drv_sdio.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. /*
  2. * File : drv_sdio.c
  3. * Copyright (c) 2006-2018, RT-Thread Development Team
  4. *
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Change Logs:
  8. * Date Author Notes
  9. * 2019-07-29 zdzn first version
  10. */
  11. #include "drv_sdio.h"
  12. static rt_uint32_t sdCommandTable[] = {
  13. SD_CMD_INDEX(0),
  14. SD_CMD_RESERVED(1),
  15. SD_CMD_INDEX(2) | SD_RESP_R2,
  16. SD_CMD_INDEX(3) | SD_RESP_R1,
  17. SD_CMD_INDEX(4),
  18. SD_CMD_RESERVED(5), //SD_CMD_INDEX(5) | SD_RESP_R4,
  19. SD_CMD_INDEX(6) | SD_RESP_R1,
  20. SD_CMD_INDEX(7) | SD_RESP_R1b,
  21. SD_CMD_INDEX(8) | SD_RESP_R1,
  22. SD_CMD_INDEX(9) | SD_RESP_R2,
  23. SD_CMD_INDEX(10) | SD_RESP_R2,
  24. SD_CMD_INDEX(11) | SD_RESP_R1,
  25. SD_CMD_INDEX(12) | SD_RESP_R1b | SD_CMD_TYPE_ABORT,
  26. SD_CMD_INDEX(13) | SD_RESP_R1,
  27. SD_CMD_RESERVED(14),
  28. SD_CMD_INDEX(15),
  29. SD_CMD_INDEX(16) | SD_RESP_R1,
  30. SD_CMD_INDEX(17) | SD_RESP_R1 | SD_DATA_READ,
  31. SD_CMD_INDEX(18) | SD_RESP_R1 | SD_DATA_READ | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  32. SD_CMD_INDEX(19) | SD_RESP_R1 | SD_DATA_READ,
  33. SD_CMD_INDEX(20) | SD_RESP_R1b,
  34. SD_CMD_RESERVED(21),
  35. SD_CMD_RESERVED(22),
  36. SD_CMD_INDEX(23) | SD_RESP_R1,
  37. SD_CMD_INDEX(24) | SD_RESP_R1 | SD_DATA_WRITE,
  38. SD_CMD_INDEX(25) | SD_RESP_R1 | SD_DATA_WRITE | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN,
  39. SD_CMD_INDEX(26) | SD_RESP_R1 | SD_DATA_WRITE, //add
  40. SD_CMD_INDEX(27) | SD_RESP_R1 | SD_DATA_WRITE,
  41. SD_CMD_INDEX(28) | SD_RESP_R1b,
  42. SD_CMD_INDEX(29) | SD_RESP_R1b,
  43. SD_CMD_INDEX(30) | SD_RESP_R1 | SD_DATA_READ,
  44. SD_CMD_RESERVED(31),
  45. SD_CMD_INDEX(32) | SD_RESP_R1,
  46. SD_CMD_INDEX(33) | SD_RESP_R1,
  47. SD_CMD_RESERVED(34),
  48. SD_CMD_INDEX(35) | SD_RESP_R1, //add
  49. SD_CMD_INDEX(36) | SD_RESP_R1, //add
  50. SD_CMD_RESERVED(37),
  51. SD_CMD_INDEX(38) | SD_RESP_R1b,
  52. SD_CMD_INDEX(39) | SD_RESP_R4, //add
  53. SD_CMD_INDEX(40) | SD_RESP_R5, //add
  54. SD_CMD_INDEX(41) | SD_RESP_R3, //add, mov from harbote
  55. SD_CMD_RESERVED(42) | SD_RESP_R1,
  56. SD_CMD_RESERVED(43),
  57. SD_CMD_RESERVED(44),
  58. SD_CMD_RESERVED(45),
  59. SD_CMD_RESERVED(46),
  60. SD_CMD_RESERVED(47),
  61. SD_CMD_RESERVED(48),
  62. SD_CMD_RESERVED(49),
  63. SD_CMD_RESERVED(50),
  64. SD_CMD_INDEX(51) | SD_RESP_R1 | SD_DATA_READ,
  65. SD_CMD_RESERVED(52),
  66. SD_CMD_RESERVED(53),
  67. SD_CMD_RESERVED(54),
  68. SD_CMD_INDEX(55) | SD_RESP_R3,
  69. SD_CMD_INDEX(56) | SD_RESP_R1 | SD_CMD_ISDATA,
  70. SD_CMD_RESERVED(57),
  71. SD_CMD_RESERVED(58),
  72. SD_CMD_RESERVED(59),
  73. SD_CMD_RESERVED(60),
  74. SD_CMD_RESERVED(61),
  75. SD_CMD_RESERVED(62),
  76. SD_CMD_RESERVED(63)
  77. };
  78. static inline rt_uint32_t read32(rt_uint32_t addr)
  79. {
  80. return (*((volatile rt_uint32_t *)(addr)));
  81. }
  82. static inline void write32(rt_uint32_t addr, rt_uint32_t value)
  83. {
  84. *((volatile rt_uint32_t *)(addr)) = value;
  85. }
  86. rt_err_t sd_int(struct sdhci_pdata_t * pdat, unsigned int mask)
  87. {
