mkkeywordhash.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602
  1. /*
  2. ** Compile and run this standalone program in order to generate code that
  3. ** implements a function that will translate alphabetic identifiers into
  4. ** parser token codes.
  5. */
  6. #include <stdio.h>
  7. #include <string.h>
  8. #include <stdlib.h>
  9. #include <assert.h>
  10. /*
  11. ** A header comment placed at the beginning of generated code.
  12. */
  13. static const char zHdr[] =
  14. "/***** This file contains automatically generated code ******\n"
  15. "**\n"
  16. "** The code in this file has been automatically generated by\n"
  17. "**\n"
  18. "** sqlite/tool/mkkeywordhash.c\n"
  19. "**\n"
  20. "** The code in this file implements a function that determines whether\n"
  21. "** or not a given identifier is really an SQL keyword. The same thing\n"
  22. "** might be implemented more directly using a hand-written hash table.\n"
  23. "** But by using this automatically generated code, the size of the code\n"
  24. "** is substantially reduced. This is important for embedded applications\n"
  25. "** on platforms with limited memory.\n"
  26. "*/\n"
  27. ;
  28. /*
  29. ** All the keywords of the SQL language are stored in a hash
  30. ** table composed of instances of the following structure.
  31. */
  32. typedef struct Keyword Keyword;
  33. struct Keyword {
  34. char *zName; /* The keyword name */
  35. char *zTokenType; /* Token value for this keyword */
  36. int mask; /* Code this keyword if non-zero */
  37. int id; /* Unique ID for this record */
  38. int hash; /* Hash on the keyword */
  39. int offset; /* Offset to start of name string */
  40. int len; /* Length of this keyword, not counting final \000 */
  41. int prefix; /* Number of characters in prefix */
  42. int longestSuffix; /* Longest suffix that is a prefix on another word */
  43. int iNext; /* Index in aKeywordTable[] of next with same hash */
  44. int substrId; /* Id to another keyword this keyword is embedded in */
  45. int substrOffset; /* Offset into substrId for start of this keyword */
  46. char zOrigName[20]; /* Original keyword name before processing */
  47. };
  48. /*
  49. ** Define masks used to determine which keywords are allowed
  50. */
  51. #ifdef SQLITE_OMIT_ALTERTABLE
  52. # define ALTER 0
  53. #else
  54. # define ALTER 0x00000001
  55. #endif
  56. #define ALWAYS 0x00000002
  57. #ifdef SQLITE_OMIT_ANALYZE
  58. # define ANALYZE 0
  59. #else
  60. # define ANALYZE 0x00000004
  61. #endif
  62. #ifdef SQLITE_OMIT_ATTACH
  63. # define ATTACH 0
  64. #else
  65. # define ATTACH 0x00000008
  66. #endif
  67. #ifdef SQLITE_OMIT_AUTOINCREMENT
  68. # define AUTOINCR 0
  69. #else
  70. # define AUTOINCR 0x00000010
  71. #endif
  72. #ifdef SQLITE_OMIT_CAST
  73. # define CAST 0
  74. #else
  75. # define CAST 0x00000020
  76. #endif
  77. #ifdef SQLITE_OMIT_COMPOUND_SELECT
  78. # define COMPOUND 0
  79. #else
  80. # define COMPOUND 0x00000040
  81. #endif
  82. #ifdef SQLITE_OMIT_CONFLICT_CLAUSE
  83. # define CONFLICT 0
  84. #else
  85. # define CONFLICT 0x00000080
  86. #endif
  87. #ifdef SQLITE_OMIT_EXPLAIN
  88. # define EXPLAIN 0
  89. #else
  90. # define EXPLAIN 0x00000100
  91. #endif
