uart.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. /*
  2. * File : board.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006-2012, RT-Thread Develop Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2011-08-08 lgnq first version
  13. */
  14. #include <rthw.h>
  15. #include <rtthread.h>
  16. #include "uart.h"
  17. /**
  18. * @addtogroup Loongson LS1B
  19. */
  20. /*@{*/
  21. #if defined(RT_USING_UART) && defined(RT_USING_DEVICE)
  22. struct rt_uart_ls1b
  23. {
  24. struct rt_device parent;
  25. rt_uint32_t hw_base;
  26. rt_uint32_t irq;
  27. /* buffer for reception */
  28. rt_uint8_t read_index, save_index;
  29. rt_uint8_t rx_buffer[RT_UART_RX_BUFFER_SIZE];
  30. }uart_device;
  31. static void rt_uart_irqhandler(int irqno, void *param)
  32. {
  33. rt_ubase_t level;
  34. rt_uint8_t isr;
  35. struct rt_uart_ls1b *uart = &uart_device;
  36. /* read interrupt status and clear it */
  37. isr = UART_IIR(uart->hw_base);
  38. isr = (isr >> 1) & 0x3;
  39. /* receive data available */
  40. if (isr & 0x02)
  41. {
  42. /* Receive Data Available */
  43. while (UART_LSR(uart->hw_base) & UARTLSR_DR)
  44. {
  45. uart->rx_buffer[uart->save_index] = UART_DAT(uart->hw_base);
  46. level = rt_hw_interrupt_disable();
  47. uart->save_index ++;
  48. if (uart->save_index >= RT_UART_RX_BUFFER_SIZE)
  49. uart->save_index = 0;
  50. rt_hw_interrupt_enable(level);
  51. }
  52. /* invoke callback */
  53. if (uart->parent.rx_indicate != RT_NULL)
  54. {
  55. rt_size_t length;
  56. if (uart->read_index > uart->save_index)
  57. length = RT_UART_RX_BUFFER_SIZE - uart->read_index + uart->save_index;
  58. else
  59. length = uart->save_index - uart->read_index;
  60. uart->parent.rx_indicate(&uart->parent, length);
  61. }
  62. }
  63. return;
  64. }
  65. static rt_err_t rt_uart_init(rt_device_t dev)
  66. {
  67. rt_uint32_t baud_div;
  68. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  69. RT_ASSERT(uart != RT_NULL);
  70. #if 0
  71. /* init UART Hardware */
  72. UART_IER(uart->hw_base) = 0; /* clear interrupt */
  73. UART_FCR(uart->hw_base) = 0x60; /* reset UART Rx/Tx */
  74. /* enable UART clock */
  75. /* set databits, stopbits and parity. (8-bit data, 1 stopbit, no parity) */
  76. UART_LCR(uart->hw_base) = 0x3;
  77. /* set baudrate */
  78. baud_div = DEV_CLK / 16 / UART_BAUDRATE;
  79. UART_LCR(uart->hw_base) |= UARTLCR_DLAB;
  80. UART_MSB(uart->hw_base) = (baud_div >> 8) & 0xff;
  81. UART_LSB(uart->hw_base) = baud_div & 0xff;
  82. UART_LCR(uart->hw_base) &= ~UARTLCR_DLAB;
  83. /* Enable UART unit, enable and clear FIFO */
  84. UART_FCR(uart->hw_base) = UARTFCR_UUE | UARTFCR_FE | UARTFCR_TFLS | UARTFCR_RFLS;
  85. #endif
  86. return RT_EOK;
  87. }
  88. static rt_err_t rt_uart_open(rt_device_t dev, rt_uint16_t oflag)
  89. {
  90. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  91. RT_ASSERT(uart != RT_NULL);
  92. if (dev->flag & RT_DEVICE_FLAG_INT_RX)
  93. {
  94. /* Enable the UART Interrupt */
  95. UART_IER(uart->hw_base) |= UARTIER_IRXE;
  96. /* install interrupt */
  97. rt_hw_interrupt_install(uart->irq, rt_uart_irqhandler, RT_NULL, "UART");
  98. rt_hw_interrupt_umask(uart->irq);
  99. }
  100. return RT_EOK;
  101. }
  102. static rt_err_t rt_uart_close(rt_device_t dev)
  103. {
  104. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  105. RT_ASSERT(uart != RT_NULL);
  106. if (dev->flag & RT_DEVICE_FLAG_INT_RX)
