drv_spi.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2018-11-5 SummerGift first version
  9. * 2018-12-11 greedyhao Porting for stm32f7xx
  10. * 2019-01-03 zylx modify DMA initialization and spixfer function
  11. * 2020-01-15 whj4674672 Porting for stm32h7xx
  12. * 2020-06-18 thread-liu Porting for stm32mp1xx
  13. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  14. */
  15. #include <rtthread.h>
  16. #include <rtdevice.h>
  17. #include "board.h"
  18. #ifdef BSP_USING_SPI
  19. #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
  20. #include "drv_spi.h"
  21. #include "drv_config.h"
  22. #include <string.h>
  23. //#define DRV_DEBUG
  24. #define LOG_TAG "drv.spi"
  25. #include <drv_log.h>
  26. enum
  27. {
  28. #ifdef BSP_USING_SPI1
  29. SPI1_INDEX,
  30. #endif
  31. #ifdef BSP_USING_SPI2
  32. SPI2_INDEX,
  33. #endif
  34. #ifdef BSP_USING_SPI3
  35. SPI3_INDEX,
  36. #endif
  37. #ifdef BSP_USING_SPI4
  38. SPI4_INDEX,
  39. #endif
  40. #ifdef BSP_USING_SPI5
  41. SPI5_INDEX,
  42. #endif
  43. #ifdef BSP_USING_SPI6
  44. SPI6_INDEX,
  45. #endif
  46. };
  47. static struct stm32_spi_config spi_config[] =
  48. {
  49. #ifdef BSP_USING_SPI1
  50. SPI1_BUS_CONFIG,
  51. #endif
  52. #ifdef BSP_USING_SPI2
  53. SPI2_BUS_CONFIG,
  54. #endif
  55. #ifdef BSP_USING_SPI3
  56. SPI3_BUS_CONFIG,
  57. #endif
  58. #ifdef BSP_USING_SPI4
  59. SPI4_BUS_CONFIG,
  60. #endif
  61. #ifdef BSP_USING_SPI5
  62. SPI5_BUS_CONFIG,
  63. #endif
  64. #ifdef BSP_USING_SPI6
  65. SPI6_BUS_CONFIG,
  66. #endif
  67. };
  68. static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
  69. static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
  70. {
  71. RT_ASSERT(spi_drv != RT_NULL);
  72. RT_ASSERT(cfg != RT_NULL);
  73. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  74. if (cfg->mode & RT_SPI_SLAVE)
  75. {
  76. spi_handle->Init.Mode = SPI_MODE_SLAVE;
  77. }
  78. else
  79. {
  80. spi_handle->Init.Mode = SPI_MODE_MASTER;
  81. }
  82. if (cfg->mode & RT_SPI_3WIRE)
  83. {
  84. spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
  85. }
  86. else
  87. {
  88. spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
  89. }
  90. if (cfg->data_width == 8)
  91. {
  92. spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
  93. }
  94. else if (cfg->data_width == 16)
  95. {
  96. spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
  97. }
  98. else
  99. {
  100. return -RT_EIO;
  101. }
  102. if (cfg->mode & RT_SPI_CPHA)
  103. {
  104. spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
  105. }
  106. else
  107. {
  108. spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
  109. }
  110. if (cfg->mode & RT_SPI_CPOL)
  111. {
  112. spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
  113. }
  114. else
  115. {
  116. spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
  117. }
  118. spi_handle->Init.NSS = SPI_NSS_SOFT;
  119. uint32_t SPI_CLOCK = 0UL;
  120. /* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */
  121. #if defined(APBPERIPH_BASE)
  122. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  123. #elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
  124. /* The SPI clock for H7 cannot be configured with a peripheral bus clock, so it needs to be written separately */
  125. #if defined(SOC_SERIES_STM32H7)
  126. /* When the configuration is generated using CUBEMX, the configuration for the SPI clock is placed in the HAL_SPI_Init function.
