drv_usart_v2.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186
  1. /*
  2. * Copyright (c) 2006-2024, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2024-03-19 Evlers first implementation
  9. */
  10. #include "drv_usart_v2.h"
  11. #ifdef RT_USING_SERIAL_V2
  12. #if !defined(BSP_USING_UART0) && !defined(BSP_USING_UART1) && \
  13. !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
  14. !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && \
  15. !defined(BSP_USING_UART6) && !defined(BSP_USING_UART7)
  16. #error "Please define at least one UARTx"
  17. #endif
  18. #include <rtdevice.h>
  19. enum {
  20. #ifdef BSP_USING_UART0
  21. UART0_INDEX,
  22. #endif
  23. #ifdef BSP_USING_UART1
  24. UART1_INDEX,
  25. #endif
  26. #ifdef BSP_USING_UART2
  27. UART2_INDEX,
  28. #endif
  29. #ifdef BSP_USING_UART3
  30. UART3_INDEX,
  31. #endif
  32. #ifdef BSP_USING_UART4
  33. UART4_INDEX,
  34. #endif
  35. #ifdef BSP_USING_UART5
  36. UART5_INDEX,
  37. #endif
  38. #ifdef BSP_USING_UART6
  39. UART6_INDEX,
  40. #endif
  41. #ifdef BSP_USING_UART7
  42. UART7_INDEX,
  43. #endif
  44. };
  45. static struct gd32_uart uart_obj[] = {
  46. #ifdef BSP_USING_UART0
  47. {
  48. "uart0",
  49. USART0, // uart peripheral index
  50. USART0_IRQn, // uart iqrn
  51. RCU_USART0, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock
  52. #if defined SOC_SERIES_GD32F4xx
  53. GPIOA, GPIO_AF_7, GPIO_PIN_9, // tx port, tx alternate, tx pin
  54. GPIOA, GPIO_AF_7, GPIO_PIN_10, // rx port, rx alternate, rx pin
  55. #else
  56. GPIOA, GPIO_PIN_9, // tx port, tx pin
  57. GPIOA, GPIO_PIN_10, // rx port, rx pin
  58. #endif
  59. #ifdef BSP_UART0_RX_USING_DMA
  60. .dma.rx = DRV_DMA_CONFIG(1, 5, 4),
  61. #endif
  62. #ifdef BSP_UART0_TX_USING_DMA
  63. .dma.tx = DRV_DMA_CONFIG(1, 7, 4),
  64. #endif
  65. },
  66. #endif
  67. #ifdef BSP_USING_UART1
  68. {
  69. "uart1",
  70. USART1, // uart peripheral index
  71. USART1_IRQn, // uart iqrn
  72. RCU_USART1, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock
  73. #if defined SOC_SERIES_GD32F4xx
  74. GPIOA, GPIO_AF_7, GPIO_PIN_2, // tx port, tx alternate, tx pin
  75. GPIOA, GPIO_AF_7, GPIO_PIN_3, // rx port, rx alternate, rx pin
  76. #else
  77. GPIOA, GPIO_PIN_2, // tx port, tx pin
  78. GPIOA, GPIO_PIN_3, // rx port, rx pin
  79. #endif
  80. #ifdef BSP_UART1_RX_USING_DMA
  81. .dma.rx = DRV_DMA_CONFIG(0, 5, 4),
  82. #endif
  83. #ifdef BSP_UART1_TX_USING_DMA
  84. .dma.tx = DRV_DMA_CONFIG(0, 6, 4),
  85. #endif
  86. },
  87. #endif
  88. #ifdef BSP_USING_UART2
  89. {
  90. "uart2",
  91. USART2, // uart peripheral index
  92. USART2_IRQn, // uart iqrn
  93. RCU_USART2, RCU_GPIOB, RCU_GPIOB, // periph clock, tx gpio clock, rt gpio clock
  94. #if defined SOC_SERIES_GD32F4xx
  95. GPIOB, GPIO_AF_7, GPIO_PIN_10, // tx port, tx alternate, tx pin
  96. GPIOB, GPIO_AF_7, GPIO_PIN_11, // rx port, rx alternate, rx pin
  97. #else
  98. GPIOB, GPIO_PIN_10, // tx port, tx pin
  99. GPIOB, GPIO_PIN_11, // rx port, rx pin
  100. #endif
  101. #ifdef BSP_UART2_RX_USING_DMA
  102. .dma.rx = DRV_DMA_CONFIG(0, 1, 4),
  103. #endif
  104. #ifdef BSP_UART2_TX_USING_DMA
  105. .dma.tx = DRV_DMA_CONFIG(0, 3, 4),
  106. #endif
  107. },
  108. #endif
  109. #ifdef BSP_USING_UART3
  110. {
  111. "uart3",
  112. UART3, // uart peripheral index
  113. UART3_IRQn, // uart iqrn
  114. RCU_UART3, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock
  115. #if defined SOC_SERIES_GD32F4xx
  116. GPIOC, GPIO_AF_8, GPIO_PIN_10, // tx port, tx alternate, tx pin
  117. GPIOC, GPIO_AF_8, GPIO_PIN_11, // rx port, rx alternate, rx pin
  118. #else
  119. GPIOC, GPIO_PIN_10, // tx port, tx pin
  120. GPIOC, GPIO_PIN_11, // rx port, rx pin
  121. #endif
  122. #ifdef BSP_UART3_RX_USING_DMA
  123. .dma.rx = DRV_DMA_CONFIG(0, 2, 4),
  124. #endif
  125. #ifdef BSP_UART3_TX_USING_DMA
  126. .dma.tx = DRV_DMA_CONFIG(0, 4, 4),
  127. #endif
  128. },
  129. #endif
  130. #ifdef BSP_USING_UART4
  131. {
  132. "uart4",
  133. UART4, // uart peripheral index
  134. UART4_IRQn, // uart iqrn
  135. RCU_UART4, RCU_GPIOC, RCU_GPIOD, // periph clock, tx gpio clock, rt gpio clock
  136. #if defined SOC_SERIES_GD32F4xx
  137. GPIOC, GPIO_AF_8, GPIO_PIN_12, // tx port, tx alternate, tx pin
  138. GPIOD, GPIO_AF_8, GPIO_PIN_2, // rx port, rx alternate, rx pin
  139. #else
  140. GPIOC, GPIO_PIN_12, // tx port, tx pin
  141. GPIOD, GPIO_PIN_2, // rx port, rx pin
  142. #endif
  143. #ifdef BSP_UART4_RX_USING_DMA
  144. .dma.rx = DRV_DMA_CONFIG(0, 0, 4),
