mmu.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2012-01-10 bernard porting to AM1808
  9. */
  10. #include <rthw.h>
  11. #include <rtthread.h>
  12. #include <board.h>
  13. #include "cp15.h"
  14. #include "mm_page.h"
  15. #include "mmu.h"
  16. #include <mm_aspace.h>
  17. #include <tlb.h>
  18. #ifdef RT_USING_SMART
  19. #include <lwp_mm.h>
  20. #include <lwp_arch.h>
  21. #include "ioremap.h"
  22. #else
  23. #define KERNEL_VADDR_START 0
  24. #endif
  25. /* level1 page table, each entry for 1MB memory. */
  26. volatile unsigned long MMUTable[4 * 1024] __attribute__((aligned(16 * 1024)));
  27. unsigned long rt_hw_set_domain_register(unsigned long domain_val)
  28. {
  29. unsigned long old_domain;
  30. asm volatile ("mrc p15, 0, %0, c3, c0\n" : "=r" (old_domain));
  31. asm volatile ("mcr p15, 0, %0, c3, c0\n" : :"r" (domain_val) : "memory");
  32. return old_domain;
  33. }
  34. void rt_hw_mmu_setmtt(rt_uint32_t vaddrStart, rt_uint32_t vaddrEnd,
  35. rt_uint32_t paddrStart, rt_uint32_t attr)
  36. {
  37. volatile rt_uint32_t *pTT;
  38. volatile int i, nSec;
  39. pTT = (rt_uint32_t *)MMUTable + (vaddrStart >> 20);
  40. nSec = (vaddrEnd >> 20) - (vaddrStart >> 20);
  41. for(i = 0; i <= nSec; i++)
  42. {
  43. *pTT = attr | (((paddrStart >> 20) + i) << 20);
  44. pTT++;
  45. }
  46. }
  47. void rt_hw_init_mmu_table(struct mem_desc *mdesc, rt_uint32_t size)
  48. {
  49. /* set page table */
  50. for(; size > 0; size--)
  51. {
  52. if (mdesc->paddr_start == (rt_uint32_t)ARCH_MAP_FAILED)
  53. mdesc->paddr_start = mdesc->vaddr_start + PV_OFFSET;
  54. rt_hw_mmu_setmtt(mdesc->vaddr_start, mdesc->vaddr_end,
  55. mdesc->paddr_start, mdesc->attr);
  56. mdesc++;
  57. }
  58. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, (void*)MMUTable, sizeof MMUTable);
  59. }
  60. void rt_hw_mmu_init(void)
  61. {
  62. rt_cpu_dcache_clean_flush();
  63. rt_cpu_icache_flush();
  64. rt_hw_cpu_dcache_disable();
  65. rt_hw_cpu_icache_disable();
  66. rt_cpu_mmu_disable();
  67. /*rt_hw_cpu_dump_page_table(MMUTable);*/
  68. rt_hw_set_domain_register(0x55555555);
  69. rt_cpu_tlb_set(MMUTable);
  70. rt_cpu_mmu_enable();
  71. rt_hw_cpu_icache_enable();
  72. rt_hw_cpu_dcache_enable();
  73. }
  74. int rt_hw_mmu_map_init(struct rt_aspace *aspace, void* v_address, size_t size, size_t *vtable, size_t pv_off)
  75. {
  76. size_t l1_off, va_s, va_e;
  77. if (!aspace || !vtable)
  78. {
  79. return -1;
  80. }
  81. va_s = (size_t)v_address;
  82. va_e = (size_t)v_address + size - 1;
  83. if ( va_e < va_s)
  84. {
  85. return -1;
  86. }
  87. va_s >>= ARCH_SECTION_SHIFT;
  88. va_e >>= ARCH_SECTION_SHIFT;
  89. if (va_s == 0)
  90. {
  91. return -1;
  92. }
  93. for (l1_off = va_s; l1_off <= va_e; l1_off++)
  94. {
  95. size_t v = vtable[l1_off];
  96. if (v & ARCH_MMU_USED_MASK)
  97. {
  98. return -1;
  99. }
  100. }
  101. #ifdef RT_USING_SMART
  102. rt_aspace_init(&rt_kernel_space, (void *)USER_VADDR_TOP, 0 - USER_VADDR_TOP, vtable);
  103. rt_ioremap_start = v_address;
  104. rt_ioremap_size = size;
  105. rt_mpr_start = rt_ioremap_start - rt_mpr_size;
  106. #else
  107. rt_aspace_init(&rt_kernel_space, (void *)0x1000, 0 - 0x1000, vtable);
  108. rt_mpr_start = (void *)0 - rt_mpr_size;
  109. #endif
  110. return 0;
  111. }
  112. int rt_hw_mmu_ioremap_init(rt_aspace_t aspace, void* v_address, size_t size)
  113. {
  114. #ifdef RT_IOREMAP_LATE
  115. size_t loop_va;
  116. size_t l1_off;
