drv_flexspi_nor.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * Copyright (c) 2006-2018, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-07-05 ZYH the first version
  9. * 2019-03-11 JiCheng Remove section"itcm", use scatter file to allocate drv_flexspi.o to itcm
  10. */
  11. #include <rtthread.h>
  12. #define PRINTF rt_kprintf
  13. #include "board.h"
  14. #include <rthw.h>
  15. #include "drv_flexspi.h"
  16. #define DBG_SECTION_NAME "FLEXSPI"
  17. #define DBG_LEVEL DBG_LOG
  18. #include <rtdbg.h>
  19. #define FLEXSPI_CLOCK kCLOCK_FlexSpi
  20. #define NOR_CMD_LUT_SEQ_IDX_READ_NORMAL 0
  21. #define NOR_CMD_LUT_SEQ_IDX_READ_FAST 1
  22. #define NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD 2
  23. #define NOR_CMD_LUT_SEQ_IDX_READSTATUS 3
  24. #define NOR_CMD_LUT_SEQ_IDX_WRITEENABLE 4
  25. #define NOR_CMD_LUT_SEQ_IDX_ERASESECTOR 5
  26. #define NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE 6
  27. #define NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD 7
  28. #define NOR_CMD_LUT_SEQ_IDX_READID 8
  29. #define NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG 9
  30. #define NOR_CMD_LUT_SEQ_IDX_ENTERQPI 10
  31. #define NOR_CMD_LUT_SEQ_IDX_EXITQPI 11
  32. #define NOR_CMD_LUT_SEQ_IDX_READSTATUSREG 12
  33. #define NOR_CMD_LUT_SEQ_IDX_ERASECHIP 13
  34. #define CUSTOM_LUT_LENGTH 60
  35. #define FLASH_BUSY_STATUS_POL 1
  36. #define FLASH_BUSY_STATUS_OFFSET 0
  37. static flexspi_device_config_t deviceconfig =
  38. {
  39. .flexspiRootClk = 100000000,
  40. .flashSize = FLASH_SIZE,
  41. .CSIntervalUnit = kFLEXSPI_CsIntervalUnit1SckCycle,
  42. .CSInterval = 2,
  43. .CSHoldTime = 3,
  44. .CSSetupTime = 3,
  45. .dataValidTime = 0,
  46. .columnspace = 0,
  47. .enableWordAddress = 0,
  48. .AWRSeqIndex = 0,
  49. .AWRSeqNumber = 0,
  50. .ARDSeqIndex = NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD,
  51. .ARDSeqNumber = 1,
  52. .AHBWriteWaitUnit = kFLEXSPI_AhbWriteWaitUnit2AhbCycle,
  53. .AHBWriteWaitInterval = 0,
  54. };
  55. static uint32_t customLUT[CUSTOM_LUT_LENGTH] =
  56. {
  57. /* Normal read mode -SDR */
  58. [4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL] =
  59. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x03, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  60. [4 * NOR_CMD_LUT_SEQ_IDX_READ_NORMAL + 1] =
  61. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  62. /* Fast read mode - SDR */
  63. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST] =
  64. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x0B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  65. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST + 1] = FLEXSPI_LUT_SEQ(
  66. kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
  67. /* Fast read quad mode - SDR */
  68. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD] =
  69. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x6B, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  70. [4 * NOR_CMD_LUT_SEQ_IDX_READ_FAST_QUAD + 1] = FLEXSPI_LUT_SEQ(
  71. kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 0x08, kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04),
  72. /* Read extend parameters */
  73. [4 * NOR_CMD_LUT_SEQ_IDX_READSTATUS] =
  74. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
  75. /* Write Enable */
  76. [4 * NOR_CMD_LUT_SEQ_IDX_WRITEENABLE] =
  77. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x06, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  78. /* Erase Sector */
  79. [4 * NOR_CMD_LUT_SEQ_IDX_ERASESECTOR] =
  80. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x20, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  81. /* Page Program - single mode */
  82. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE] =
  83. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x02, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  84. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_SINGLE + 1] =
  85. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  86. /* Page Program - quad mode */
  87. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD] =