  145. #endif
  146. #ifdef BSP_UART4_TX_USING_DMA
  147. .dma.tx = DRV_DMA_CONFIG(0, 7, 4),
  148. #endif
  149. },
  150. #endif
  151. #ifdef BSP_USING_UART5
  152. {
  153. "uart5",
  154. USART5, // uart peripheral index
  155. USART5_IRQn, // uart iqrn
  156. RCU_USART5, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock
  157. #if defined SOC_SERIES_GD32F4xx
  158. GPIOC, GPIO_AF_8, GPIO_PIN_6, // tx port, tx alternate, tx pin
  159. GPIOC, GPIO_AF_8, GPIO_PIN_7, // rx port, rx alternate, rx pin
  160. #else
  161. GPIOC, GPIO_PIN_6, // tx port, tx pin
  162. GPIOC, GPIO_PIN_7, // rx port, rx pin
  163. #endif
  164. #ifdef BSP_UART5_RX_USING_DMA
  165. .dma.rx = DRV_DMA_CONFIG(1, 1, 5),
  166. #endif
  167. #ifdef BSP_UART5_TX_USING_DMA
  168. .dma.tx = DRV_DMA_CONFIG(1, 7, 5),
  169. #endif
  170. },
  171. #endif
  172. #ifdef BSP_USING_UART6
  173. {
  174. "uart6",
  175. UART6, // uart peripheral index
  176. UART6_IRQn, // uart iqrn
  177. RCU_UART6, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock
  178. #if defined SOC_SERIES_GD32F4xx
  179. GPIOE, GPIO_AF_8, GPIO_PIN_7, // tx port, tx alternate, tx pin
  180. GPIOE, GPIO_AF_8, GPIO_PIN_8, // rx port, rx alternate, rx pin
  181. #else
  182. GPIOE, GPIO_PIN_7, // tx port, tx pin
  183. GPIOE, GPIO_PIN_8, // rx port, rx pin
  184. #endif
  185. #ifdef BSP_UART6_RX_USING_DMA
  186. .dma.rx = DRV_DMA_CONFIG(0, 3, 5),
  187. #endif
  188. #ifdef BSP_UART6_TX_USING_DMA
  189. .dma.tx = DRV_DMA_CONFIG(0, 1, 5),
  190. #endif
  191. },
  192. #endif
  193. #ifdef BSP_USING_UART7
  194. {
  195. "uart7",
  196. UART7, // uart peripheral index
  197. UART7_IRQn, // uart iqrn
  198. RCU_UART7, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock
  199. #if defined SOC_SERIES_GD32F4xx
  200. GPIOE, GPIO_AF_8, GPIO_PIN_0, // tx port, tx alternate, tx pin
  201. GPIOE, GPIO_AF_8, GPIO_PIN_1, // rx port, rx alternate, rx pin
  202. #else
  203. GPIOE, GPIO_PIN_0, // tx port, tx pin
  204. GPIOE, GPIO_PIN_1, // rx port, rx pin
  205. #endif
  206. #ifdef BSP_UART7_RX_USING_DMA
  207. .dma.rx = DRV_DMA_CONFIG(0, 6, 5),
  208. #endif
  209. #ifdef BSP_UART7_TX_USING_DMA
  210. .dma.tx = DRV_DMA_CONFIG(0, 0, 5),
  211. #endif
  212. },
  213. #endif
  214. };
  215. #ifdef RT_SERIAL_USING_DMA
  216. static void dma_recv_isr (struct rt_serial_device *serial)
  217. {
  218. struct gd32_uart *uart;
  219. rt_size_t recv_len, counter;
  220. rt_base_t level;
  221. RT_ASSERT(serial != RT_NULL);
  222. uart = rt_container_of(serial, struct gd32_uart, serial);
  223. recv_len = 0;
  224. level = rt_hw_interrupt_disable();
  225. counter = dma_transfer_number_get(uart->dma.rx.periph, uart->dma.rx.channel);
  226. if (counter <= uart->dma.last_index)
  227. {
  228. recv_len = uart->dma.last_index - counter;
  229. }
  230. else
  231. {
  232. recv_len = serial->config.rx_bufsz + uart->dma.last_index - counter;
  233. }
  234. uart->dma.last_index = counter;
  235. rt_hw_interrupt_enable(level);
  236. if (recv_len)
  237. {
  238. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
  239. }
  240. }
  241. #endif
  242. static void usart_isr (struct rt_serial_device *serial)
  243. {
  244. struct gd32_uart *uart;
  245. RT_ASSERT(serial != RT_NULL);
  246. uart = rt_container_of(serial, struct gd32_uart, serial);
  247. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RBNE) != RESET)
  248. {
  249. struct rt_serial_rx_fifo *rx_fifo;
  250. rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
  251. RT_ASSERT(rx_fifo != RT_NULL);
  252. rt_ringbuffer_putchar(&(rx_fifo->rb), usart_data_receive(uart->periph));
  253. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
  254. /* Clear RXNE interrupt flag */
  255. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RBNE);
  256. }
  257. else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_TBE) != RESET)
  258. {
  259. struct rt_serial_tx_fifo *tx_fifo;
  260. tx_fifo = (struct rt_serial_tx_fifo *) serial->serial_tx;
  261. RT_ASSERT(tx_fifo != RT_NULL);
  262. rt_uint8_t put_char = 0;
  263. if (rt_ringbuffer_getchar(&(tx_fifo->rb), &put_char))
  264. {
  265. usart_data_transmit(uart->periph, put_char);
  266. }
  267. else
  268. {
  269. usart_interrupt_disable(uart->periph, USART_INT_TBE);
  270. usart_interrupt_enable(uart->periph, USART_INT_TC);
  271. }
  272. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_TBE);
  273. }
  274. else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_TC) != RESET)
  275. {
