sensor.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2020-02-22 luhuadong support custom commands
  10. */
  11. #include "sensor.h"
  12. #define DBG_TAG "sensor"
  13. #define DBG_LVL DBG_INFO
  14. #include <rtdbg.h>
  15. #include <string.h>
  16. static char *const sensor_name_str[] =
  17. {
  18. "none",
  19. "acce_", /* Accelerometer */
  20. "gyro_", /* Gyroscope */
  21. "mag_", /* Magnetometer */
  22. "temp_", /* Temperature */
  23. "humi_", /* Relative Humidity */
  24. "baro_", /* Barometer */
  25. "li_", /* Ambient light */
  26. "pr_", /* Proximity */
  27. "hr_", /* Heart Rate */
  28. "tvoc_", /* TVOC Level */
  29. "noi_", /* Noise Loudness */
  30. "step_", /* Step sensor */
  31. "forc_", /* Force sensor */
  32. "dust_", /* Dust sensor */
  33. "eco2_", /* eCO2 sensor */
  34. "gnss_", /* GPS/GNSS sensor */
  35. "tof_" /* TOF sensor */
  36. };
  37. /* Sensor interrupt correlation function */
  38. /*
  39. * Sensor interrupt handler function
  40. */
  41. void rt_sensor_cb(rt_sensor_t sen)
  42. {
  43. if (sen->parent.rx_indicate == RT_NULL)
  44. {
  45. return;
  46. }
  47. if (sen->irq_handle != RT_NULL)
  48. {
  49. sen->irq_handle(sen);
  50. }
  51. /* The buffer is not empty. Read the data in the buffer first */
  52. if (sen->data_len > 0)
  53. {
  54. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  55. }
  56. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  57. {
  58. /* The interrupt mode only produces one data at a time */
  59. sen->parent.rx_indicate(&sen->parent, 1);
  60. }
  61. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  62. {
  63. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  64. }
  65. }
  66. /* ISR for sensor interrupt */
  67. static void irq_callback(void *args)
  68. {
  69. rt_sensor_t sensor = (rt_sensor_t)args;
  70. rt_uint8_t i;
  71. if (sensor->module)
  72. {
  73. /* Invoke a callback for all sensors in the module */
  74. for (i = 0; i < sensor->module->sen_num; i++)
  75. {
  76. rt_sensor_cb(sensor->module->sen[i]);
  77. }
  78. }
  79. else
  80. {
  81. rt_sensor_cb(sensor);
  82. }
  83. }
  84. /* Sensor interrupt initialization function */
  85. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  86. {
  87. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  88. {
  89. return -RT_EINVAL;
  90. }
  91. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  92. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  93. {
  94. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  95. }
  96. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  97. {
  98. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  99. }
  100. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  101. {
  102. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  103. }
  104. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  105. LOG_I("interrupt init success");
  106. return 0;
  107. }
  108. // local rt_sensor_ops
  109. static rt_size_t local_fetch_data(struct rt_sensor_device *sensor, void *buf, rt_size_t len)
  110. {
  111. LOG_D("Undefined fetch_data");
  112. return 0;
  113. }
  114. static rt_err_t local_control(struct rt_sensor_device *sensor, int cmd, void *arg)
  115. {
  116. LOG_D("Undefined control");
  117. return RT_ERROR;
  118. }
  119. static struct rt_sensor_ops local_ops = {
  120. .fetch_data = local_fetch_data,
  121. .control = local_control
  122. };
  123. /* RT-Thread Device Interface */
  124. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  125. {
  126. rt_sensor_t sensor = (rt_sensor_t)dev;
  127. RT_ASSERT(dev != RT_NULL);
  128. rt_err_t res = RT_EOK;
  129. rt_err_t (*local_ctrl)(struct rt_sensor_device *sensor, int cmd, void *arg) = local_control;
  130. if (sensor->module)
  131. {
  132. /* take the module mutex */
  133. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  134. }
  135. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  136. {
  137. /* Allocate memory for the sensor buffer */
  138. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  139. if (sensor->data_buf == RT_NULL)
  140. {
  141. res = -RT_ENOMEM;
  142. goto __exit;
  143. }
  144. }
  145. if (sensor->ops->control != RT_NULL)
  146. {
  147. local_ctrl = sensor->ops->control;