  92. #ifdef SQLITE_OMIT_FOREIGN_KEY
  93. # define FKEY 0
  94. #else
  95. # define FKEY 0x00000200
  96. #endif
  97. #ifdef SQLITE_OMIT_PRAGMA
  98. # define PRAGMA 0
  99. #else
  100. # define PRAGMA 0x00000400
  101. #endif
  102. #ifdef SQLITE_OMIT_REINDEX
  103. # define REINDEX 0
  104. #else
  105. # define REINDEX 0x00000800
  106. #endif
  107. #ifdef SQLITE_OMIT_SUBQUERY
  108. # define SUBQUERY 0
  109. #else
  110. # define SUBQUERY 0x00001000
  111. #endif
  112. #ifdef SQLITE_OMIT_TRIGGER
  113. # define TRIGGER 0
  114. #else
  115. # define TRIGGER 0x00002000
  116. #endif
  117. #if defined(SQLITE_OMIT_AUTOVACUUM) && \
  118. (defined(SQLITE_OMIT_VACUUM) || defined(SQLITE_OMIT_ATTACH))
  119. # define VACUUM 0
  120. #else
  121. # define VACUUM 0x00004000
  122. #endif
  123. #ifdef SQLITE_OMIT_VIEW
  124. # define VIEW 0
  125. #else
  126. # define VIEW 0x00008000
  127. #endif
  128. #ifdef SQLITE_OMIT_VIRTUALTABLE
  129. # define VTAB 0
  130. #else
  131. # define VTAB 0x00010000
  132. #endif
  133. #ifdef SQLITE_OMIT_AUTOVACUUM
  134. # define AUTOVACUUM 0
  135. #else
  136. # define AUTOVACUUM 0x00020000
  137. #endif
  138. /*
  139. ** These are the keywords
  140. */
  141. static Keyword aKeywordTable[] = {
  142. { "ABORT", "TK_ABORT", CONFLICT|TRIGGER },
  143. { "ACTION", "TK_ACTION", FKEY },
  144. { "ADD", "TK_ADD", ALTER },
  145. { "AFTER", "TK_AFTER", TRIGGER },
  146. { "ALL", "TK_ALL", ALWAYS },
  147. { "ALTER", "TK_ALTER", ALTER },
  148. { "ANALYZE", "TK_ANALYZE", ANALYZE },
  149. { "AND", "TK_AND", ALWAYS },
  150. { "AS", "TK_AS", ALWAYS },
  151. { "ASC", "TK_ASC", ALWAYS },
  152. { "ATTACH", "TK_ATTACH", ATTACH },
  153. { "AUTOINCREMENT", "TK_AUTOINCR", AUTOINCR },
  154. { "BEFORE", "TK_BEFORE", TRIGGER },
  155. { "BEGIN", "TK_BEGIN", ALWAYS },
  156. { "BETWEEN", "TK_BETWEEN", ALWAYS },
  157. { "BY", "TK_BY", ALWAYS },
  158. { "CASCADE", "TK_CASCADE", FKEY },
  159. { "CASE", "TK_CASE", ALWAYS },
  160. { "CAST", "TK_CAST", CAST },
  161. { "CHECK", "TK_CHECK", ALWAYS },
  162. { "COLLATE", "TK_COLLATE", ALWAYS },
  163. { "COLUMN", "TK_COLUMNKW", ALTER },
  164. { "COMMIT", "TK_COMMIT", ALWAYS },
  165. { "CONFLICT", "TK_CONFLICT", CONFLICT },
  166. { "CONSTRAINT", "TK_CONSTRAINT", ALWAYS },
  167. { "CREATE", "TK_CREATE", ALWAYS },
  168. { "CROSS", "TK_JOIN_KW", ALWAYS },
  169. { "CURRENT_DATE", "TK_CTIME_KW", ALWAYS },
  170. { "CURRENT_TIME", "TK_CTIME_KW", ALWAYS },
  171. { "CURRENT_TIMESTAMP","TK_CTIME_KW", ALWAYS },
  172. { "DATABASE", "TK_DATABASE", ATTACH },
  173. { "DEFAULT", "TK_DEFAULT", ALWAYS },
  174. { "DEFERRED", "TK_DEFERRED", ALWAYS },
  175. { "DEFERRABLE", "TK_DEFERRABLE", FKEY },
  176. { "DELETE", "TK_DELETE", ALWAYS },
  177. { "DESC", "TK_DESC", ALWAYS },
  178. { "DETACH", "TK_DETACH", ATTACH },
  179. { "DISTINCT", "TK_DISTINCT", ALWAYS },
  180. { "DROP", "TK_DROP", ALWAYS },
  181. { "END", "TK_END", ALWAYS },
  182. { "EACH", "TK_EACH", TRIGGER },
  183. { "ELSE", "TK_ELSE", ALWAYS },
  184. { "ESCAPE", "TK_ESCAPE", ALWAYS },
  185. { "EXCEPT", "TK_EXCEPT", COMPOUND },
  186. { "EXCLUSIVE", "TK_EXCLUSIVE", ALWAYS },
  187. { "EXISTS", "TK_EXISTS", ALWAYS },
  188. { "EXPLAIN", "TK_EXPLAIN", EXPLAIN },