  276. usart_interrupt_disable(uart->periph, USART_INT_TC);
  277. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
  278. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_TC);
  279. }
  280. #ifdef RT_SERIAL_USING_DMA
  281. else if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_IDLE) != RESET)
  282. {
  283. volatile uint8_t data = (uint8_t)usart_data_receive(uart->periph);
  284. dma_recv_isr(serial);
  285. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_IDLE);
  286. }
  287. #endif
  288. else
  289. {
  290. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_ORERR) != RESET)
  291. {
  292. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_ORERR);
  293. }
  294. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_NERR) != RESET)
  295. {
  296. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_NERR);
  297. }
  298. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_ERR_FERR) != RESET)
  299. {
  300. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_ERR_FERR);
  301. }
  302. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RBNE_ORERR) != RESET)
  303. {
  304. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RBNE_ORERR);
  305. }
  306. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_PERR) != RESET)
  307. {
  308. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_PERR);
  309. }
  310. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_CTS) != RESET)
  311. {
  312. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_CTS);
  313. }
  314. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_LBD) != RESET)
  315. {
  316. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_LBD);
  317. }
  318. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_EB) != RESET)
  319. {
  320. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_EB);
  321. }
  322. if (usart_interrupt_flag_get(uart->periph, USART_INT_FLAG_RT) != RESET)
  323. {
  324. usart_interrupt_flag_clear(uart->periph, USART_INT_FLAG_RT);
  325. }
  326. }
  327. }
  328. #if defined(BSP_UART0_RX_USING_DMA) || \
  329. defined(BSP_UART1_RX_USING_DMA) || \
  330. defined(BSP_UART2_RX_USING_DMA) || \
  331. defined(BSP_UART3_RX_USING_DMA) || \
  332. defined(BSP_UART4_RX_USING_DMA) || \
  333. defined(BSP_UART5_RX_USING_DMA) || \
  334. defined(BSP_UART6_RX_USING_DMA) || \
  335. defined(BSP_UART7_RX_USING_DMA)
  336. static void dma_rx_isr (struct rt_serial_device *serial)
  337. {
  338. struct gd32_uart *uart;
  339. RT_ASSERT(serial != RT_NULL);
  340. uart = rt_container_of(serial, struct gd32_uart, serial);
  341. if ((dma_interrupt_flag_get(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_HTF) != RESET) ||
  342. (dma_interrupt_flag_get(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_FTF) != RESET))
  343. {
  344. dma_recv_isr(serial);
  345. /* clear dma flag */
  346. dma_interrupt_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_HTF);
  347. dma_interrupt_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_INT_FLAG_FTF);
  348. }
  349. }
  350. #endif
  351. #if defined(BSP_UART0_TX_USING_DMA) || \
  352. defined(BSP_UART1_TX_USING_DMA) || \
  353. defined(BSP_UART2_TX_USING_DMA) || \
  354. defined(BSP_UART3_TX_USING_DMA) || \
  355. defined(BSP_UART4_TX_USING_DMA) || \
  356. defined(BSP_UART5_TX_USING_DMA) || \
  357. defined(BSP_UART6_TX_USING_DMA) || \
  358. defined(BSP_UART7_TX_USING_DMA)
  359. static void dma_tx_isr (struct rt_serial_device *serial)
  360. {
  361. struct gd32_uart *uart;
  362. RT_ASSERT(serial != RT_NULL);
  363. uart = rt_container_of(serial, struct gd32_uart, serial);
  364. if (dma_interrupt_flag_get(uart->dma.tx.periph, uart->dma.tx.channel, DMA_INT_FLAG_FTF) != RESET)
  365. {
  366. rt_size_t trans_total_index;
  367. /* clear dma flag */
  368. dma_interrupt_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_INT_FLAG_FTF);
  369. /* disable dma tx channel */
  370. dma_channel_disable(uart->dma.tx.periph, uart->dma.tx.channel);
  371. trans_total_index = dma_transfer_number_get(uart->dma.tx.periph, uart->dma.tx.channel);
  372. if (trans_total_index == 0)
  373. {
  374. rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
  375. }
  376. }
  377. }
  378. #endif
  379. #if defined(BSP_USING_UART0)
  380. void USART0_IRQHandler (void)
  381. {
  382. /* enter interrupt */
  383. rt_interrupt_enter();
  384. usart_isr(&uart_obj[UART0_INDEX].serial);
  385. /* leave interrupt */
  386. rt_interrupt_leave();
  387. }
  388. #endif /* BSP_USING_UART0 */
  389. #if defined(BSP_USING_UART1)