  148. }
  149. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  150. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  151. {
  152. /* If polling mode is supported, configure it to polling mode */
  153. local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
  154. }
  155. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  156. {
  157. /* If interrupt mode is supported, configure it to interrupt mode */
  158. if (RT_EOK== local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT))
  159. {
  160. /* Initialization sensor interrupt */
  161. rt_sensor_irq_init(sensor);
  162. sensor->config.mode = RT_SENSOR_MODE_INT;
  163. }
  164. }
  165. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  166. {
  167. /* If fifo mode is supported, configure it to fifo mode */
  168. if (RT_EOK == local_ctrl(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO))
  169. {
  170. /* Initialization sensor interrupt */
  171. rt_sensor_irq_init(sensor);
  172. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  173. }
  174. }
  175. else
  176. {
  177. res = -RT_EINVAL;
  178. goto __exit;
  179. }
  180. /* Configure power mode to normal mode */
  181. if (RT_EOK == local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL))
  182. {
  183. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  184. }
  185. __exit:
  186. if (sensor->module)
  187. {
  188. /* release the module mutex */
  189. rt_mutex_release(sensor->module->lock);
  190. }
  191. return res;
  192. }
  193. static rt_err_t rt_sensor_close(rt_device_t dev)
  194. {
  195. rt_sensor_t sensor = (rt_sensor_t)dev;
  196. int i;
  197. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  198. RT_ASSERT(dev != RT_NULL);
  199. if (sensor->module)
  200. {
  201. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  202. }
  203. if (sensor->ops->control != RT_NULL)
  204. {
  205. local_ctrl = sensor->ops->control;
  206. }
  207. /* Configure power mode to power down mode */
  208. if (RT_EOK == local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN))
  209. {
  210. sensor->config.power = RT_SENSOR_POWER_DOWN;
  211. }
  212. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
  213. {
  214. for (i = 0; i < sensor->module->sen_num; i ++)
  215. {
  216. if (sensor->module->sen[i]->parent.ref_count > 0)
  217. goto __exit;
  218. }
  219. /* Free memory for the sensor buffer */
  220. for (i = 0; i < sensor->module->sen_num; i ++)
  221. {
  222. if (sensor->module->sen[i]->data_buf != RT_NULL)
  223. {
  224. rt_free(sensor->module->sen[i]->data_buf);
  225. sensor->module->sen[i]->data_buf = RT_NULL;
  226. }
  227. }
  228. }
  229. /* Sensor disable interrupt */
  230. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  231. {
  232. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  233. }
  234. __exit:
  235. if (sensor->module)
  236. {
  237. rt_mutex_release(sensor->module->lock);
  238. }
  239. return RT_EOK;
  240. }
  241. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  242. {
  243. rt_sensor_t sensor = (rt_sensor_t)dev;
  244. rt_size_t result = 0;
  245. RT_ASSERT(dev != RT_NULL);
  246. if (buf == NULL || len == 0)
  247. {
  248. return 0;
  249. }
  250. if (sensor->module)
  251. {
  252. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  253. }
  254. /* The buffer is not empty. Read the data in the buffer first */
  255. if (sensor->data_len > 0)
  256. {
  257. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  258. {
  259. len = sensor->data_len / sizeof(struct rt_sensor_data);
  260. }
  261. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  262. /* Clear the buffer */
  263. sensor->data_len = 0;
  264. result = len;
  265. }
  266. else
  267. {
  268. /* If the buffer is empty read the data */
  269. if (sensor->ops->fetch_data != RT_NULL)
  270. {
  271. result = sensor->ops->fetch_data(sensor, buf, len);
  272. }
  273. }
  274. if (sensor->module)
  275. {
  276. rt_mutex_release(sensor->module->lock);
  277. }
  278. return result;
  279. }
  280. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  281. {
  282. rt_sensor_t sensor = (rt_sensor_t)dev;
  283. rt_err_t result = RT_EOK;
  284. RT_ASSERT(dev != RT_NULL);
