drv_crypto.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740
  1. /*
  2. * Copyright (c) 2006-2023, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-07-10 Ernest 1st version
  9. * 2020-10-14 Dozingfiretruck Porting for stm32wbxx
  10. * 2020-11-26 thread-liu add hash
  11. * 2020-11-26 thread-liu add cryp
  12. * 2020-12-11 WKJay fix build problem
  13. */
  14. #include <rtdevice.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include "drv_crypto.h"
  18. #include <board.h>
  19. #include "drv_config.h"
  20. struct stm32_hwcrypto_device
  21. {
  22. struct rt_hwcrypto_device dev;
  23. struct rt_mutex mutex;
  24. };
  25. #if defined(BSP_USING_CRC)
  26. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  27. static struct hwcrypto_crc_cfg crc_backup_cfg;
  28. static int reverse_bit(rt_uint32_t n)
  29. {
  30. n = ((n >> 1) & 0x55555555) | ((n << 1) & 0xaaaaaaaa);
  31. n = ((n >> 2) & 0x33333333) | ((n << 2) & 0xcccccccc);
  32. n = ((n >> 4) & 0x0f0f0f0f) | ((n << 4) & 0xf0f0f0f0);
  33. n = ((n >> 8) & 0x00ff00ff) | ((n << 8) & 0xff00ff00);
  34. n = ((n >> 16) & 0x0000ffff) | ((n << 16) & 0xffff0000);
  35. return n;
  36. }
  37. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  38. static rt_uint32_t _crc_update(struct hwcrypto_crc *ctx, const rt_uint8_t *in, rt_size_t length)
  39. {
  40. rt_uint32_t result = 0;
  41. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  42. #if defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  43. CRC_HandleTypeDef *HW_TypeDef = (CRC_HandleTypeDef *)(ctx->parent.contex);
  44. #endif
  45. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  46. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  47. if (memcmp(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg)) != 0)
  48. {
  49. if (HW_TypeDef->Init.DefaultPolynomialUse == DEFAULT_POLYNOMIAL_DISABLE)
  50. {
  51. HW_TypeDef->Init.GeneratingPolynomial = ctx ->crc_cfg.poly;
  52. }
  53. else
  54. {
  55. HW_TypeDef->Init.GeneratingPolynomial = DEFAULT_CRC32_POLY;
  56. }
  57. switch (ctx ->crc_cfg.flags)
  58. {
  59. case 0:
  60. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
  61. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
  62. break;
  63. case CRC_FLAG_REFIN:
  64. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  65. break;
  66. case CRC_FLAG_REFOUT:
  67. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  68. break;
  69. case CRC_FLAG_REFIN|CRC_FLAG_REFOUT:
  70. HW_TypeDef->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  71. HW_TypeDef->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  72. break;
  73. default :
  74. goto _exit;
  75. }
  76. switch(ctx ->crc_cfg.width)
  77. {
  78. #if defined(CRC_POLYLENGTH_7B) && defined(CRC_POLYLENGTH_8B) && defined(CRC_POLYLENGTH_16B) && defined(CRC_POLYLENGTH_32B)
  79. case 7:
  80. HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_7B;
  81. break;
  82. case 8:
  83. HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_8B;
  84. break;
  85. case 16:
  86. HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_16B;
  87. break;
  88. case 32:
  89. HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_32B;
  90. break;
  91. default :
  92. goto _exit;
  93. #else
  94. case 32:
  95. HW_TypeDef->Init.CRCLength = CRC_POLYLENGTH_32B;
  96. break;
  97. default :
  98. goto _exit;
  99. #endif /* defined(CRC_POLYLENGTH_7B) && defined(CRC_POLYLENGTH_8B) && defined(CRC_POLYLENGTH_16B) && defined(CRC_POLYLENGTH_32B) */
  100. }
  101. if (HW_TypeDef->Init.DefaultInitValueUse == DEFAULT_INIT_VALUE_DISABLE)
  102. {
  103. HW_TypeDef->Init.InitValue = ctx ->crc_cfg.last_val;
  104. }
  105. if (HAL_CRC_Init(HW_TypeDef) != HAL_OK)
  106. {
  107. goto _exit;
  108. }
  109. memcpy(&crc_backup_cfg, &ctx->crc_cfg, sizeof(struct hwcrypto_crc_cfg));
  110. }
  111. if (HAL_CRC_STATE_READY != HAL_CRC_GetState(HW_TypeDef))
  112. {
  113. goto _exit;
  114. }
  115. #else
  116. if (ctx->crc_cfg.flags != 0 || ctx->crc_cfg.last_val != 0xFFFFFFFF || ctx->crc_cfg.xorout != 0 || length % 4 != 0)