  390. void USART1_IRQHandler (void)
  391. {
  392. /* enter interrupt */
  393. rt_interrupt_enter();
  394. usart_isr(&uart_obj[UART1_INDEX].serial);
  395. /* leave interrupt */
  396. rt_interrupt_leave();
  397. }
  398. #endif /* BSP_USING_UART1 */
  399. #if defined(BSP_USING_UART2)
  400. void USART2_IRQHandler (void)
  401. {
  402. /* enter interrupt */
  403. rt_interrupt_enter();
  404. usart_isr(&uart_obj[UART2_INDEX].serial);
  405. /* leave interrupt */
  406. rt_interrupt_leave();
  407. }
  408. #endif /* BSP_USING_UART2 */
  409. #if defined(BSP_USING_UART3)
  410. void UART3_IRQHandler (void)
  411. {
  412. /* enter interrupt */
  413. rt_interrupt_enter();
  414. usart_isr(&uart_obj[UART3_INDEX].serial);
  415. /* leave interrupt */
  416. rt_interrupt_leave();
  417. }
  418. #endif /* BSP_USING_UART3 */
  419. #if defined(BSP_USING_UART4)
  420. void UART4_IRQHandler (void)
  421. {
  422. /* enter interrupt */
  423. rt_interrupt_enter();
  424. usart_isr(&uart_obj[UART4_INDEX].serial);
  425. /* leave interrupt */
  426. rt_interrupt_leave();
  427. }
  428. #endif /* BSP_USING_UART4 */
  429. #if defined(BSP_USING_UART5)
  430. void USART5_IRQHandler (void)
  431. {
  432. /* enter interrupt */
  433. rt_interrupt_enter();
  434. usart_isr(&uart_obj[UART5_INDEX].serial);
  435. /* leave interrupt */
  436. rt_interrupt_leave();
  437. }
  438. #endif /* BSP_USING_UART5 */
  439. #if defined(BSP_USING_UART6)
  440. void UART6_IRQHandler (void)
  441. {
  442. /* enter interrupt */
  443. rt_interrupt_enter();
  444. usart_isr(&uart_obj[UART6_INDEX].serial);
  445. /* leave interrupt */
  446. rt_interrupt_leave();
  447. }
  448. #endif /* BSP_USING_UART6 */
  449. #if defined(BSP_USING_UART7)
  450. void UART7_IRQHandler (void)
  451. {
  452. /* enter interrupt */
  453. rt_interrupt_enter();
  454. usart_isr(&uart_obj[UART7_INDEX].serial);
  455. /* leave interrupt */
  456. rt_interrupt_leave();
  457. }
  458. #endif /* BSP_USING_UART7 */
  459. #ifdef BSP_UART0_RX_USING_DMA
  460. void DMA1_Channel5_IRQHandler (void)
  461. {
  462. dma_rx_isr(&uart_obj[UART0_INDEX].serial);
  463. }
  464. #endif
  465. #ifdef BSP_UART0_TX_USING_DMA
  466. void DMA1_Channel7_IRQHandler (void)
  467. {
  468. dma_tx_isr(&uart_obj[UART0_INDEX].serial);
  469. }
  470. #endif
  471. #ifdef BSP_UART1_RX_USING_DMA
  472. void DMA0_Channel5_IRQHandler (void)
  473. {
  474. dma_rx_isr(&uart_obj[UART1_INDEX].serial);
  475. }
  476. #endif
  477. #ifdef BSP_UART1_TX_USING_DMA
  478. void DMA0_Channel6_IRQHandler (void)
  479. {
  480. dma_tx_isr(&uart_obj[UART1_INDEX].serial);
  481. }
  482. #endif
  483. #ifdef BSP_UART2_RX_USING_DMA
  484. void DMA0_Channel1_IRQHandler (void)
  485. {
  486. dma_rx_isr(&uart_obj[UART2_INDEX].serial);
  487. }
  488. #endif
  489. #ifdef BSP_UART2_TX_USING_DMA
  490. void DMA0_Channel3_IRQHandler (void)
  491. {
  492. dma_tx_isr(&uart_obj[UART2_INDEX].serial);
  493. }
  494. #endif
  495. #ifdef BSP_UART3_RX_USING_DMA
  496. void DMA0_Channel2_IRQHandler (void)
  497. {
  498. dma_rx_isr(&uart_obj[UART3_INDEX].serial);
  499. }
  500. #endif
  501. #ifdef BSP_UART3_TX_USING_DMA
  502. void DMA0_Channel4_IRQHandler (void)
  503. {
  504. dma_tx_isr(&uart_obj[UART3_INDEX].serial);
  505. }
  506. #endif
  507. #ifdef BSP_UART4_RX_USING_DMA
  508. void DMA0_Channel0_IRQHandler (void)
  509. {
  510. dma_rx_isr(&uart_obj[UART4_INDEX].serial);
  511. }
  512. #endif
  513. #ifdef BSP_UART4_TX_USING_DMA
  514. void DMA0_Channel7_IRQHandler (void)
  515. {
  516. dma_tx_isr(&uart_obj[UART4_INDEX].serial);
  517. }
  518. #endif
  519. #ifdef BSP_UART5_RX_USING_DMA
  520. void DMA1_Channel1_IRQHandler (void)
  521. {
  522. dma_rx_isr(&uart_obj[UART5_INDEX].serial);
  523. }
  524. #endif
  525. #ifdef BSP_UART5_TX_USING_DMA
  526. void DMA1_Channel7_IRQHandler (void)
  527. {
  528. dma_tx_isr(&uart_obj[UART5_INDEX].serial);
  529. }
  530. #endif
  531. #ifdef BSP_UART6_RX_USING_DMA
  532. void DMA0_Channel3_IRQHandler (void)
  533. {
  534. dma_rx_isr(&uart_obj[UART6_INDEX].serial);
  535. }
  536. #endif
  537. #ifdef BSP_UART6_TX_USING_DMA
  538. void DMA0_Channel1_IRQHandler (void)
  539. {
  540. dma_tx_isr(&uart_obj[UART6_INDEX].serial);
  541. }
  542. #endif
  543. #ifdef BSP_UART7_RX_USING_DMA
  544. void DMA0_Channel6_IRQHandler (void)
  545. {
  546. dma_rx_isr(&uart_obj[UART7_INDEX].serial);
  547. }
  548. #endif
  549. #ifdef BSP_UART7_TX_USING_DMA
  550. void DMA0_Channel0_IRQHandler (void)
  551. {
  552. dma_tx_isr(&uart_obj[UART7_INDEX].serial);