  88. unsigned int r;
  89. unsigned int m = mask | INT_ERROR_MASK;
  90. int cnt = 1000000;
  91. while (!(read32(pdat->virt + EMMC_INTERRUPT) & (m | INT_ERROR_MASK)) && cnt--)
  92. DELAY_MICROS(1);
  93. r = read32(pdat->virt + EMMC_INTERRUPT);
  94. if (cnt <= 0 || (r & INT_CMD_TIMEOUT) || (r & INT_DATA_TIMEOUT))
  95. {
  96. write32(pdat->virt + EMMC_INTERRUPT, r);
  97. rt_kprintf("send cmd/data timeout wait for %x int: %x, status: %x\n",mask, r, read32(pdat->virt + EMMC_STATUS));
  98. return -RT_ETIMEOUT;
  99. }
  100. else if (r & INT_ERROR_MASK)
  101. {
  102. write32(pdat->virt + EMMC_INTERRUPT, r);
  103. rt_kprintf("send cmd/data error %x -> %x\n",r, read32(pdat->virt + EMMC_INTERRUPT));
  104. return -RT_ERROR;
  105. }
  106. write32(pdat->virt + EMMC_INTERRUPT, mask);
  107. return RT_EOK;
  108. }
  109. rt_err_t sd_status(struct sdhci_pdata_t * pdat, unsigned int mask)
  110. {
  111. int cnt = 500000;
  112. while ((read32(pdat->virt + EMMC_STATUS) & mask) && !(read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) && cnt--)
  113. DELAY_MICROS(1);
  114. if (cnt <= 0)
  115. {
  116. return -RT_ETIMEOUT;
  117. }
  118. else if (read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK)
  119. return -RT_ERROR;
  120. return RT_EOK;
  121. }
  122. static rt_err_t raspi_transfer_command(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd)
  123. {
  124. rt_uint32_t cmdidx;
  125. rt_err_t ret = RT_EOK;
  126. ret = sd_status(pdat, SR_CMD_INHIBIT);
  127. if (ret)
  128. {
  129. rt_kprintf("ERROR: EMMC busy %d\n", ret);
  130. return ret;
  131. }
  132. cmdidx = sdCommandTable[cmd->cmdidx];
  133. if (cmdidx == 0xFFFFFFFF)
  134. return -RT_EINVAL;
  135. if (cmd->datarw == DATA_READ)
  136. cmdidx |= SD_DATA_READ;
  137. if (cmd->datarw == DATA_WRITE)
  138. cmdidx |= SD_DATA_WRITE;
  139. mmcsd_dbg("transfer cmd %x(%d) %x %x\n", cmdidx, cmd->cmdidx, cmd->cmdarg, read32(pdat->virt + EMMC_INTERRUPT));
  140. write32(pdat->virt + EMMC_INTERRUPT,read32(pdat->virt + EMMC_INTERRUPT));
  141. write32(pdat->virt + EMMC_ARG1, cmd->cmdarg);
  142. write32(pdat->virt + EMMC_CMDTM, cmdidx);
  143. if (cmd->cmdidx == SD_APP_OP_COND)
  144. DELAY_MICROS(1000);
  145. else if ((cmd->cmdidx == SD_SEND_IF_COND) || (cmd->cmdidx == APP_CMD))
  146. DELAY_MICROS(100);
  147. ret = sd_int(pdat, INT_CMD_DONE);
  148. if (ret)
  149. {
  150. return ret;
  151. }
  152. if (cmd->resptype & RESP_MASK)
  153. {
  154. if (cmd->resptype & RESP_R2)
  155. {
  156. rt_uint32_t resp[4];
  157. resp[0] = read32(pdat->virt + EMMC_RESP0);
  158. resp[1] = read32(pdat->virt + EMMC_RESP1);
  159. resp[2] = read32(pdat->virt + EMMC_RESP2);
  160. resp[3] = read32(pdat->virt + EMMC_RESP3);
  161. if (cmd->resptype == RESP_R2)
  162. {
  163. cmd->response[0] = resp[3]<<8 |((resp[2]>>24)&0xff);
  164. cmd->response[1] = resp[2]<<8 |((resp[1]>>24)&0xff);
  165. cmd->response[2] = resp[1]<<8 |((resp[0]>>24)&0xff);
  166. cmd->response[3] = resp[0]<<8 ;
  167. }
  168. else
  169. {
  170. cmd->response[0] = resp[0];
  171. cmd->response[1] = resp[1];
  172. cmd->response[2] = resp[2];
  173. cmd->response[3] = resp[3];