  117. size_t *mmu_l1, *mmu_l2;
  118. size_t sections;
  119. /* for kernel ioremap */
  120. if ((size_t)v_address < KERNEL_VADDR_START)
  121. {
  122. return -1;
  123. }
  124. /* must align to section */
  125. if ((size_t)v_address & ARCH_SECTION_MASK)
  126. {
  127. return -1;
  128. }
  129. /* must align to section */
  130. if (size & ARCH_SECTION_MASK)
  131. {
  132. return -1;
  133. }
  134. loop_va = (size_t)v_address;
  135. sections = (size >> ARCH_SECTION_SHIFT);
  136. while (sections--)
  137. {
  138. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  139. mmu_l1 = (size_t*)aspace->page_table + l1_off;
  140. RT_ASSERT((*mmu_l1 & ARCH_MMU_USED_MASK) == 0);
  141. mmu_l2 = (size_t*)rt_pages_alloc(0);
  142. if (mmu_l2)
  143. {
  144. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  145. /* cache maintain */
  146. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  147. *mmu_l1 = (((size_t)mmu_l2 + PV_OFFSET) | 0x1);
  148. /* cache maintain */
  149. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  150. }
  151. else
  152. {
  153. /* error */
  154. return -1;
  155. }
  156. loop_va += ARCH_SECTION_SIZE;
  157. }
  158. #endif
  159. return 0;
  160. }
  161. static void _kenrel_unmap_4K(unsigned long *lv0_tbl, void *v_addr)
  162. {
  163. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  164. size_t l1_off, l2_off;
  165. size_t *mmu_l1, *mmu_l2;
  166. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  167. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  168. mmu_l1 = (size_t *)lv0_tbl + l1_off;
  169. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  170. {
  171. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - PV_OFFSET);
  172. }
  173. else
  174. {
  175. return;
  176. }
  177. if (*(mmu_l2 + l2_off) & ARCH_MMU_USED_MASK)
  178. {
  179. *(mmu_l2 + l2_off) = 0;
  180. /* cache maintain */
  181. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  182. if (rt_pages_free(mmu_l2, 0))
  183. {
  184. *mmu_l1 = 0;
  185. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  186. }
  187. }
  188. loop_va += ARCH_PAGE_SIZE;
  189. }
  190. static int _kenrel_map_4K(unsigned long *lv0_tbl, void *v_addr, void *p_addr,
  191. size_t attr)
  192. {
  193. size_t loop_va = (size_t)v_addr & ~ARCH_PAGE_MASK;
  194. size_t loop_pa = (size_t)p_addr & ~ARCH_PAGE_MASK;
  195. size_t l1_off, l2_off;
  196. size_t *mmu_l1, *mmu_l2;
  197. l1_off = (loop_va >> ARCH_SECTION_SHIFT);
  198. l2_off = ((loop_va & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  199. mmu_l1 = (size_t *)lv0_tbl + l1_off;
  200. if (*mmu_l1 & ARCH_MMU_USED_MASK)
  201. {
  202. mmu_l2 = (size_t *)((*mmu_l1 & ~ARCH_PAGE_TBL_MASK) - PV_OFFSET);
  203. rt_page_ref_inc(mmu_l2, 0);
  204. }
  205. else
  206. {
  207. mmu_l2 = (size_t *)rt_pages_alloc(0);
  208. if (mmu_l2)
  209. {
  210. rt_memset(mmu_l2, 0, ARCH_PAGE_TBL_SIZE * 2);
  211. /* cache maintain */
  212. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2, ARCH_PAGE_TBL_SIZE);
  213. *mmu_l1 = (((size_t)mmu_l2 + PV_OFFSET) | 0x1);
  214. /* cache maintain */
  215. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l1, 4);
  216. }
  217. else
  218. {
  219. /* error, quit */
  220. return -1;
  221. }
  222. }
  223. *(mmu_l2 + l2_off) = (loop_pa | attr);
  224. /* cache maintain */
  225. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_l2 + l2_off, 4);
  226. loop_va += ARCH_PAGE_SIZE;
  227. loop_pa += ARCH_PAGE_SIZE;
  228. return 0;
  229. }