  88. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x32, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
  89. [4 * NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD + 1] =
  90. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  91. /* Read ID */
  92. [4 * NOR_CMD_LUT_SEQ_IDX_READID] =
  93. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xAB, kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 0x18),
  94. [4 * NOR_CMD_LUT_SEQ_IDX_READID + 1] =
  95. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  96. /* Enable Quad mode */
  97. [4 * NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG] =
  98. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x01, kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04),
  99. /* Enter QPI mode */
  100. [4 * NOR_CMD_LUT_SEQ_IDX_ENTERQPI] =
  101. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x38, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  102. /* Exit QPI mode */
  103. [4 * NOR_CMD_LUT_SEQ_IDX_EXITQPI] =
  104. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_4PAD, 0xFF, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  105. /* Read status register */
  106. [4 * NOR_CMD_LUT_SEQ_IDX_READSTATUSREG] =
  107. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x05, kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x04),
  108. /* Erase Chip */
  109. [4 * NOR_CMD_LUT_SEQ_IDX_ERASECHIP] =
  110. FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xC7, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
  111. };
  112. static status_t flexspi_nor_write_enable(FLEXSPI_Type *base, uint32_t baseAddr)
  113. {
  114. flexspi_transfer_t flashXfer;
  115. status_t status;
  116. /* Write neable */
  117. flashXfer.deviceAddress = baseAddr;
  118. flashXfer.port = kFLEXSPI_PortA1;
  119. flashXfer.cmdType = kFLEXSPI_Command;
  120. flashXfer.SeqNumber = 1;
  121. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITEENABLE;
  122. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  123. return status;
  124. }
  125. static status_t flexspi_nor_wait_bus_busy(FLEXSPI_Type *base)
  126. {
  127. /* Wait status ready. */
  128. bool isBusy;
  129. uint32_t readValue;
  130. status_t status;
  131. flexspi_transfer_t flashXfer;
  132. flashXfer.deviceAddress = 0;
  133. flashXfer.port = kFLEXSPI_PortA1;
  134. flashXfer.cmdType = kFLEXSPI_Read;
  135. flashXfer.SeqNumber = 1;
  136. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_READSTATUSREG;
  137. flashXfer.data = &readValue;
  138. flashXfer.dataSize = 1;
  139. do
  140. {
  141. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  142. if (status != kStatus_Success)
  143. {
  144. return status;
  145. }
  146. if (FLASH_BUSY_STATUS_POL)
  147. {
  148. if (readValue & (1U << FLASH_BUSY_STATUS_OFFSET))
  149. {
  150. isBusy = true;
  151. }
  152. else
  153. {
  154. isBusy = false;
  155. }
  156. }
  157. else
  158. {
  159. if (readValue & (1U << FLASH_BUSY_STATUS_OFFSET))
  160. {
  161. isBusy = false;
  162. }
  163. else
  164. {
  165. isBusy = true;
  166. }
  167. }
  168. }
  169. while (isBusy);
  170. return status;
  171. }
  172. static status_t flexspi_nor_enable_quad_mode(FLEXSPI_Type *base)
  173. {
  174. flexspi_transfer_t flashXfer;
  175. status_t status;
  176. uint32_t writeValue = 0x40;
  177. /* Write neable */
  178. status = flexspi_nor_write_enable(base, 0);
  179. if (status != kStatus_Success)
  180. {
  181. return status;
  182. }
  183. /* Enable quad mode. */
  184. flashXfer.deviceAddress = 0;
  185. flashXfer.port = kFLEXSPI_PortA1;
  186. flashXfer.cmdType = kFLEXSPI_Write;
  187. flashXfer.SeqNumber = 1;
  188. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITESTATUSREG;
  189. flashXfer.data = &writeValue;
  190. flashXfer.dataSize = 1;
  191. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  192. if (status != kStatus_Success)
  193. {
  194. dbg_log(DBG_ERROR, "flexspi tranfer error\n");
  195. dbg_here
  196. return status;
  197. }
  198. status = flexspi_nor_wait_bus_busy(base);
  199. return status;
  200. }
  201. status_t flexspi_nor_flash_erase_sector(FLEXSPI_Type *base, uint32_t address)
  202. {
  203. status_t status;
