return 0;
  418. }