  127. Therefore, it is necessary to initialize and configure the SPI clock to automatically configure the frequency division */
  128. HAL_SPI_Init(spi_handle);
  129. SPI_CLOCK = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
  130. #else
  131. if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE)
  132. {
  133. SPI_CLOCK = HAL_RCC_GetPCLK2Freq();
  134. }
  135. else
  136. {
  137. SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
  138. }
  139. #endif /* SOC_SERIES_STM32H7) */
  140. #endif /* APBPERIPH_BASE */
  141. if (cfg->max_hz >= SPI_CLOCK / 2)
  142. {
  143. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  144. }
  145. else if (cfg->max_hz >= SPI_CLOCK / 4)
  146. {
  147. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  148. }
  149. else if (cfg->max_hz >= SPI_CLOCK / 8)
  150. {
  151. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  152. }
  153. else if (cfg->max_hz >= SPI_CLOCK / 16)
  154. {
  155. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
  156. }
  157. else if (cfg->max_hz >= SPI_CLOCK / 32)
  158. {
  159. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  160. }
  161. else if (cfg->max_hz >= SPI_CLOCK / 64)
  162. {
  163. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
  164. }
  165. else if (cfg->max_hz >= SPI_CLOCK / 128)
  166. {
  167. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
  168. }
  169. else
  170. {
  171. /* min prescaler 256 */
  172. spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
  173. }
  174. LOG_D("sys freq: %d, pclk freq: %d, SPI limiting freq: %d, SPI usage freq: %d",
  175. #if defined(SOC_SERIES_STM32MP1)
  176. HAL_RCC_GetSystemCoreClockFreq(),
  177. #else
  178. HAL_RCC_GetSysClockFreq(),
  179. #endif
  180. SPI_CLOCK,
  181. cfg->max_hz,
  182. SPI_CLOCK / (rt_size_t)pow(2,(spi_handle->Init.BaudRatePrescaler >> 28) + 1));
  183. if (cfg->mode & RT_SPI_MSB)
  184. {
  185. spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
  186. }
  187. else
  188. {
  189. spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
  190. }
  191. spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
  192. spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  193. spi_handle->State = HAL_SPI_STATE_RESET;
  194. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
  195. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  196. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  197. spi_handle->Init.Mode = SPI_MODE_MASTER;
  198. spi_handle->Init.NSS = SPI_NSS_SOFT;
  199. spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  200. spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  201. spi_handle->Init.CRCPolynomial = 7;
  202. spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  203. spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  204. spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  205. spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  206. spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  207. spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
  208. spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
  209. spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
  210. #endif
  211. if (HAL_SPI_Init(spi_handle) != HAL_OK)
  212. {
  213. return -RT_EIO;
  214. }
  215. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
  216. || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
  217. SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
  218. #endif
  219. /* DMA configuration */
  220. if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  221. {
  222. HAL_DMA_Init(&spi_drv->dma.handle_rx);
  223. __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
  224. /* NVIC configuration for DMA transfer complete interrupt */
  225. HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
  226. HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
  227. }
  228. if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  229. {
  230. HAL_DMA_Init(&spi_drv->dma.handle_tx);
  231. __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
  232. /* NVIC configuration for DMA transfer complete interrupt */
  233. HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 1, 0);
  234. HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
  235. }
  236. if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  237. {
  238. HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
  239. HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
  240. }
  241. LOG_D("%s init done", spi_drv->config->bus_name);
  242. return RT_EOK;
  243. }
  244. static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
  245. {
  246. #define DMA_TRANS_MIN_LEN 10 /* only buffer length >= DMA_TRANS_MIN_LEN will use DMA mode */
  247. HAL_StatusTypeDef state = HAL_OK;
  248. rt_size_t message_length, already_send_length;
  249. rt_uint16_t send_length;
  250. rt_uint8_t *recv_buf;
  251. const rt_uint8_t *send_buf;
  252. RT_ASSERT(device != RT_NULL);
  253. RT_ASSERT(device->bus != RT_NULL);
  254. RT_ASSERT(message != RT_NULL);
  255. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  256. SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
  257. if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  258. {
  259. if (device->config.mode & RT_SPI_CS_HIGH)
  260. {
  261. rt_pin_write(device->cs_pin, PIN_HIGH);
  262. }
  263. else
  264. {
  265. rt_pin_write(device->cs_pin, PIN_LOW);
  266. }
  267. }
  268. LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
  269. LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
  270. spi_drv->config->bus_name,
  271. (uint32_t)message->send_buf,
  272. (uint32_t)message->recv_buf, message->length);
  273. message_length = message->length;