  553. }
  554. #endif
  555. /**
  556. * @brief UART MSP Initialization
  557. * This function configures the hardware resources used in this example:
  558. * - Peripheral's clock enable
  559. * - Peripheral's GPIO Configuration
  560. * - NVIC configuration for UART interrupt request enable
  561. * @param huart: UART handle pointer
  562. * @retval None
  563. */
  564. void gd32_uart_gpio_init (struct gd32_uart *uart)
  565. {
  566. /* enable USART clock */
  567. rcu_periph_clock_enable(uart->tx_gpio_clk);
  568. rcu_periph_clock_enable(uart->rx_gpio_clk);
  569. rcu_periph_clock_enable(uart->per_clk);
  570. #if defined SOC_SERIES_GD32F4xx
  571. /* connect port to USARTx_Tx */
  572. gpio_af_set(uart->tx_port, uart->tx_af, uart->tx_pin);
  573. /* connect port to USARTx_Rx */
  574. gpio_af_set(uart->rx_port, uart->rx_af, uart->rx_pin);
  575. /* configure USART Tx as alternate function push-pull */
  576. gpio_mode_set(uart->tx_port, GPIO_MODE_AF, GPIO_PUPD_PULLUP, uart->tx_pin);
  577. gpio_output_options_set(uart->tx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->tx_pin);
  578. /* configure USART Rx as alternate function push-pull */
  579. gpio_mode_set(uart->rx_port, GPIO_MODE_AF, GPIO_PUPD_PULLUP, uart->rx_pin);
  580. gpio_output_options_set(uart->rx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->rx_pin);
  581. #else
  582. /* connect port to USARTx_Tx */
  583. gpio_init(uart->tx_port, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, uart->tx_pin);
  584. /* connect port to USARTx_Rx */
  585. gpio_init(uart->rx_port, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, uart->rx_pin);
  586. #endif
  587. NVIC_SetPriority(uart->irqn, 0);
  588. NVIC_EnableIRQ(uart->irqn);
  589. }
  590. /**
  591. * @brief uart configure
  592. * @param serial, cfg
  593. * @retval None
  594. */
  595. static rt_err_t gd32_uart_configure (struct rt_serial_device *serial, struct serial_configure *cfg)
  596. {
  597. struct gd32_uart *uart;
  598. RT_ASSERT(serial != RT_NULL);
  599. RT_ASSERT(cfg != RT_NULL);
  600. uart = rt_container_of(serial, struct gd32_uart, serial);
  601. #ifdef RT_SERIAL_USING_DMA
  602. uart->dma.last_index = serial->config.rx_bufsz;
  603. #endif
  604. gd32_uart_gpio_init(uart);
  605. usart_baudrate_set(uart->periph, cfg->baud_rate);
  606. switch (cfg->data_bits)
  607. {
  608. case DATA_BITS_9:
  609. usart_word_length_set(uart->periph, USART_WL_9BIT);
  610. break;
  611. default:
  612. usart_word_length_set(uart->periph, USART_WL_8BIT);
  613. break;
  614. }
  615. switch (cfg->stop_bits)
  616. {
  617. case STOP_BITS_2:
  618. usart_stop_bit_set(uart->periph, USART_STB_2BIT);
  619. break;
  620. default:
  621. usart_stop_bit_set(uart->periph, USART_STB_1BIT);
  622. break;
  623. }
  624. switch (cfg->parity)
  625. {
  626. case PARITY_ODD:
  627. usart_parity_config(uart->periph, USART_PM_ODD);
  628. break;
  629. case PARITY_EVEN:
  630. usart_parity_config(uart->periph, USART_PM_EVEN);
  631. break;
  632. default:
  633. usart_parity_config(uart->periph, USART_PM_NONE);
  634. break;
  635. }
  636. usart_receive_config(uart->periph, USART_RECEIVE_ENABLE);
  637. usart_transmit_config(uart->periph, USART_TRANSMIT_ENABLE);
  638. usart_enable(uart->periph);
  639. return RT_EOK;
  640. }
  641. #ifdef RT_SERIAL_USING_DMA
  642. static void _uart_dma_receive (struct gd32_uart *uart, rt_uint8_t *buffer, rt_uint32_t size)
  643. {
  644. dma_single_data_parameter_struct dma_init_struct = { 0 };
  645. /* clear all the interrupt flags */
  646. dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_FEE);
  647. dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_SDE);
  648. dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_TAE);
  649. dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_HTF);
  650. dma_flag_clear(uart->dma.rx.periph, uart->dma.rx.channel, DMA_FLAG_FTF);
  651. dma_channel_disable(uart->dma.rx.periph, uart->dma.rx.channel);
  652. dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel);
  653. /* configure receive DMA */
  654. rcu_periph_clock_enable(uart->dma.rx.rcu);
  655. dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel);
  656. dma_init_struct.number = size;
  657. dma_init_struct.memory0_addr = (uint32_t)buffer;
  658. dma_init_struct.periph_addr = (uint32_t)&USART_DATA(uart->periph);
  659. dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;
  660. dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