  174. }
  175. }
  176. else
  177. cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
  178. }
  179. mmcsd_dbg("response: %x: %x %x %x %x (%x, %x)\n", cmd->resptype, cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], read32(pdat->virt + EMMC_STATUS),read32(pdat->virt + EMMC_INTERRUPT));
  180. return ret;
  181. }
  182. static rt_err_t read_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  183. {
  184. int c = 0;
  185. rt_err_t ret;
  186. int d;
  187. while (c < blkcount)
  188. {
  189. if ((ret = sd_int(pdat, INT_READ_RDY)))
  190. {
  191. rt_kprintf("timeout happens when reading block %d\n",c);
  192. return ret;
  193. }
  194. for (d=0; d < blksize / 4; d++)
  195. if (read32(pdat->virt + EMMC_STATUS) & SR_READ_AVAILABLE)
  196. buf[d] = read32(pdat->virt + EMMC_DATA);
  197. c++;
  198. buf += blksize / 4;
  199. }
  200. return RT_EOK;
  201. }
  202. static rt_err_t write_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
  203. {
  204. int c = 0;
  205. rt_err_t ret;
  206. int d;
  207. while (c < blkcount)
  208. {
  209. if ((ret = sd_int(pdat, INT_WRITE_RDY)))
  210. {
  211. return ret;
  212. }
  213. for (d=0; d < blksize / 4; d++)
  214. write32(pdat->virt + EMMC_DATA, buf[d]);
  215. c++;
  216. buf += blksize / 4;
  217. }
  218. if ((ret = sd_int(pdat, INT_DATA_DONE)))
  219. {
  220. return ret;
  221. }
  222. return RT_EOK;
  223. }
  224. static rt_err_t raspi_transfer_data(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
  225. {
  226. rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
  227. rt_err_t ret = sd_status(pdat, SR_DAT_INHIBIT);
  228. if (ret)
  229. {
  230. rt_kprintf("ERROR: EMMC busy\n");
  231. return ret;
  232. }
  233. if (dat->blkcnt > 1)
  234. {
  235. struct sdhci_cmd_t newcmd;
  236. newcmd.cmdidx = SET_BLOCK_COUNT;
  237. newcmd.cmdarg = dat->blkcnt;
  238. newcmd.resptype = RESP_R1;
  239. ret = raspi_transfer_command(pdat, &newcmd);
  240. if (ret) return ret;
  241. }
  242. write32(pdat->virt + EMMC_BLKSIZECNT, dlen | 1 << 16);
  243. if (dat->flag & DATA_DIR_READ)
  244. {
  245. cmd->datarw = DATA_READ;
  246. ret = raspi_transfer_command(pdat, cmd);
  247. if (ret) return ret;
  248. mmcsd_dbg("read_block %d, %d\n", dat->blkcnt, dat->blksz );
  249. ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  250. }
  251. else if (dat->flag & DATA_DIR_WRITE)
  252. {
  253. cmd->datarw = DATA_WRITE;
  254. ret = raspi_transfer_command(pdat, cmd);
  255. if (ret) return ret;
  256. mmcsd_dbg("write_block %d, %d", dat->blkcnt, dat->blksz );
  257. ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
  258. }
  259. return ret;
  260. }
  261. static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
  262. {
  263. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
  264. if (!dat)
  265. return raspi_transfer_command(pdat, cmd);
  266. return raspi_transfer_data(pdat, cmd, dat);
  267. }
  268. static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
  269. {
  270. struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
  271. struct sdhci_cmd_t cmd;
  272. struct sdhci_cmd_t stop;