  274. recv_buf = message->recv_buf;
  275. send_buf = message->send_buf;
  276. while (message_length)
  277. {
  278. /* the HAL library use uint16 to save the data length */
  279. if (message_length > 65535)
  280. {
  281. send_length = 65535;
  282. message_length = message_length - 65535;
  283. }
  284. else
  285. {
  286. send_length = message_length;
  287. message_length = 0;
  288. }
  289. /* calculate the start address */
  290. already_send_length = message->length - send_length - message_length;
  291. /* avoid null pointer problems */
  292. if (message->send_buf)
  293. {
  294. send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
  295. }
  296. if (message->recv_buf)
  297. {
  298. recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
  299. }
  300. rt_uint32_t* dma_aligned_buffer = RT_NULL;
  301. rt_uint32_t* p_txrx_buffer = RT_NULL;
  302. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  303. {
  304. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  305. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 32) && send_buf != RT_NULL) /* aligned with 32 bytes? */
  306. {
  307. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 32 bytes, no more operations */
  308. }
  309. else
  310. {
  311. /* send_buf doesn't align with 32 bytes, so creat a cache buffer with 32 bytes aligned */
  312. dma_aligned_buffer = (rt_uint32_t *)rt_malloc_align(send_length, 32);
  313. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  314. p_txrx_buffer = dma_aligned_buffer;
  315. }
  316. rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_aligned_buffer, send_length);
  317. #else
  318. if (RT_IS_ALIGN((rt_uint32_t)send_buf, 4) && send_buf != RT_NULL) /* aligned with 4 bytes? */
  319. {
  320. p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 4 bytes, no more operations */
  321. }
  322. else
  323. {
  324. /* send_buf doesn't align with 4 bytes, so creat a cache buffer with 4 bytes aligned */
  325. dma_aligned_buffer = (rt_uint32_t *)rt_malloc(send_length); /* aligned with RT_ALIGN_SIZE (8 bytes by default) */
  326. rt_memcpy(dma_aligned_buffer, send_buf, send_length);
  327. p_txrx_buffer = dma_aligned_buffer;
  328. }
  329. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  330. }
  331. /* start once data exchange in DMA mode */
  332. if (message->send_buf && message->recv_buf)
  333. {
  334. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  335. {
  336. state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, (uint8_t *)p_txrx_buffer, send_length);
  337. }
  338. else if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  339. {
  340. /* same as Tx ONLY. It will not receive SPI data any more. */
  341. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  342. }
  343. else if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  344. {
  345. state = HAL_ERROR;
  346. LOG_E("It shoule be enabled both BSP_SPIx_TX_USING_DMA and BSP_SPIx_TX_USING_DMA flag, if wants to use SPI DMA Rx singly.");
  347. break;
  348. }
  349. else
  350. {
  351. state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
  352. }
  353. }
  354. else if (message->send_buf)
  355. {
  356. if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  357. {
  358. state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  359. }
  360. else
  361. {
  362. state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
  363. }
  364. if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
  365. {
  366. /* release the CS by disable SPI when using 3 wires SPI */
  367. __HAL_SPI_DISABLE(spi_handle);
  368. }
  369. }
  370. else if(message->recv_buf)
  371. {
  372. rt_memset((uint8_t *)recv_buf, 0xff, send_length);
  373. if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
  374. {
  375. state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
  376. }
  377. else
  378. {
  379. /* clear the old error flag */
  380. __HAL_SPI_CLEAR_OVRFLAG(spi_handle);
  381. state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
  382. }
  383. }
  384. else
  385. {
  386. state = HAL_ERROR;
  387. LOG_E("message->send_buf and message->recv_buf are both NULL!");
  388. }
  389. if (state != HAL_OK)
  390. {
  391. LOG_E("SPI transfer error: %d", state);
  392. message->length = 0;
  393. spi_handle->State = HAL_SPI_STATE_READY;
  394. break;
  395. }
  396. else
  397. {
  398. LOG_D("%s transfer done", spi_drv->config->bus_name);
  399. }
  400. /* For simplicity reasons, this example is just waiting till the end of the
  401. transfer, but application may perform other tasks while transfer operation
  402. is ongoing. */
  403. if ((spi_drv->spi_dma_flag & (SPI_USING_TX_DMA_FLAG | SPI_USING_RX_DMA_FLAG)) && (send_length >= DMA_TRANS_MIN_LEN))
  404. {
  405. /* blocking the thread,and the other tasks can run */
  406. if (rt_completion_wait(&spi_drv->cpt, 1000) != RT_EOK)
  407. {
  408. state = HAL_ERROR;
  409. LOG_E("wait for DMA interrupt overtime!");
  410. break;
  411. }
  412. }
  413. else
  414. {
  415. while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
  416. }
  417. if(dma_aligned_buffer != RT_NULL) /* re-aligned, so need to copy the data to recv_buf */
  418. {
  419. if(recv_buf != RT_NULL)
  420. {
  421. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  422. rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, p_txrx_buffer, send_length);
  423. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  424. rt_memcpy(recv_buf, p_txrx_buffer, send_length);
  425. }
  426. #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
  427. rt_free_align(dma_aligned_buffer);
  428. #else
  429. rt_free(dma_aligned_buffer);
  430. #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