  285. rt_err_t (*local_ctrl)(struct rt_sensor_device * sensor, int cmd, void *arg) = local_control;
  286. if (sensor->module)
  287. {
  288. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  289. }
  290. if (sensor->ops->control != RT_NULL)
  291. {
  292. local_ctrl = sensor->ops->control;
  293. }
  294. switch (cmd)
  295. {
  296. case RT_SENSOR_CTRL_GET_ID:
  297. if (args)
  298. {
  299. result = local_ctrl(sensor, RT_SENSOR_CTRL_GET_ID, args);
  300. }
  301. break;
  302. case RT_SENSOR_CTRL_GET_INFO:
  303. if (args)
  304. {
  305. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  306. }
  307. break;
  308. case RT_SENSOR_CTRL_SET_RANGE:
  309. /* Configuration measurement range */
  310. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  311. if (result == RT_EOK)
  312. {
  313. sensor->config.range = (rt_int32_t)args;
  314. LOG_D("set range %d", sensor->config.range);
  315. }
  316. break;
  317. case RT_SENSOR_CTRL_SET_ODR:
  318. /* Configuration data output rate */
  319. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  320. if (result == RT_EOK)
  321. {
  322. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  323. LOG_D("set odr %d", sensor->config.odr);
  324. }
  325. break;
  326. case RT_SENSOR_CTRL_SET_POWER:
  327. /* Configuration sensor power mode */
  328. result = local_ctrl(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  329. if (result == RT_EOK)
  330. {
  331. sensor->config.power = (rt_uint32_t)args & 0xFF;
  332. LOG_D("set power mode code:", sensor->config.power);
  333. }
  334. break;
  335. case RT_SENSOR_CTRL_SELF_TEST:
  336. /* Device self-test */
  337. result = local_ctrl(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  338. break;
  339. default:
  340. if (cmd > RT_SENSOR_CTRL_USER_CMD_START)
  341. {
  342. /* Custom commands */
  343. result = local_ctrl(sensor, cmd, args);
  344. }
  345. else
  346. {
  347. result = -RT_ERROR;
  348. }
  349. break;
  350. }
  351. if (sensor->module)
  352. {
  353. rt_mutex_release(sensor->module->lock);
  354. }
  355. return result;
  356. }
  357. #ifdef RT_USING_DEVICE_OPS
  358. const static struct rt_device_ops rt_sensor_ops =
  359. {
  360. RT_NULL,
  361. rt_sensor_open,
  362. rt_sensor_close,
  363. rt_sensor_read,
  364. RT_NULL,
  365. rt_sensor_control
  366. };
  367. #endif
  368. /*
  369. * sensor register
  370. */
  371. int rt_hw_sensor_register(rt_sensor_t sensor,
  372. const char *name,
  373. rt_uint32_t flag,
  374. void *data)
  375. {
  376. rt_int8_t result;
  377. rt_device_t device;
  378. RT_ASSERT(sensor != RT_NULL);
  379. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  380. if (sensor->ops == RT_NULL)
  381. {
  382. sensor->ops = &local_ops;
  383. }
  384. /* Add a type name for the sensor device */
  385. sensor_name = sensor_name_str[sensor->info.type];
  386. device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  387. if (device_name == RT_NULL)
  388. {
  389. LOG_E("device_name calloc failed!");
  390. return -RT_ERROR;
  391. }
  392. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  393. strcat(device_name, name);
  394. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  395. {
  396. /* Create a mutex lock for the module */
  397. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  398. if (sensor->module->lock == RT_NULL)
  399. {
  400. rt_free(device_name);
  401. return -RT_ERROR;
  402. }
  403. }
  404. device = &sensor->parent;
  405. #ifdef RT_USING_DEVICE_OPS
  406. device->ops = &rt_sensor_ops;
  407. #else
  408. device->init = RT_NULL;
  409. device->open = rt_sensor_open;
  410. device->close = rt_sensor_close;
  411. device->read = rt_sensor_read;
  412. device->write = RT_NULL;
  413. device->control = rt_sensor_control;
  414. #endif
  415. device->type = RT_Device_Class_Sensor;
  416. device->rx_indicate = RT_NULL;
  417. device->tx_complete = RT_NULL;
  418. device->user_data = data;
  419. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  420. if (result != RT_EOK)
  421. {
  422. rt_free(device_name);
  423. LOG_E("rt_sensor register err code: %d", result);
  424. return result;
  425. }
  426. rt_free(device_name);
  427. LOG_I("rt_sensor init success");
  428. return RT_EOK;
  429. }