  661. dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
  662. dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_ENABLE;
  663. dma_init_struct.direction = DMA_PERIPH_TO_MEMORY;
  664. dma_init_struct.priority = DMA_PRIORITY_HIGH;
  665. dma_single_data_mode_init(uart->dma.rx.periph, uart->dma.rx.channel, &dma_init_struct);
  666. dma_channel_subperipheral_select(uart->dma.rx.periph, uart->dma.rx.channel, uart->dma.rx.subperiph);
  667. /* enable transmit complete interrupt */
  668. nvic_irq_enable(uart->dma.rx.irq, 2, 0);
  669. dma_interrupt_enable(uart->dma.rx.periph, uart->dma.rx.channel, DMA_CHXCTL_HTFIE);
  670. dma_interrupt_enable(uart->dma.rx.periph, uart->dma.rx.channel, DMA_CHXCTL_FTFIE);
  671. /* enable dma channel */
  672. dma_channel_enable(uart->dma.rx.periph, uart->dma.rx.channel);
  673. /* enable usart idle interrupt */
  674. usart_interrupt_enable(uart->periph, USART_INT_IDLE);
  675. /* enable dma receive */
  676. usart_dma_receive_config(uart->periph, USART_RECEIVE_DMA_ENABLE);
  677. }
  678. static void _uart_dma_transmit (struct gd32_uart *uart, rt_uint8_t *buffer, rt_uint32_t size)
  679. {
  680. /* Set the data length and data pointer */
  681. DMA_CHM0ADDR(uart->dma.tx.periph, uart->dma.tx.channel) = (uint32_t)buffer;
  682. DMA_CHCNT(uart->dma.tx.periph, uart->dma.tx.channel) = size;
  683. /* enable dma transmit */
  684. usart_dma_transmit_config(uart->periph, USART_TRANSMIT_DMA_ENABLE);
  685. /* enable dma channel */
  686. dma_channel_enable(uart->dma.tx.periph, uart->dma.tx.channel);
  687. }
  688. static void gd32_dma_config (struct rt_serial_device *serial, rt_ubase_t flag)
  689. {
  690. struct gd32_uart *uart;
  691. struct rt_serial_rx_fifo *rx_fifo;
  692. dma_single_data_parameter_struct dma_init_struct = { 0 };
  693. RT_ASSERT(serial != RT_NULL);
  694. uart = rt_container_of(serial, struct gd32_uart, serial);
  695. RT_ASSERT(flag == RT_DEVICE_FLAG_DMA_TX || flag == RT_DEVICE_FLAG_DMA_RX);
  696. /* enable rx dma */
  697. if (flag == RT_DEVICE_FLAG_DMA_TX)
  698. {
  699. /* clear all the interrupt flags */
  700. dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_FEE);
  701. dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_SDE);
  702. dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_TAE);
  703. dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_HTF);
  704. dma_flag_clear(uart->dma.tx.periph, uart->dma.tx.channel, DMA_FLAG_FTF);
  705. dma_channel_disable(uart->dma.tx.periph, uart->dma.tx.channel);
  706. dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel);
  707. /* configure receive DMA */
  708. rcu_periph_clock_enable(uart->dma.tx.rcu);
  709. dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel);
  710. dma_init_struct.periph_addr = (uint32_t)&USART_DATA(uart->periph);
  711. dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;
  712. dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
  713. dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
  714. dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
  715. dma_init_struct.direction = DMA_MEMORY_TO_PERIPH;
  716. dma_init_struct.priority = DMA_PRIORITY_HIGH;
  717. dma_single_data_mode_init(uart->dma.tx.periph, uart->dma.tx.channel, &dma_init_struct);
  718. dma_channel_subperipheral_select(uart->dma.tx.periph, uart->dma.tx.channel, uart->dma.tx.subperiph);
  719. /* enable tx dma interrupt */
  720. nvic_irq_enable(uart->dma.tx.irq, 2, 0);
  721. /* enable transmit complete interrupt */
  722. dma_interrupt_enable(uart->dma.tx.periph, uart->dma.tx.channel, DMA_CHXCTL_FTFIE);
  723. }
  724. /* enable rx dma */
  725. if (flag == RT_DEVICE_FLAG_DMA_RX)
  726. {
  727. rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
  728. /* start dma transfer */
  729. _uart_dma_receive(uart, rx_fifo->buffer, serial->config.rx_bufsz);
  730. }
  731. }
  732. #endif
  733. /**
  734. * @brief uart control
  735. * @param serial, arg
  736. * @retval None
  737. */
  738. static rt_err_t gd32_uart_control (struct rt_serial_device *serial, int cmd, void *arg)
  739. {
  740. struct gd32_uart *uart;
  741. rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
  742. RT_ASSERT(serial != RT_NULL);
  743. uart = rt_container_of(serial, struct gd32_uart, serial);
  744. if (ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING))
  745. {
  746. if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_RX)
  747. ctrl_arg = RT_DEVICE_FLAG_DMA_RX;
  748. else
  749. ctrl_arg = RT_DEVICE_FLAG_INT_RX;
  750. }