  431. }
  432. }
  433. if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
  434. {
  435. if (device->config.mode & RT_SPI_CS_HIGH)
  436. rt_pin_write(device->cs_pin, PIN_LOW);
  437. else
  438. rt_pin_write(device->cs_pin, PIN_HIGH);
  439. }
  440. if(state != HAL_OK)
  441. {
  442. return -RT_ERROR;
  443. }
  444. return message->length;
  445. }
  446. static rt_err_t spi_configure(struct rt_spi_device *device,
  447. struct rt_spi_configuration *configuration)
  448. {
  449. RT_ASSERT(device != RT_NULL);
  450. RT_ASSERT(configuration != RT_NULL);
  451. struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
  452. spi_drv->cfg = configuration;
  453. return stm32_spi_init(spi_drv, configuration);
  454. }
  455. static const struct rt_spi_ops stm_spi_ops =
  456. {
  457. .configure = spi_configure,
  458. .xfer = spixfer,
  459. };
  460. static int rt_hw_spi_bus_init(void)
  461. {
  462. rt_err_t result;
  463. for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
  464. {
  465. spi_bus_obj[i].config = &spi_config[i];
  466. spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
  467. spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
  468. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
  469. {
  470. /* Configure the DMA handler for Transmission process */
  471. spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
  472. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  473. spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
  474. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  475. spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
  476. #endif
  477. #ifndef SOC_SERIES_STM32U5
  478. spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
  479. spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
  480. spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
  481. spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  482. spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  483. spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
  484. spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
  485. #endif
  486. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  487. spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  488. spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  489. spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
  490. spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
  491. #endif
  492. {
  493. rt_uint32_t tmpreg = 0x00U;
  494. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  495. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  496. SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  497. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
  498. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  499. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  500. /* Delay after an RCC peripheral clock enabling */
  501. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
  502. #elif defined(SOC_SERIES_STM32MP1)
  503. __HAL_RCC_DMAMUX_CLK_ENABLE();
  504. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  505. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
  506. #endif
  507. UNUSED(tmpreg); /* To avoid compiler warnings */
  508. }
  509. }
  510. if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
  511. {
  512. /* Configure the DMA handler for Transmission process */
  513. spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
  514. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  515. spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
  516. #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  517. spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
  518. #endif
  519. #ifndef SOC_SERIES_STM32U5
  520. spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
  521. spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
  522. spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
  523. spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
  524. spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
  525. spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
  526. spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
  527. #endif
  528. #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
  529. spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
  530. spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
  531. spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
  532. spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
  533. #endif
  534. {
  535. rt_uint32_t tmpreg = 0x00U;
  536. #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
  537. /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
  538. SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  539. tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
  540. #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
  541. SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  542. /* Delay after an RCC peripheral clock enabling */
  543. tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
  544. #elif defined(SOC_SERIES_STM32MP1)
  545. __HAL_RCC_DMAMUX_CLK_ENABLE();
  546. SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  547. tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
  548. #endif
  549. UNUSED(tmpreg); /* To avoid compiler warnings */
  550. }
  551. }
  552. /* initialize completion object */
  553. rt_completion_init(&spi_bus_obj[i].cpt);
  554. result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
  555. RT_ASSERT(result == RT_EOK);
  556. LOG_D("%s bus init done", spi_config[i].bus_name);
  557. }
  558. return result;
  559. }
  560. /**
  561. * Attach the spi device to SPI bus, this function must be used after initialization.