  273. struct sdhci_data_t dat;
  274. rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
  275. rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
  276. rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
  277. cmd.cmdidx = req->cmd->cmd_code;
  278. cmd.cmdarg = req->cmd->arg;
  279. cmd.resptype =resp_type(req->cmd);
  280. if (req->data)
  281. {
  282. dat.buf = (rt_uint8_t *)req->data->buf;
  283. dat.flag = req->data->flags;
  284. dat.blksz = req->data->blksize;
  285. dat.blkcnt = req->data->blks;
  286. req->cmd->err = sdhci_transfer(sdhci, &cmd, &dat);
  287. }
  288. else
  289. {
  290. req->cmd->err = sdhci_transfer(sdhci, &cmd, RT_NULL);
  291. }
  292. req->cmd->resp[3] = cmd.response[3];
  293. req->cmd->resp[2] = cmd.response[2];
  294. req->cmd->resp[1] = cmd.response[1];
  295. req->cmd->resp[0] = cmd.response[0];
  296. if (req->stop)
  297. {
  298. stop.cmdidx = req->stop->cmd_code;
  299. stop.cmdarg = req->stop->arg;
  300. cmd.resptype =resp_type(req->stop);
  301. req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL);
  302. }
  303. mmcsd_req_complete(host);
  304. }
  305. rt_int32_t mmc_card_status(struct rt_mmcsd_host *host)
  306. {
  307. return 0;
  308. }
  309. void mmc_enable_irq(struct rt_mmcsd_host *host, rt_int32_t en)
  310. {
  311. }
  312. static rt_err_t sdhci_detect(struct sdhci_t * sdhci)
  313. {
  314. return RT_EOK;
  315. }
  316. static rt_err_t sdhci_setwidth(struct sdhci_t * sdhci, rt_uint32_t width)
  317. {
  318. rt_uint32_t temp = 0;
  319. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
  320. if (width == MMCSD_BUS_WIDTH_4)
  321. {
  322. temp = read32((pdat->virt + EMMC_CONTROL0));
  323. temp |= C0_HCTL_HS_EN;
  324. temp |= C0_HCTL_DWITDH; // always use 4 data lines:
  325. write32((pdat->virt + EMMC_CONTROL0), temp);
  326. }
  327. return RT_EOK;
  328. }
  329. static rt_uint32_t sdhci_getdivider(rt_uint32_t sdHostVer, rt_uint32_t freq)
  330. {
  331. rt_uint32_t divisor;
  332. rt_uint32_t closest = 41666666 / freq;
  333. rt_uint32_t shiftcount = __rt_fls(closest - 1);
  334. if (shiftcount > 0) shiftcount--;
  335. if (shiftcount > 7) shiftcount = 7;
  336. if (sdHostVer > HOST_SPEC_V2)
  337. divisor = closest;
  338. else
  339. divisor = (1 << shiftcount);
  340. if (divisor <= 2)
  341. {
  342. divisor = 2;
  343. shiftcount = 0;
  344. }
  345. rt_uint32_t hi = 0;
  346. if (sdHostVer > HOST_SPEC_V2)
  347. hi = (divisor & 0x300) >> 2;
  348. rt_uint32_t lo = (divisor & 0x0ff);
  349. rt_uint32_t cdiv = (lo << 8) + hi;
  350. return cdiv;
  351. }
  352. static rt_err_t sdhci_setclock(struct sdhci_t * sdhci, rt_uint32_t clock)
  353. {
  354. rt_uint32_t temp = 0;
  355. rt_uint32_t sdHostVer = 0;
  356. int count = 100000;
  357. struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)(sdhci->priv);
  358. while ((read32(pdat->virt + EMMC_STATUS) & (SR_CMD_INHIBIT | SR_DAT_INHIBIT)) && (--count))
  359. DELAY_MICROS(1);
  360. if (count <= 0)
  361. {
  362. rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n",read32(pdat->virt + EMMC_STATUS));
  363. return RT_ERROR;
  364. }
  365. // Switch clock off.