  189. { "FAIL", "TK_FAIL", CONFLICT|TRIGGER },
  190. { "FOR", "TK_FOR", TRIGGER },
  191. { "FOREIGN", "TK_FOREIGN", FKEY },
  192. { "FROM", "TK_FROM", ALWAYS },
  193. { "FULL", "TK_JOIN_KW", ALWAYS },
  194. { "GLOB", "TK_LIKE_KW", ALWAYS },
  195. { "GROUP", "TK_GROUP", ALWAYS },
  196. { "HAVING", "TK_HAVING", ALWAYS },
  197. { "IF", "TK_IF", ALWAYS },
  198. { "IGNORE", "TK_IGNORE", CONFLICT|TRIGGER },
  199. { "IMMEDIATE", "TK_IMMEDIATE", ALWAYS },
  200. { "IN", "TK_IN", ALWAYS },
  201. { "INDEX", "TK_INDEX", ALWAYS },
  202. { "INDEXED", "TK_INDEXED", ALWAYS },
  203. { "INITIALLY", "TK_INITIALLY", FKEY },
  204. { "INNER", "TK_JOIN_KW", ALWAYS },
  205. { "INSERT", "TK_INSERT", ALWAYS },
  206. { "INSTEAD", "TK_INSTEAD", TRIGGER },
  207. { "INTERSECT", "TK_INTERSECT", COMPOUND },
  208. { "INTO", "TK_INTO", ALWAYS },
  209. { "IS", "TK_IS", ALWAYS },
  210. { "ISNULL", "TK_ISNULL", ALWAYS },
  211. { "JOIN", "TK_JOIN", ALWAYS },
  212. { "KEY", "TK_KEY", ALWAYS },
  213. { "LEFT", "TK_JOIN_KW", ALWAYS },
  214. { "LIKE", "TK_LIKE_KW", ALWAYS },
  215. { "LIMIT", "TK_LIMIT", ALWAYS },
  216. { "MATCH", "TK_MATCH", ALWAYS },
  217. { "NATURAL", "TK_JOIN_KW", ALWAYS },
  218. { "NO", "TK_NO", FKEY },
  219. { "NOT", "TK_NOT", ALWAYS },
  220. { "NOTNULL", "TK_NOTNULL", ALWAYS },
  221. { "NULL", "TK_NULL", ALWAYS },
  222. { "OF", "TK_OF", ALWAYS },
  223. { "OFFSET", "TK_OFFSET", ALWAYS },
  224. { "ON", "TK_ON", ALWAYS },
  225. { "OR", "TK_OR", ALWAYS },
  226. { "ORDER", "TK_ORDER", ALWAYS },
  227. { "OUTER", "TK_JOIN_KW", ALWAYS },
  228. { "PLAN", "TK_PLAN", EXPLAIN },
  229. { "PRAGMA", "TK_PRAGMA", PRAGMA },
  230. { "PRIMARY", "TK_PRIMARY", ALWAYS },
  231. { "QUERY", "TK_QUERY", EXPLAIN },
  232. { "RAISE", "TK_RAISE", TRIGGER },
  233. { "REFERENCES", "TK_REFERENCES", FKEY },
  234. { "REGEXP", "TK_LIKE_KW", ALWAYS },
  235. { "REINDEX", "TK_REINDEX", REINDEX },
  236. { "RELEASE", "TK_RELEASE", ALWAYS },
  237. { "RENAME", "TK_RENAME", ALTER },
  238. { "REPLACE", "TK_REPLACE", CONFLICT },
  239. { "RESTRICT", "TK_RESTRICT", FKEY },
  240. { "RIGHT", "TK_JOIN_KW", ALWAYS },
  241. { "ROLLBACK", "TK_ROLLBACK", ALWAYS },
  242. { "ROW", "TK_ROW", TRIGGER },
  243. { "SAVEPOINT", "TK_SAVEPOINT", ALWAYS },
  244. { "SELECT", "TK_SELECT", ALWAYS },
  245. { "SET", "TK_SET", ALWAYS },
  246. { "TABLE", "TK_TABLE", ALWAYS },
  247. { "TEMP", "TK_TEMP", ALWAYS },
  248. { "TEMPORARY", "TK_TEMP", ALWAYS },
  249. { "THEN", "TK_THEN", ALWAYS },
  250. { "TO", "TK_TO", ALWAYS },
  251. { "TRANSACTION", "TK_TRANSACTION", ALWAYS },
  252. { "TRIGGER", "TK_TRIGGER", TRIGGER },
  253. { "UNION", "TK_UNION", COMPOUND },
  254. { "UNIQUE", "TK_UNIQUE", ALWAYS },
  255. { "UPDATE", "TK_UPDATE", ALWAYS },
  256. { "USING", "TK_USING", ALWAYS },
  257. { "VACUUM", "TK_VACUUM", VACUUM },
  258. { "VALUES", "TK_VALUES", ALWAYS },
  259. { "VIEW", "TK_VIEW", VIEW },
  260. { "VIRTUAL", "TK_VIRTUAL", VTAB },
  261. { "WHEN", "TK_WHEN", ALWAYS },
  262. { "WHERE", "TK_WHERE", ALWAYS },
  263. };
  264. /* Number of keywords */
  265. static int nKeyword = (sizeof(aKeywordTable)/sizeof(aKeywordTable[0]));
  266. /* An array to map all upper-case characters into their corresponding
  267. ** lower-case character.