  562. */
  563. rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_base_t cs_pin)
  564. {
  565. RT_ASSERT(bus_name != RT_NULL);
  566. RT_ASSERT(device_name != RT_NULL);
  567. rt_err_t result;
  568. struct rt_spi_device *spi_device;
  569. /* attach the device to spi bus*/
  570. spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
  571. RT_ASSERT(spi_device != RT_NULL);
  572. result = rt_spi_bus_attach_device_cspin(spi_device, device_name, bus_name, cs_pin, RT_NULL);
  573. if (result != RT_EOK)
  574. {
  575. LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
  576. }
  577. RT_ASSERT(result == RT_EOK);
  578. LOG_D("%s attach to %s done", device_name, bus_name);
  579. return result;
  580. }
  581. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  582. void SPI1_IRQHandler(void)
  583. {
  584. /* enter interrupt */
  585. rt_interrupt_enter();
  586. HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
  587. /* leave interrupt */
  588. rt_interrupt_leave();
  589. }
  590. #endif
  591. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  592. /**
  593. * @brief This function handles DMA Rx interrupt request.
  594. * @param None
  595. * @retval None
  596. */
  597. void SPI1_DMA_RX_IRQHandler(void)
  598. {
  599. /* enter interrupt */
  600. rt_interrupt_enter();
  601. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
  602. /* leave interrupt */
  603. rt_interrupt_leave();
  604. }
  605. #endif
  606. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  607. /**
  608. * @brief This function handles DMA Tx interrupt request.
  609. * @param None
  610. * @retval None
  611. */
  612. void SPI1_DMA_TX_IRQHandler(void)
  613. {
  614. /* enter interrupt */
  615. rt_interrupt_enter();
  616. HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
  617. /* leave interrupt */
  618. rt_interrupt_leave();
  619. }
  620. #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
  621. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  622. void SPI2_IRQHandler(void)
  623. {
  624. /* enter interrupt */
  625. rt_interrupt_enter();
  626. HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
  627. /* leave interrupt */
  628. rt_interrupt_leave();
  629. }
  630. #endif
  631. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  632. /**
  633. * @brief This function handles DMA Rx interrupt request.
  634. * @param None
  635. * @retval None
  636. */
  637. void SPI2_DMA_RX_IRQHandler(void)
  638. {
  639. /* enter interrupt */
  640. rt_interrupt_enter();
  641. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
  642. /* leave interrupt */
  643. rt_interrupt_leave();
  644. }
  645. #endif
  646. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  647. /**
  648. * @brief This function handles DMA Tx interrupt request.
  649. * @param None
  650. * @retval None
  651. */
  652. void SPI2_DMA_TX_IRQHandler(void)
  653. {
  654. /* enter interrupt */
  655. rt_interrupt_enter();
  656. HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
  657. /* leave interrupt */
  658. rt_interrupt_leave();
  659. }
  660. #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
  661. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  662. void SPI3_IRQHandler(void)
  663. {
  664. /* enter interrupt */
  665. rt_interrupt_enter();
  666. HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
  667. /* leave interrupt */
  668. rt_interrupt_leave();
  669. }
  670. #endif
  671. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
  672. /**
  673. * @brief This function handles DMA Rx interrupt request.