  751. else if (ctrl_arg & (RT_DEVICE_FLAG_TX_BLOCKING | RT_DEVICE_FLAG_TX_NON_BLOCKING))
  752. {
  753. if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  754. ctrl_arg = RT_DEVICE_FLAG_DMA_TX;
  755. else
  756. ctrl_arg = RT_DEVICE_FLAG_INT_TX;
  757. }
  758. switch (cmd)
  759. {
  760. case RT_DEVICE_CTRL_CLR_INT:
  761. /* disable rx irq */
  762. NVIC_DisableIRQ(uart->irqn);
  763. /* disable interrupt */
  764. if (ctrl_arg == RT_DEVICE_FLAG_INT_RX)
  765. {
  766. usart_interrupt_disable(uart->periph, USART_INT_RBNE);
  767. }
  768. else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX)
  769. {
  770. usart_interrupt_disable(uart->periph, USART_INT_TBE);
  771. }
  772. #ifdef RT_SERIAL_USING_DMA
  773. /* disable DMA */
  774. else if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
  775. {
  776. usart_interrupt_disable(uart->periph, USART_INT_RBNE);
  777. NVIC_DisableIRQ(uart->dma.rx.irq);
  778. dma_deinit(uart->dma.rx.periph, uart->dma.rx.channel);
  779. }
  780. else if(ctrl_arg == RT_DEVICE_FLAG_DMA_TX)
  781. {
  782. usart_interrupt_disable(uart->periph, USART_INT_TBE);
  783. NVIC_DisableIRQ(uart->dma.tx.irq);
  784. dma_deinit(uart->dma.tx.periph, uart->dma.tx.channel);
  785. }
  786. #endif
  787. break;
  788. case RT_DEVICE_CTRL_SET_INT:
  789. /* enable rx irq */
  790. NVIC_EnableIRQ(uart->irqn);
  791. /* enable interrupt */
  792. if (ctrl_arg == RT_DEVICE_FLAG_INT_RX)
  793. {
  794. usart_interrupt_enable(uart->periph, USART_INT_RBNE);
  795. }
  796. else if (ctrl_arg == RT_DEVICE_FLAG_INT_TX)
  797. {
  798. usart_interrupt_enable(uart->periph, USART_INT_TBE);
  799. }
  800. break;
  801. case RT_DEVICE_CTRL_CONFIG:
  802. if(ctrl_arg & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
  803. {
  804. #ifdef RT_SERIAL_USING_DMA
  805. gd32_dma_config(serial, ctrl_arg);
  806. #endif
  807. }
  808. else
  809. {
  810. gd32_uart_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)ctrl_arg);
  811. }
  812. break;
  813. case RT_DEVICE_CHECK_OPTMODE:
  814. if(ctrl_arg & RT_DEVICE_FLAG_DMA_TX)
  815. return RT_SERIAL_TX_BLOCKING_NO_BUFFER;
  816. else
  817. return RT_SERIAL_TX_BLOCKING_BUFFER;
  818. case RT_DEVICE_CTRL_CLOSE:
  819. usart_deinit(uart->periph);
  820. break;
  821. }
  822. return RT_EOK;
  823. }
  824. /**
  825. * @brief uart put char
  826. * @param serial, ch
  827. * @retval None
  828. */
  829. static int gd32_uart_putc (struct rt_serial_device *serial, char ch)
  830. {
  831. struct gd32_uart *uart;
  832. RT_ASSERT(serial != RT_NULL);
  833. uart = rt_container_of(serial, struct gd32_uart, serial);
  834. usart_data_transmit(uart->periph, ch);
  835. while((usart_flag_get(uart->periph, USART_FLAG_TBE) == RESET));
  836. return RT_EOK;
  837. }
  838. /**
  839. * @brief uart get char
  840. * @param serial
  841. * @retval None
  842. */
  843. static int gd32_uart_getc (struct rt_serial_device *serial)
  844. {
  845. int ch;
  846. struct gd32_uart *uart;
  847. RT_ASSERT(serial != RT_NULL);
  848. uart = rt_container_of(serial, struct gd32_uart, serial);
  849. ch = -1;
  850. if (usart_flag_get(uart->periph, USART_FLAG_RBNE) != RESET)
  851. ch = usart_data_receive(uart->periph);
  852. return ch;
  853. }
  854. static rt_ssize_t gd32_transmit (struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, rt_uint32_t tx_flag)
  855. {
  856. struct gd32_uart *uart;
  857. RT_ASSERT(buf != RT_NULL);
  858. RT_ASSERT(serial != RT_NULL);
  859. uart = rt_container_of(serial, struct gd32_uart, serial);
  860. if (size == 0)
  861. {
  862. return 0;
  863. }
  864. if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX)
  865. {
  866. #ifdef RT_SERIAL_USING_DMA
  867. _uart_dma_transmit(uart, buf, size);
  868. return size;
  869. #endif
  870. }
  871. gd32_uart_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)tx_flag);
  872. return size;
  873. }
  874. static const struct rt_uart_ops gd32_uart_ops =
  875. {
  876. .configure = gd32_uart_configure,
  877. .control = gd32_uart_control,
  878. .putc = gd32_uart_putc,
  879. .getc = gd32_uart_getc,
  880. .transmit = gd32_transmit,
  881. };
  882. static void gd32_uart_get_config (void)
  883. {
  884. struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
  885. #ifdef BSP_USING_UART0
  886. uart_obj[UART0_INDEX].uart_dma_flag = 0;
  887. uart_obj[UART0_INDEX].serial.config = config;
  888. uart_obj[UART0_INDEX].serial.config.rx_bufsz = BSP_UART0_RX_BUFSIZE;
  889. uart_obj[UART0_INDEX].serial.config.tx_bufsz = BSP_UART0_TX_BUFSIZE;
  890. #ifdef BSP_UART0_RX_USING_DMA