  117. {
  118. goto _exit;
  119. }
  120. length /= 4;
  121. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  122. result = HAL_CRC_Accumulate(ctx->parent.contex, (rt_uint32_t *)in, length);
  123. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  124. if (HW_TypeDef->Init.OutputDataInversionMode)
  125. {
  126. ctx ->crc_cfg.last_val = reverse_bit(result);
  127. }
  128. else
  129. {
  130. ctx ->crc_cfg.last_val = result;
  131. }
  132. crc_backup_cfg.last_val = ctx ->crc_cfg.last_val;
  133. result = (result ? result ^ (ctx ->crc_cfg.xorout) : result);
  134. #endif /* defined(SOC_SERIES_STM32L4)|| defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  135. _exit:
  136. rt_mutex_release(&stm32_hw_dev->mutex);
  137. return result;
  138. }
  139. static const struct hwcrypto_crc_ops crc_ops =
  140. {
  141. .update = _crc_update,
  142. };
  143. #endif /* BSP_USING_CRC */
  144. #if defined(BSP_USING_RNG)
  145. static rt_uint32_t _rng_rand(struct hwcrypto_rng *ctx)
  146. {
  147. rt_uint32_t gen_random = 0;
  148. RNG_HandleTypeDef *HW_TypeDef = (RNG_HandleTypeDef *)(ctx->parent.contex);
  149. if (HAL_OK == HAL_RNG_GenerateRandomNumber(HW_TypeDef, &gen_random))
  150. {
  151. return gen_random ;
  152. }
  153. return 0;
  154. }
  155. static const struct hwcrypto_rng_ops rng_ops =
  156. {
  157. .update = _rng_rand,
  158. };
  159. #endif /* BSP_USING_RNG */
  160. #if defined(BSP_USING_HASH)
  161. static rt_err_t _hash_update(struct hwcrypto_hash *ctx, const rt_uint8_t *in, rt_size_t length)
  162. {
  163. rt_uint32_t tickstart = 0;
  164. rt_uint32_t result = RT_EOK;
  165. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  166. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  167. #if defined(SOC_SERIES_STM32MP1)
  168. HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex);
  169. /* Start HASH computation using DMA transfer */
  170. switch (ctx->parent.type)
  171. {
  172. case HWCRYPTO_TYPE_SHA224:
  173. result = HAL_HASHEx_SHA224_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  174. break;
  175. case HWCRYPTO_TYPE_SHA256:
  176. result = HAL_HASHEx_SHA256_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  177. break;
  178. case HWCRYPTO_TYPE_MD5:
  179. result = HAL_HASH_MD5_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  180. break;
  181. case HWCRYPTO_TYPE_SHA1:
  182. result = HAL_HASH_SHA1_Start_DMA(HW_TypeDef, (uint8_t *)in, length);
  183. break;
  184. default :
  185. rt_kprintf("not support hash type: %x", ctx->parent.type);
  186. break;
  187. }
  188. if (result != HAL_OK)
  189. {
  190. goto _exit;
  191. }
  192. /* Wait for DMA transfer to complete */
  193. tickstart = rt_tick_get();
  194. while (HAL_HASH_GetState(HW_TypeDef) == HAL_HASH_STATE_BUSY)
  195. {
  196. if (rt_tick_get() - tickstart > 0xFFFF)
  197. {
  198. result = -RT_ETIMEOUT;
  199. goto _exit;
  200. }
  201. }
  202. #endif
  203. _exit:
  204. rt_mutex_release(&stm32_hw_dev->mutex);
  205. return result;
  206. }
  207. static rt_err_t _hash_finish(struct hwcrypto_hash *ctx, rt_uint8_t *out, rt_size_t length)
  208. {
  209. rt_uint32_t result = RT_EOK;
  210. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  211. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  212. #if defined(SOC_SERIES_STM32MP1)
  213. HASH_HandleTypeDef *HW_TypeDef = (HASH_HandleTypeDef *)(ctx->parent.contex);
  214. /* Get the computed digest value */
  215. switch (ctx->parent.type)
  216. {
  217. case HWCRYPTO_TYPE_SHA224:
  218. result = HAL_HASHEx_SHA224_Finish(HW_TypeDef, (uint8_t *)out, length);
  219. break;
  220. case HWCRYPTO_TYPE_SHA256:
  221. result = HAL_HASHEx_SHA256_Finish(HW_TypeDef, (uint8_t *)out, length);
  222. break;
  223. case HWCRYPTO_TYPE_MD5:
  224. result = HAL_HASH_MD5_Finish(HW_TypeDef, (uint8_t *)out, length);
  225. break;
  226. case HWCRYPTO_TYPE_SHA1:
  227. result = HAL_HASH_SHA1_Finish(HW_TypeDef, (uint8_t *)out, length);