  674. * @param None
  675. * @retval None
  676. */
  677. void SPI3_DMA_RX_IRQHandler(void)
  678. {
  679. /* enter interrupt */
  680. rt_interrupt_enter();
  681. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
  682. /* leave interrupt */
  683. rt_interrupt_leave();
  684. }
  685. #endif
  686. #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
  687. /**
  688. * @brief This function handles DMA Tx interrupt request.
  689. * @param None
  690. * @retval None
  691. */
  692. void SPI3_DMA_TX_IRQHandler(void)
  693. {
  694. /* enter interrupt */
  695. rt_interrupt_enter();
  696. HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
  697. /* leave interrupt */
  698. rt_interrupt_leave();
  699. }
  700. #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
  701. #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
  702. void SPI4_IRQHandler(void)
  703. {
  704. /* enter interrupt */
  705. rt_interrupt_enter();
  706. HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
  707. /* leave interrupt */
  708. rt_interrupt_leave();
  709. }
  710. #endif
  711. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
  712. /**
  713. * @brief This function handles DMA Rx interrupt request.
  714. * @param None
  715. * @retval None
  716. */
  717. void SPI4_DMA_RX_IRQHandler(void)
  718. {
  719. /* enter interrupt */
  720. rt_interrupt_enter();
  721. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
  722. /* leave interrupt */
  723. rt_interrupt_leave();
  724. }
  725. #endif
  726. #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
  727. /**
  728. * @brief This function handles DMA Tx interrupt request.
  729. * @param None
  730. * @retval None
  731. */
  732. void SPI4_DMA_TX_IRQHandler(void)
  733. {
  734. /* enter interrupt */
  735. rt_interrupt_enter();
  736. HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
  737. /* leave interrupt */
  738. rt_interrupt_leave();
  739. }
  740. #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
  741. #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
  742. void SPI5_IRQHandler(void)
  743. {
  744. /* enter interrupt */
  745. rt_interrupt_enter();
  746. HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
  747. /* leave interrupt */
  748. rt_interrupt_leave();
  749. }
  750. #endif
  751. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
  752. /**
  753. * @brief This function handles DMA Rx interrupt request.
  754. * @param None
  755. * @retval None
  756. */
  757. void SPI5_DMA_RX_IRQHandler(void)
  758. {
  759. /* enter interrupt */
  760. rt_interrupt_enter();
  761. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
  762. /* leave interrupt */
  763. rt_interrupt_leave();
  764. }
  765. #endif
  766. #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
  767. /**
  768. * @brief This function handles DMA Tx interrupt request.
  769. * @param None
  770. * @retval None
  771. */
  772. void SPI5_DMA_TX_IRQHandler(void)
  773. {
  774. /* enter interrupt */
  775. rt_interrupt_enter();
  776. HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
  777. /* leave interrupt */
  778. rt_interrupt_leave();
  779. }
  780. #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
  781. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
  782. /**
  783. * @brief This function handles DMA Rx interrupt request.
  784. * @param None
  785. * @retval None
  786. */
  787. void SPI6_DMA_RX_IRQHandler(void)
  788. {
  789. /* enter interrupt */
  790. rt_interrupt_enter();
  791. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
  792. /* leave interrupt */
  793. rt_interrupt_leave();
  794. }
  795. #endif
  796. #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
  797. /**
  798. * @brief This function handles DMA Tx interrupt request.