  204. flexspi_transfer_t flashXfer;
  205. /* Write enable */
  206. flashXfer.deviceAddress = address;
  207. flashXfer.port = kFLEXSPI_PortA1;
  208. flashXfer.cmdType = kFLEXSPI_Command;
  209. flashXfer.SeqNumber = 1;
  210. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_WRITEENABLE;
  211. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  212. if (status != kStatus_Success)
  213. {
  214. dbg_log(DBG_ERROR, "flexspi tranfer error\n");
  215. dbg_here
  216. return status;
  217. }
  218. flashXfer.deviceAddress = address;
  219. flashXfer.port = kFLEXSPI_PortA1;
  220. flashXfer.cmdType = kFLEXSPI_Command;
  221. flashXfer.SeqNumber = 1;
  222. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_ERASESECTOR;
  223. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  224. if (status != kStatus_Success)
  225. {
  226. dbg_log(DBG_ERROR, "flexspi tranfer error\n");
  227. dbg_here
  228. return status;
  229. }
  230. status = flexspi_nor_wait_bus_busy(base);
  231. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  232. rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  233. return status;
  234. }
  235. status_t flexspi_nor_flash_page_program(FLEXSPI_Type *base, uint32_t address, const uint32_t *src)
  236. {
  237. status_t status;
  238. flexspi_transfer_t flashXfer;
  239. /* Write neable */
  240. status = flexspi_nor_write_enable(base, address);
  241. if (status != kStatus_Success)
  242. {
  243. return status;
  244. }
  245. /* Prepare page program command */
  246. flashXfer.deviceAddress = address;
  247. flashXfer.port = kFLEXSPI_PortA1;
  248. flashXfer.cmdType = kFLEXSPI_Write;
  249. flashXfer.SeqNumber = 1;
  250. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_PAGEPROGRAM_QUAD;
  251. flashXfer.data = (uint32_t *)src;
  252. flashXfer.dataSize = FLASH_PAGE_SIZE;
  253. status = FLEXSPI_TransferBlocking(base, &flashXfer);
  254. if (status != kStatus_Success)
  255. {
  256. return status;
  257. }
  258. status = flexspi_nor_wait_bus_busy(base);
  259. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  260. rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE, (void *)(FLEXSPI_AMBA_BASE + address), FLEXSPI_NOR_SECTOR_SIZE);
  261. return status;
  262. }
  263. static status_t flexspi_nor_get_vendor_id(FLEXSPI_Type *base, uint8_t *vendorId)
  264. {
  265. uint32_t temp;
  266. flexspi_transfer_t flashXfer;
  267. flashXfer.deviceAddress = 0;
  268. flashXfer.port = kFLEXSPI_PortA1;
  269. flashXfer.cmdType = kFLEXSPI_Read;
  270. flashXfer.SeqNumber = 1;
  271. flashXfer.seqIndex = NOR_CMD_LUT_SEQ_IDX_READID;
  272. flashXfer.data = &temp;
  273. flashXfer.dataSize = 1;
  274. status_t status = FLEXSPI_TransferBlocking(base, &flashXfer);
  275. *vendorId = temp;
  276. return status;
  277. }
  278. int rt_hw_flexspi_init(void)
  279. {
  280. flexspi_config_t config;
  281. status_t status;
  282. uint8_t vendorID = 0;
  283. const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
  284. rt_uint32_t level;
  285. level = rt_hw_interrupt_disable();
  286. CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
  287. CLOCK_InitUsb1Pfd(kCLOCK_Pfd0, 24); /* Set PLL3 PFD0 clock 360MHZ. */
  288. CLOCK_SetMux(kCLOCK_FlexspiMux, 0x3); /* Choose PLL3 PFD0 clock as flexspi source clock. */
  289. CLOCK_SetDiv(kCLOCK_FlexspiDiv, 2); /* flexspi clock 120M. */
  290. dbg_log(DBG_INFO, "NorFlash Init\r\n");
  291. FLEXSPI_GetDefaultConfig(&config);
  292. config.ahbConfig.enableAHBPrefetch = true;
  293. FLEXSPI_Init(FLEXSPI, &config);
  294. FLEXSPI_SetFlashConfig(FLEXSPI, &deviceconfig, kFLEXSPI_PortA1);
  295. FLEXSPI_UpdateLUT(FLEXSPI, 0, customLUT, CUSTOM_LUT_LENGTH);
  296. status = flexspi_nor_get_vendor_id(FLEXSPI, &vendorID);
  297. if (status != kStatus_Success)
  298. {
  299. return status;
  300. }
  301. dbg_log(DBG_INFO, "Vendor ID: 0x%x\r\n", vendorID);
  302. status = flexspi_nor_enable_quad_mode(FLEXSPI);
  303. if (status != kStatus_Success)
  304. {
  305. dbg_log(DBG_ERROR, "Entry Quad mode failed\r\n");
  306. return status;
  307. }
  308. dbg_log(DBG_INFO, "NorFlash Init Done\r\n");
  309. rt_hw_interrupt_enable(level);
  310. return 0;
  311. }