  366. temp = read32((pdat->virt + EMMC_CONTROL1));
  367. temp &= ~C1_CLK_EN;
  368. write32((pdat->virt + EMMC_CONTROL1),temp);
  369. DELAY_MICROS(10);
  370. // Request the new clock setting and enable the clock
  371. temp = read32(pdat->virt + EMMC_SLOTISR_VER);
  372. sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT;
  373. int cdiv = sdhci_getdivider(sdHostVer, clock);
  374. temp = read32((pdat->virt + EMMC_CONTROL1));
  375. temp = (temp & 0xffff003f) | cdiv;
  376. write32((pdat->virt + EMMC_CONTROL1),temp);
  377. DELAY_MICROS(10);
  378. // Enable the clock.
  379. temp = read32(pdat->virt + EMMC_CONTROL1);
  380. temp |= C1_CLK_EN;
  381. write32((pdat->virt + EMMC_CONTROL1),temp);
  382. DELAY_MICROS(10);
  383. // Wait for clock to be stable.
  384. count = 10000;
  385. while (!(read32(pdat->virt + EMMC_CONTROL1) & C1_CLK_STABLE) && count--)
  386. DELAY_MICROS(10);
  387. if (count <= 0)
  388. {
  389. rt_kprintf("EMMC: ERROR: failed to get stable clock %d.\n", clock);
  390. return RT_ERROR;
  391. }
  392. mmcsd_dbg("set stable clock %d.\n", clock);
  393. return RT_EOK;
  394. }
  395. static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
  396. {
  397. struct sdhci_t * sdhci = (struct sdhci_t *)host->private_data;
  398. sdhci_setclock(sdhci, io_cfg->clock);
  399. sdhci_setwidth(sdhci, io_cfg->bus_width);
  400. }
  401. static const struct rt_mmcsd_host_ops ops =
  402. {
  403. mmc_request_send,
  404. mmc_set_iocfg,
  405. RT_NULL,
  406. RT_NULL,
  407. };
  408. static void sdmmc_gpio_init()
  409. {
  410. // int pin;
  411. // bcm283x_gpio_fsel(47,BCM283X_GPIO_FSEL_INPT);
  412. // bcm283x_gpio_set_pud(47, BCM283X_GPIO_PUD_UP);
  413. // bcm283x_peri_set_bits(BCM283X_GPIO_BASE + BCM283X_GPIO_GPHEN1, 1<<15, 1<<15);
  414. // for (pin = 53; pin >= 48; pin--)
  415. // {
  416. // bcm283x_gpio_fsel(pin, BCM283X_GPIO_FSEL_ALT3);
  417. // bcm283x_gpio_set_pud(pin, BCM283X_GPIO_PUD_UP);
  418. // }
  419. }
  420. static rt_err_t reset_emmc(struct sdhci_pdata_t * pdat){
  421. rt_uint32_t temp;
  422. int cnt;
  423. write32((pdat->virt + EMMC_CONTROL0),0);
  424. temp = read32((pdat->virt + EMMC_CONTROL1));
  425. temp |= C1_SRST_HC;
  426. write32((pdat->virt + EMMC_CONTROL1),temp);
  427. cnt = 10000;
  428. do
  429. {
  430. DELAY_MICROS(10);
  431. }
  432. while ((read32((pdat->virt + EMMC_CONTROL1)) & C1_SRST_HC) && cnt--);
  433. if (cnt <= 0)
  434. {
  435. rt_kprintf("ERROR: failed to reset EMMC\n");
  436. return RT_ERROR;
  437. }
  438. temp = read32((pdat->virt + EMMC_CONTROL1));
  439. temp |= C1_CLK_INTLEN | C1_TOUNIT_MAX;
  440. write32((pdat->virt + EMMC_CONTROL1),temp);
  441. DELAY_MICROS(10);
  442. return RT_EOK;
  443. }
  444. #ifdef RT_MMCSD_DBG