  891. uart_obj[UART0_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  892. #endif
  893. #ifdef BSP_UART0_TX_USING_DMA
  894. uart_obj[UART0_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  895. #endif
  896. #endif
  897. #ifdef BSP_USING_UART1
  898. uart_obj[UART1_INDEX].uart_dma_flag = 0;
  899. uart_obj[UART1_INDEX].serial.config = config;
  900. uart_obj[UART1_INDEX].serial.config.rx_bufsz = BSP_UART1_RX_BUFSIZE;
  901. uart_obj[UART1_INDEX].serial.config.tx_bufsz = BSP_UART1_TX_BUFSIZE;
  902. #ifdef BSP_UART1_RX_USING_DMA
  903. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  904. #endif
  905. #ifdef BSP_UART1_TX_USING_DMA
  906. uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  907. #endif
  908. #endif
  909. #ifdef BSP_USING_UART2
  910. uart_obj[UART2_INDEX].uart_dma_flag = 0;
  911. uart_obj[UART2_INDEX].serial.config = config;
  912. uart_obj[UART2_INDEX].serial.config.rx_bufsz = BSP_UART2_RX_BUFSIZE;
  913. uart_obj[UART2_INDEX].serial.config.tx_bufsz = BSP_UART2_TX_BUFSIZE;
  914. #ifdef BSP_UART2_RX_USING_DMA
  915. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  916. #endif
  917. #ifdef BSP_UART2_TX_USING_DMA
  918. uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  919. #endif
  920. #endif
  921. #ifdef BSP_USING_UART3
  922. uart_obj[UART3_INDEX].uart_dma_flag = 0;
  923. uart_obj[UART3_INDEX].serial.config = config;
  924. uart_obj[UART3_INDEX].serial.config.rx_bufsz = BSP_UART3_RX_BUFSIZE;
  925. uart_obj[UART3_INDEX].serial.config.tx_bufsz = BSP_UART3_TX_BUFSIZE;
  926. #ifdef BSP_UART3_RX_USING_DMA
  927. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  928. #endif
  929. #ifdef BSP_UART3_TX_USING_DMA
  930. uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  931. #endif
  932. #endif
  933. #ifdef BSP_USING_UART4
  934. uart_obj[UART4_INDEX].uart_dma_flag = 0;
  935. uart_obj[UART4_INDEX].serial.config = config;
  936. uart_obj[UART4_INDEX].serial.config.rx_bufsz = BSP_UART4_RX_BUFSIZE;
  937. uart_obj[UART4_INDEX].serial.config.tx_bufsz = BSP_UART4_TX_BUFSIZE;
  938. #ifdef BSP_UART4_RX_USING_DMA
  939. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  940. #endif
  941. #ifdef BSP_UART4_TX_USING_DMA
  942. uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  943. #endif
  944. #endif
  945. #ifdef BSP_USING_UART5
  946. uart_obj[UART5_INDEX].uart_dma_flag = 0;
  947. uart_obj[UART5_INDEX].serial.config = config;
  948. uart_obj[UART5_INDEX].serial.config.rx_bufsz = BSP_UART5_RX_BUFSIZE;
  949. uart_obj[UART5_INDEX].serial.config.tx_bufsz = BSP_UART5_TX_BUFSIZE;
  950. #ifdef BSP_UART5_RX_USING_DMA
  951. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  952. #endif
  953. #ifdef BSP_UART5_TX_USING_DMA
  954. uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  955. #endif
  956. #endif
  957. #ifdef BSP_USING_UART6
  958. uart_obj[UART6_INDEX].uart_dma_flag = 0;
  959. uart_obj[UART6_INDEX].serial.config = config;
  960. uart_obj[UART6_INDEX].serial.config.rx_bufsz = BSP_UART6_RX_BUFSIZE;
  961. uart_obj[UART6_INDEX].serial.config.tx_bufsz = BSP_UART6_TX_BUFSIZE;
  962. #ifdef BSP_UART6_RX_USING_DMA
  963. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  964. #endif
  965. #ifdef BSP_UART6_TX_USING_DMA
  966. uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  967. #endif
  968. #endif
  969. #ifdef BSP_USING_UART7
  970. uart_obj[UART7_INDEX].uart_dma_flag = 0;
  971. uart_obj[UART7_INDEX].serial.config = config;
  972. uart_obj[UART7_INDEX].serial.config.rx_bufsz = BSP_UART7_RX_BUFSIZE;
  973. uart_obj[UART7_INDEX].serial.config.tx_bufsz = BSP_UART7_TX_BUFSIZE;
  974. #ifdef BSP_UART7_RX_USING_DMA
  975. uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
  976. #endif
  977. #ifdef BSP_UART7_TX_USING_DMA
  978. uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
  979. #endif
  980. #endif
  981. }
  982. /**
  983. * @brief uart init
  984. * @param None
  985. * @retval None
  986. */
  987. int rt_hw_usart_init (void)
  988. {
  989. int i;
  990. int result;
  991. gd32_uart_get_config();
  992. for (i = 0; i < sizeof(uart_obj) / sizeof(uart_obj[0]); i++)
  993. {
  994. uart_obj[i].serial.ops = &gd32_uart_ops;
  995. /* register UART1 device */
  996. result = rt_hw_serial_register(&uart_obj[i].serial,
  997. uart_obj[i].device_name,
  998. RT_DEVICE_FLAG_RDWR |
  999. RT_DEVICE_FLAG_INT_RX |
  1000. uart_obj[i].uart_dma_flag,
  1001. (void *)&uart_obj[i]);
  1002. RT_ASSERT(result == RT_EOK);
  1003. }
  1004. return result;
  1005. }
  1006. #endif