  230. void *rt_hw_mmu_map(rt_aspace_t aspace, void *v_addr, void *p_addr, size_t size,
  231. size_t attr)
  232. {
  233. int ret = -1;
  234. void *unmap_va = v_addr;
  235. size_t npages = size >> ARCH_PAGE_SHIFT;
  236. // TODO trying with HUGEPAGE here
  237. while (npages--)
  238. {
  239. ret = _kenrel_map_4K(aspace->page_table, v_addr, p_addr, attr);
  240. if (ret != 0)
  241. {
  242. /* error, undo map */
  243. while (unmap_va != v_addr)
  244. {
  245. rt_enter_critical();
  246. _kenrel_unmap_4K(aspace->page_table, (void *)unmap_va);
  247. rt_exit_critical();
  248. unmap_va += ARCH_PAGE_SIZE;
  249. }
  250. break;
  251. }
  252. v_addr += ARCH_PAGE_SIZE;
  253. p_addr += ARCH_PAGE_SIZE;
  254. }
  255. if (ret == 0)
  256. {
  257. return v_addr;
  258. }
  259. return NULL;
  260. }
  261. void rt_hw_mmu_unmap(rt_aspace_t aspace, void *v_addr, size_t size)
  262. {
  263. // caller guarantee that v_addr & size are page aligned
  264. size_t npages = size >> ARCH_PAGE_SHIFT;
  265. if (!aspace->page_table)
  266. {
  267. return;
  268. }
  269. while (npages--)
  270. {
  271. rt_enter_critical();
  272. _kenrel_unmap_4K(aspace->page_table, v_addr);
  273. rt_exit_critical();
  274. v_addr += ARCH_PAGE_SIZE;
  275. }
  276. }
  277. void rt_hw_aspace_switch(rt_aspace_t aspace)
  278. {
  279. if (aspace != &rt_kernel_space)
  280. {
  281. void *pgtbl = aspace->page_table;
  282. pgtbl = rt_kmem_v2p(pgtbl);
  283. rt_hw_mmu_switch(pgtbl);
  284. rt_hw_tlb_invalidate_all_local();
  285. }
  286. }
  287. void init_mm_setup(unsigned int *mtbl, unsigned int size, unsigned int pv_off)
  288. {
  289. unsigned int va;
  290. for (va = 0; va < 0x1000; va++)
  291. {
  292. unsigned int vaddr = (va << 20);
  293. if (vaddr >= KERNEL_VADDR_START && vaddr - KERNEL_VADDR_START < size)
  294. {
  295. mtbl[va] = ((va << 20) + pv_off) | NORMAL_MEM;
  296. }
  297. else if (vaddr >= (KERNEL_VADDR_START + pv_off) && vaddr - (KERNEL_VADDR_START + pv_off) < size)
  298. {
  299. mtbl[va] = (va << 20) | NORMAL_MEM;
  300. }
  301. else
  302. {
  303. mtbl[va] = 0;
  304. }
  305. }
  306. }
  307. void *rt_hw_mmu_v2p(rt_aspace_t aspace, void* v_addr)
  308. {
  309. size_t l1_off, l2_off;
  310. size_t *mmu_l1, *mmu_l2;
  311. size_t tmp;
  312. size_t pa;
  313. l1_off = (size_t)v_addr >> ARCH_SECTION_SHIFT;
  314. RT_ASSERT(aspace);
  315. mmu_l1 = (size_t*)aspace->page_table + l1_off;
  316. tmp = *mmu_l1;
  317. switch (tmp & ARCH_MMU_USED_MASK)
  318. {
  319. case 0: /* not used */
  320. break;
  321. case 1: /* page table */
  322. mmu_l2 = (size_t *)((tmp & ~ARCH_PAGE_TBL_MASK) - PV_OFFSET);
  323. l2_off = (((size_t)v_addr & ARCH_SECTION_MASK) >> ARCH_PAGE_SHIFT);
  324. pa = *(mmu_l2 + l2_off);
  325. if (pa & ARCH_MMU_USED_MASK)
  326. {
  327. if ((pa & ARCH_MMU_USED_MASK) == 1)
  328. {
  329. /* large page, not support */
  330. break;
  331. }
  332. pa &= ~(ARCH_PAGE_MASK);
  333. pa += ((size_t)v_addr & ARCH_PAGE_MASK);
  334. return (void*)pa;
  335. }
  336. break;
  337. case 2:
  338. case 3:
  339. /* section */
  340. if (tmp & ARCH_TYPE_SUPERSECTION)
  341. {
  342. /* super section, not support */
  343. break;
  344. }
  345. pa = (tmp & ~ARCH_SECTION_MASK);
  346. pa += ((size_t)v_addr & ARCH_SECTION_MASK);
  347. return (void*)pa;
  348. }
  349. return ARCH_MAP_FAILED;
  350. }
  351. int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
  352. enum rt_mmu_cntl cmd)
  353. {
  354. return -RT_ENOSYS;
  355. }