  445. void dump_registers(struct sdhci_pdata_t * pdat){
  446. rt_kprintf("EMMC registers:");
  447. int i = EMMC_ARG2;
  448. for (; i <= EMMC_CONTROL2; i += 4)
  449. rt_kprintf("\t%x:%x\n", i, read32(pdat->virt + i));
  450. rt_kprintf("\t%x:%x\n", 0x50, read32(pdat->virt + 0x50));
  451. rt_kprintf("\t%x:%x\n", 0x70, read32(pdat->virt + 0x70));
  452. rt_kprintf("\t%x:%x\n", 0x74, read32(pdat->virt + 0x74));
  453. rt_kprintf("\t%x:%x\n", 0x80, read32(pdat->virt + 0x80));
  454. rt_kprintf("\t%x:%x\n", 0x84, read32(pdat->virt + 0x84));
  455. rt_kprintf("\t%x:%x\n", 0x88, read32(pdat->virt + 0x88));
  456. rt_kprintf("\t%x:%x\n", 0x8c, read32(pdat->virt + 0x8c));
  457. rt_kprintf("\t%x:%x\n", 0x90, read32(pdat->virt + 0x90));
  458. rt_kprintf("\t%x:%x\n", 0xf0, read32(pdat->virt + 0xf0));
  459. rt_kprintf("\t%x:%x\n", 0xfc, read32(pdat->virt + 0xfc));
  460. }
  461. #endif
  462. int raspi_sdmmc_init(void)
  463. {
  464. rt_uint32_t virt;
  465. struct rt_mmcsd_host * host = RT_NULL;
  466. struct sdhci_pdata_t * pdat = RT_NULL;
  467. struct sdhci_t * sdhci = RT_NULL;
  468. #ifdef BSP_USING_SDIO0
  469. host = mmcsd_alloc_host();
  470. if (!host)
  471. {
  472. rt_kprintf("alloc host failed");
  473. goto err;
  474. }
  475. sdhci = rt_malloc(sizeof(struct sdhci_t));
  476. if (!sdhci)
  477. {
  478. rt_kprintf("alloc sdhci failed");
  479. goto err;
  480. }
  481. rt_memset(sdhci, 0, sizeof(struct sdhci_t));
  482. sdmmc_gpio_init();
  483. virt = MMC0_BASE_ADDR;
  484. pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t));
  485. RT_ASSERT(pdat != RT_NULL);
  486. pdat->virt = (rt_uint32_t)virt;
  487. reset_emmc(pdat);
  488. sdhci->name = "sd0";
  489. sdhci->voltages = VDD_33_34;
  490. sdhci->width = MMCSD_BUSWIDTH_4;
  491. sdhci->clock = 200 * 1000 * 1000;
  492. sdhci->removeable = RT_TRUE;
  493. sdhci->detect = sdhci_detect;
  494. sdhci->setwidth = sdhci_setwidth;
  495. sdhci->setclock = sdhci_setclock;
  496. sdhci->transfer = sdhci_transfer;
  497. sdhci->priv = pdat;
  498. host->ops = &ops;
  499. host->freq_min = 400000;
  500. host->freq_max = 50000000;
  501. host->valid_ocr = VDD_32_33 | VDD_33_34;
  502. host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4;
  503. host->max_seg_size = 2048;
  504. host->max_dma_segs = 10;
  505. host->max_blk_size = 512;
  506. host->max_blk_count = 4096;
  507. host->private_data = sdhci;
  508. write32((pdat->virt + EMMC_IRPT_EN),0xffffffff);
  509. write32((pdat->virt + EMMC_IRPT_MASK),0xffffffff);
  510. #ifdef RT_MMCSD_DBG
  511. dump_registers(pdat);
  512. #endif
  513. mmcsd_change(host);
  514. #endif
  515. return RT_EOK;
  516. err:
  517. if (host) rt_free(host);
  518. if (sdhci) rt_free(sdhci);
  519. return -RT_EIO;
  520. }
  521. INIT_DEVICE_EXPORT(raspi_sdmmc_init);