  268. */
  269. const unsigned char sqlite3UpperToLower[] = {
  270. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
  271. 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
  272. 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
  273. 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
  274. 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
  275. 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
  276. 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
  277. 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
  278. 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
  279. 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
  280. 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
  281. 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
  282. 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
  283. 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
  284. 252,253,254,255
  285. };
  286. #define UpperToLower sqlite3UpperToLower
  287. /*
  288. ** Comparision function for two Keyword records
  289. */
  290. static int keywordCompare1(const void *a, const void *b){
  291. const Keyword *pA = (Keyword*)a;
  292. const Keyword *pB = (Keyword*)b;
  293. int n = pA->len - pB->len;
  294. if( n==0 ){
  295. n = strcmp(pA->zName, pB->zName);
  296. }
  297. assert( n!=0 );
  298. return n;
  299. }
  300. static int keywordCompare2(const void *a, const void *b){
  301. const Keyword *pA = (Keyword*)a;
  302. const Keyword *pB = (Keyword*)b;
  303. int n = pB->longestSuffix - pA->longestSuffix;
  304. if( n==0 ){
  305. n = strcmp(pA->zName, pB->zName);
  306. }
  307. assert( n!=0 );
  308. return n;
  309. }
  310. static int keywordCompare3(const void *a, const void *b){
  311. const Keyword *pA = (Keyword*)a;
  312. const Keyword *pB = (Keyword*)b;
  313. int n = pA->offset - pB->offset;
  314. if( n==0 ) n = pB->id - pA->id;
  315. assert( n!=0 );
  316. return n;
  317. }
  318. /*
  319. ** Return a KeywordTable entry with the given id
  320. */
  321. static Keyword *findById(int id){
  322. int i;
  323. for(i=0; i<nKeyword; i++){
  324. if( aKeywordTable[i].id==id ) break;
  325. }
  326. return &aKeywordTable[i];
  327. }
  328. /*
  329. ** This routine does the work. The generated code is printed on standard
  330. ** output.