  107. {
  108. /* Disable the UART Interrupt */
  109. UART_IER(uart->hw_base) &= ~(UARTIER_IRXE);
  110. }
  111. return RT_EOK;
  112. }
  113. static rt_size_t rt_uart_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  114. {
  115. rt_uint8_t *ptr;
  116. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  117. RT_ASSERT(uart != RT_NULL);
  118. /* point to buffer */
  119. ptr = (rt_uint8_t *)buffer;
  120. if (dev->flag & RT_DEVICE_FLAG_INT_RX)
  121. {
  122. while (size)
  123. {
  124. /* interrupt receive */
  125. rt_base_t level;
  126. /* disable interrupt */
  127. level = rt_hw_interrupt_disable();
  128. if (uart->read_index != uart->save_index)
  129. {
  130. *ptr = uart->rx_buffer[uart->read_index];
  131. uart->read_index ++;
  132. if (uart->read_index >= RT_UART_RX_BUFFER_SIZE)
  133. uart->read_index = 0;
  134. }
  135. else
  136. {
  137. /* no data in rx buffer */
  138. /* enable interrupt */
  139. rt_hw_interrupt_enable(level);
  140. break;
  141. }
  142. /* enable interrupt */
  143. rt_hw_interrupt_enable(level);
  144. ptr ++;
  145. size --;
  146. }
  147. return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
  148. }
  149. return 0;
  150. }
  151. static rt_size_t rt_uart_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  152. {
  153. char *ptr;
  154. struct rt_uart_ls1b *uart = (struct rt_uart_ls1b *)dev;
  155. RT_ASSERT(uart != RT_NULL);
  156. ptr = (char *)buffer;
  157. if (dev->flag & RT_DEVICE_FLAG_STREAM)
  158. {
  159. /* stream mode */
  160. while (size)
  161. {
  162. if (*ptr == '\n')
  163. {
  164. /* FIFO status, contain valid data */
  165. while (!(UART_LSR(uart->hw_base) & (UARTLSR_TE | UARTLSR_TFE)));
  166. /* write data */
  167. UART_DAT(uart->hw_base) = '\r';
  168. }
  169. /* FIFO status, contain valid data */
  170. while (!(UART_LSR(uart->hw_base) & (UARTLSR_TE | UARTLSR_TFE)));
  171. /* write data */
  172. UART_DAT(uart->hw_base) = *ptr;
  173. ptr ++;
  174. size --;
  175. }
  176. }
  177. else
  178. {
  179. while (size != 0)
  180. {
  181. /* FIFO status, contain valid data */
  182. while (!(UART_LSR(uart->hw_base) & (UARTLSR_TE | UARTLSR_TFE)));
  183. /* write data */
  184. UART_DAT(uart->hw_base) = *ptr;
  185. ptr++;
  186. size--;
  187. }
  188. }
  189. return (rt_size_t)ptr - (rt_size_t)buffer;
  190. }
  191. void rt_hw_uart_init(void)
  192. {
  193. struct rt_uart_ls1b *uart;
  194. /* get uart device */
  195. uart = &uart_device;
  196. /* device initialization */
  197. uart->parent.type = RT_Device_Class_Char;
  198. rt_memset(uart->rx_buffer, 0, sizeof(uart->rx_buffer));
  199. uart->read_index = uart->save_index = 0;
  200. #if defined(RT_USING_UART0)
  201. uart->hw_base = UART0_BASE;
  202. uart->irq = LS1B_UART0_IRQ;
  203. #elif defined(RT_USING_UART1)
  204. uart->hw_base = UART1_BASE;
  205. uart->irq = LS1B_UART1_IRQ;
  206. #endif
  207. /* device interface */
  208. uart->parent.init = rt_uart_init;
  209. uart->parent.open = rt_uart_open;
  210. uart->parent.close = rt_uart_close;
  211. uart->parent.read = rt_uart_read;
  212. uart->parent.write = rt_uart_write;
  213. uart->parent.control = RT_NULL;
  214. uart->parent.user_data = RT_NULL;
  215. rt_device_register(&uart->parent, "uart0",
  216. RT_DEVICE_FLAG_RDWR |
  217. RT_DEVICE_FLAG_STREAM |
  218. RT_DEVICE_FLAG_INT_RX);
  219. }
  220. #endif /* end of UART */
  221. /*@}*/