  799. * @param None
  800. * @retval None
  801. */
  802. void SPI6_DMA_TX_IRQHandler(void)
  803. {
  804. /* enter interrupt */
  805. rt_interrupt_enter();
  806. HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
  807. /* leave interrupt */
  808. rt_interrupt_leave();
  809. }
  810. #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
  811. static void stm32_get_dma_info(void)
  812. {
  813. #ifdef BSP_SPI1_RX_USING_DMA
  814. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  815. static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
  816. spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
  817. #endif
  818. #ifdef BSP_SPI1_TX_USING_DMA
  819. spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  820. static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
  821. spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
  822. #endif
  823. #ifdef BSP_SPI2_RX_USING_DMA
  824. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  825. static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
  826. spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
  827. #endif
  828. #ifdef BSP_SPI2_TX_USING_DMA
  829. spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  830. static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
  831. spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
  832. #endif
  833. #ifdef BSP_SPI3_RX_USING_DMA
  834. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  835. static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
  836. spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
  837. #endif
  838. #ifdef BSP_SPI3_TX_USING_DMA
  839. spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  840. static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
  841. spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
  842. #endif
  843. #ifdef BSP_SPI4_RX_USING_DMA
  844. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  845. static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
  846. spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
  847. #endif
  848. #ifdef BSP_SPI4_TX_USING_DMA
  849. spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  850. static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
  851. spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
  852. #endif
  853. #ifdef BSP_SPI5_RX_USING_DMA
  854. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  855. static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
  856. spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
  857. #endif
  858. #ifdef BSP_SPI5_TX_USING_DMA
  859. spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  860. static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
  861. spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
  862. #endif
  863. #ifdef BSP_SPI6_RX_USING_DMA
  864. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
  865. static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
  866. spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
  867. #endif
  868. #ifdef BSP_SPI6_TX_USING_DMA
  869. spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
  870. static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
  871. spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
  872. #endif
  873. }
  874. void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
  875. {
  876. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  877. rt_completion_done(&spi_drv->cpt);
  878. }
  879. void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
  880. {
  881. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  882. rt_completion_done(&spi_drv->cpt);
  883. }
  884. void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
  885. {
  886. struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
  887. rt_completion_done(&spi_drv->cpt);
  888. }
  889. #if defined(SOC_SERIES_STM32F0)
  890. void SPI1_DMA_RX_TX_IRQHandler(void)
  891. {
  892. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
  893. SPI1_DMA_TX_IRQHandler();
  894. #endif
  895. #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
  896. SPI1_DMA_RX_IRQHandler();
  897. #endif
  898. }
  899. void SPI2_DMA_RX_TX_IRQHandler(void)
  900. {
  901. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
  902. SPI2_DMA_TX_IRQHandler();
  903. #endif
  904. #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
  905. SPI2_DMA_RX_IRQHandler();
  906. #endif
  907. }
  908. #elif defined(SOC_SERIES_STM32G0)
  909. #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
  910. void SPI1_DMA_RX_TX_IRQHandler(void)
  911. {
  912. #if defined(BSP_SPI1_TX_USING_DMA)
  913. SPI1_DMA_TX_IRQHandler();
  914. #endif
  915. #if defined(BSP_SPI1_RX_USING_DMA)
  916. SPI1_DMA_RX_IRQHandler();
  917. #endif
  918. }
  919. #endif /* defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) */
  920. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  921. void SPI2_DMA_RX_TX_IRQHandler(void)
  922. {
  923. #if defined(BSP_SPI2_TX_USING_DMA)
  924. SPI2_DMA_TX_IRQHandler();
  925. #endif
  926. #if defined(BSP_SPI2_RX_USING_DMA)
  927. SPI2_DMA_RX_IRQHandler();
  928. #endif
  929. }
  930. #endif /* defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) */
  931. #if defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined(STM32G0C1xx)
  932. #if defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3)
  933. void SPI2_3_IRQHandler(void)
  934. {
  935. #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
  936. SPI2_IRQHandler();
  937. #endif
  938. #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
  939. SPI3_IRQHandler();
  940. #endif
  941. }
  942. #endif /* defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) */
  943. #endif /* defined(STM32G0B0xx) || defined(STM32G0B1xx) || defined(STM32G0C1xx) */
  944. #endif /* defined(SOC_SERIES_STM32F0) */
  945. int rt_hw_spi_init(void)
  946. {
  947. stm32_get_dma_info();
  948. return rt_hw_spi_bus_init();
  949. }
  950. INIT_BOARD_EXPORT(rt_hw_spi_init);
  951. #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
  952. #endif /* BSP_USING_SPI */