  331. */
  332. int main(int argc, char **argv){
  333. int i, j, k, h;
  334. int bestSize, bestCount;
  335. int count;
  336. int nChar;
  337. int totalLen = 0;
  338. int aHash[1000]; /* 1000 is much bigger than nKeyword */
  339. char zText[2000];
  340. /* Remove entries from the list of keywords that have mask==0 */
  341. for(i=j=0; i<nKeyword; i++){
  342. if( aKeywordTable[i].mask==0 ) continue;
  343. if( j<i ){
  344. aKeywordTable[j] = aKeywordTable[i];
  345. }
  346. j++;
  347. }
  348. nKeyword = j;
  349. /* Fill in the lengths of strings and hashes for all entries. */
  350. for(i=0; i<nKeyword; i++){
  351. Keyword *p = &aKeywordTable[i];
  352. p->len = (int)strlen(p->zName);
  353. assert( p->len<sizeof(p->zOrigName) );
  354. strcpy(p->zOrigName, p->zName);
  355. totalLen += p->len;
  356. p->hash = (UpperToLower[(int)p->zName[0]]*4) ^
  357. (UpperToLower[(int)p->zName[p->len-1]]*3) ^ p->len;
  358. p->id = i+1;
  359. }
  360. /* Sort the table from shortest to longest keyword */
  361. qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare1);
  362. /* Look for short keywords embedded in longer keywords */
  363. for(i=nKeyword-2; i>=0; i--){
  364. Keyword *p = &aKeywordTable[i];
  365. for(j=nKeyword-1; j>i && p->substrId==0; j--){
  366. Keyword *pOther = &aKeywordTable[j];
  367. if( pOther->substrId ) continue;
  368. if( pOther->len<=p->len ) continue;
  369. for(k=0; k<=pOther->len-p->len; k++){
  370. if( memcmp(p->zName, &pOther->zName[k], p->len)==0 ){
  371. p->substrId = pOther->id;
  372. p->substrOffset = k;
  373. break;
  374. }
  375. }
  376. }
  377. }
  378. /* Compute the longestSuffix value for every word */
  379. for(i=0; i<nKeyword; i++){
  380. Keyword *p = &aKeywordTable[i];
  381. if( p->substrId ) continue;
  382. for(j=0; j<nKeyword; j++){
  383. Keyword *pOther;
  384. if( j==i ) continue;
  385. pOther = &aKeywordTable[j];
  386. if( pOther->substrId ) continue;
  387. for(k=p->longestSuffix+1; k<p->len && k<pOther->len; k++){
  388. if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){
  389. p->longestSuffix = k;
  390. }
  391. }
  392. }
  393. }
  394. /* Sort the table into reverse order by length */
  395. qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare2);
  396. /* Fill in the offset for all entries */
  397. nChar = 0;
  398. for(i=0; i<nKeyword; i++){
  399. Keyword *p = &aKeywordTable[i];
  400. if( p->offset>0 || p->substrId ) continue;
  401. p->offset = nChar;
  402. nChar += p->len;
  403. for(k=p->len-1; k>=1; k--){
  404. for(j=i+1; j<nKeyword; j++){
  405. Keyword *pOther = &aKeywordTable[j];
  406. if( pOther->offset>0 || pOther->substrId ) continue;
  407. if( pOther->len<=k ) continue;
  408. if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){
  409. p = pOther;
  410. p->offset = nChar - k;
  411. nChar = p->offset + p->len;
  412. p->zName += k;
  413. p->len -= k;
  414. p->prefix = k;
  415. j = i;
  416. k = p->len;
  417. }
  418. }
  419. }
  420. }
  421. for(i=0; i<nKeyword; i++){
  422. Keyword *p = &aKeywordTable[i];
  423. if( p->substrId ){
  424. p->offset = findById(p->substrId)->offset + p->substrOffset;
  425. }
  426. }
  427. /* Sort the table by offset */
  428. qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare3);
  429. /* Figure out how big to make the hash table in order to minimize the
  430. ** number of collisions */
  431. bestSize = nKeyword;
  432. bestCount = nKeyword*nKeyword;
  433. for(i=nKeyword/2; i<=2*nKeyword; i++){
  434. for(j=0; j<i; j++) aHash[j] = 0;
  435. for(j=0; j<nKeyword; j++){
  436. h = aKeywordTable[j].hash % i;
  437. aHash[h] *= 2;
  438. aHash[h]++;
  439. }
  440. for(j=count=0; j<i; j++) count += aHash[j];
  441. if( count<bestCount ){
  442. bestCount = count;
  443. bestSize = i;
  444. }
  445. }
  446. /* Compute the hash */
  447. for(i=0; i<bestSize; i++) aHash[i] = 0;
  448. for(i=0; i<nKeyword; i++){
  449. h = aKeywordTable[i].hash % bestSize;
  450. aKeywordTable[i].iNext = aHash[h];
  451. aHash[h] = i+1;
  452. }
  453. /* Begin generating code */
  454. printf("%s", zHdr);
  455. printf("/* Hash score: %d */\n", bestCount);
  456. printf("static int keywordCode(const char *z, int n){\n");
  457. printf(" /* zText[] encodes %d bytes of keywords in %d bytes */\n",
  458. totalLen + nKeyword, nChar+1 );
  459. for(i=j=k=0; i<nKeyword; i++){
  460. Keyword *p = &aKeywordTable[i];
  461. if( p->substrId ) continue;
  462. memcpy(&zText[k], p->zName, p->len);
  463. k += p->len;
  464. if( j+p->len>70 ){
  465. printf("%*s */\n", 74-j, "");
  466. j = 0;
  467. }
  468. if( j==0 ){
  469. printf(" /* ");
  470. j = 8;
  471. }
  472. printf("%s", p->zName);
  473. j += p->len;
  474. }
  475. if( j>0 ){
  476. printf("%*s */\n", 74-j, "");
  477. }
  478. printf(" static const char zText[%d] = {\n", nChar);
  479. zText[nChar] = 0;
  480. for(i=j=0; i<k; i++){
  481. if( j==0 ){
  482. printf(" ");
  483. }
  484. if( zText[i]==0 ){
  485. printf("0");
  486. }else{
  487. printf("'%c',", zText[i]);
  488. }
  489. j += 4;
  490. if( j>68 ){
  491. printf("\n");
  492. j = 0;
  493. }
  494. }
  495. if( j>0 ) printf("\n");
  496. printf(" };\n");
  497. printf(" static const unsigned char aHash[%d] = {\n", bestSize);
  498. for(i=j=0; i<bestSize; i++){
  499. if( j==0 ) printf(" ");
  500. printf(" %3d,", aHash[i]);
  501. j++;
  502. if( j>12 ){
  503. printf("\n");
  504. j = 0;
  505. }
  506. }
  507. printf("%s };\n", j==0 ? "" : "\n");
  508. printf(" static const unsigned char aNext[%d] = {\n", nKeyword);
  509. for(i=j=0; i<nKeyword; i++){
  510. if( j==0 ) printf(" ");
  511. printf(" %3d,", aKeywordTable[i].iNext);
  512. j++;
  513. if( j>12 ){
  514. printf("\n");
  515. j = 0;
  516. }
  517. }
  518. printf("%s };\n", j==0 ? "" : "\n");
  519. printf(" static const unsigned char aLen[%d] = {\n", nKeyword);
  520. for(i=j=0; i<nKeyword; i++){
  521. if( j==0 ) printf(" ");
  522. printf(" %3d,", aKeywordTable[i].len+aKeywordTable[i].prefix);
  523. j++;
  524. if( j>12 ){
  525. printf("\n");
  526. j = 0;
  527. }
  528. }
  529. printf("%s };\n", j==0 ? "" : "\n");
  530. printf(" static const unsigned short int aOffset[%d] = {\n", nKeyword);
  531. for(i=j=0; i<nKeyword; i++){
  532. if( j==0 ) printf(" ");
  533. printf(" %3d,", aKeywordTable[i].offset);
  534. j++;
  535. if( j>12 ){
  536. printf("\n");
  537. j = 0;
  538. }
  539. }
  540. printf("%s };\n", j==0 ? "" : "\n");
  541. printf(" static const unsigned char aCode[%d] = {\n", nKeyword);
  542. for(i=j=0; i<nKeyword; i++){
  543. char *zToken = aKeywordTable[i].zTokenType;
  544. if( j==0 ) printf(" ");
  545. printf("%s,%*s", zToken, (int)(14-strlen(zToken)), "");
  546. j++;
  547. if( j>=5 ){
  548. printf("\n");
  549. j = 0;
  550. }
  551. }
  552. printf("%s };\n", j==0 ? "" : "\n");
  553. printf(" int h, i;\n");
  554. printf(" if( n<2 ) return TK_ID;\n");
  555. printf(" h = ((charMap(z[0])*4) ^\n"
  556. " (charMap(z[n-1])*3) ^\n"
  557. " n) %% %d;\n", bestSize);
  558. printf(" for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){\n");
  559. printf(" if( aLen[i]==n &&"
  560. " sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){\n");
  561. for(i=0; i<nKeyword; i++){
  562. printf(" testcase( i==%d ); /* %s */\n",
  563. i, aKeywordTable[i].zOrigName);
  564. }
  565. printf(" return aCode[i];\n");
  566. printf(" }\n");
  567. printf(" }\n");
  568. printf(" return TK_ID;\n");
  569. printf("}\n");
  570. printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n");
  571. printf(" return keywordCode((char*)z, n);\n");
  572. printf("}\n");
  573. printf("#define SQLITE_N_KEYWORD %d\n", nKeyword);
  574. return 0;
  575. }