  228. break;
  229. default :
  230. rt_kprintf("not support hash type: %x", ctx->parent.type);
  231. break;
  232. }
  233. if (result != HAL_OK)
  234. {
  235. goto _exit;
  236. }
  237. #endif
  238. _exit:
  239. rt_mutex_release(&stm32_hw_dev->mutex);
  240. return result;
  241. }
  242. static const struct hwcrypto_hash_ops hash_ops =
  243. {
  244. .update = _hash_update,
  245. .finish = _hash_finish
  246. };
  247. #endif /* BSP_USING_HASH */
  248. #if defined(BSP_USING_CRYP)
  249. static rt_err_t _cryp_crypt(struct hwcrypto_symmetric *ctx,
  250. struct hwcrypto_symmetric_info *info)
  251. {
  252. rt_uint32_t result = RT_EOK;
  253. rt_uint32_t tickstart = 0;
  254. struct stm32_hwcrypto_device *stm32_hw_dev = (struct stm32_hwcrypto_device *)ctx->parent.device->user_data;
  255. rt_mutex_take(&stm32_hw_dev->mutex, RT_WAITING_FOREVER);
  256. #if defined(SOC_SERIES_STM32MP1)
  257. CRYP_HandleTypeDef *HW_TypeDef = (CRYP_HandleTypeDef *)(ctx->parent.contex);
  258. switch (ctx->parent.type)
  259. {
  260. case HWCRYPTO_TYPE_AES_ECB:
  261. HW_TypeDef->Init.Algorithm = CRYP_AES_ECB;
  262. break;
  263. case HWCRYPTO_TYPE_AES_CBC:
  264. HW_TypeDef->Init.Algorithm = CRYP_AES_CBC;
  265. break;
  266. case HWCRYPTO_TYPE_AES_CTR:
  267. HW_TypeDef->Init.Algorithm = CRYP_AES_CTR;
  268. break;
  269. case HWCRYPTO_TYPE_DES_ECB:
  270. HW_TypeDef->Init.Algorithm = CRYP_DES_ECB;
  271. break;
  272. case HWCRYPTO_TYPE_DES_CBC:
  273. HW_TypeDef->Init.Algorithm = CRYP_DES_CBC;
  274. break;
  275. default :
  276. rt_kprintf("not support cryp type: %x", ctx->parent.type);
  277. break;
  278. }
  279. HAL_CRYP_DeInit(HW_TypeDef);
  280. HW_TypeDef->Init.DataType = CRYP_DATATYPE_8B;
  281. HW_TypeDef->Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE;
  282. HW_TypeDef->Init.KeySize = CRYP_KEYSIZE_128B;
  283. HW_TypeDef->Init.pKey = (uint32_t*)ctx->key;
  284. result = HAL_CRYP_Init(HW_TypeDef);
  285. if (result != HAL_OK)
  286. {
  287. /* Initialization Error */
  288. goto _exit;
  289. }
  290. if (info->mode == HWCRYPTO_MODE_ENCRYPT)
  291. {
  292. result = HAL_CRYP_Encrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out);
  293. }
  294. else if (info->mode == HWCRYPTO_MODE_DECRYPT)
  295. {
  296. result = HAL_CRYP_Decrypt_DMA(HW_TypeDef, (uint32_t *)info->in, info->length, (uint32_t *)info->out);
  297. }
  298. else
  299. {
  300. rt_kprintf("error cryp mode : %02x!\n", info->mode);
  301. result = -RT_ERROR;
  302. goto _exit;
  303. }
  304. if (result != HAL_OK)
  305. {
  306. goto _exit;
  307. }
  308. tickstart = rt_tick_get();
  309. while (HAL_CRYP_GetState(HW_TypeDef) != HAL_CRYP_STATE_READY)
  310. {
  311. if (rt_tick_get() - tickstart > 0xFFFF)
  312. {
  313. result = -RT_ETIMEOUT;
  314. goto _exit;
  315. }
  316. }
  317. #endif
  318. if (result != HAL_OK)
  319. {
  320. goto _exit;
  321. }
  322. _exit:
  323. rt_mutex_release(&stm32_hw_dev->mutex);
  324. return result;
  325. }
  326. static const struct hwcrypto_symmetric_ops cryp_ops =
  327. {
  328. .crypt = _cryp_crypt
  329. };
  330. #endif
  331. static rt_err_t _crypto_create(struct rt_hwcrypto_ctx *ctx)
  332. {
  333. rt_err_t res = RT_EOK;
  334. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  335. {
  336. #if defined(BSP_USING_RNG)
  337. case HWCRYPTO_TYPE_RNG:
  338. {
  339. __HAL_RCC_RNG_CLK_ENABLE();
  340. RNG_HandleTypeDef *hrng = rt_calloc(1, sizeof(RNG_HandleTypeDef));
  341. if (RT_NULL == hrng)
  342. {
  343. res = -RT_ERROR;
  344. break;
  345. }
  346. #if defined(SOC_SERIES_STM32MP1)
  347. hrng->Instance = RNG2;
  348. #else
  349. hrng->Instance = RNG;
  350. #endif
  351. HAL_RNG_Init(hrng);
  352. ctx->contex = hrng;
  353. ((struct hwcrypto_rng *)ctx)->ops = &rng_ops;
  354. break;
  355. }
  356. #endif /* BSP_USING_RNG */
  357. #if defined(BSP_USING_CRC)
  358. case HWCRYPTO_TYPE_CRC:
  359. {
  360. CRC_HandleTypeDef *hcrc = rt_calloc(1, sizeof(CRC_HandleTypeDef));
  361. if (RT_NULL == hcrc)
  362. {
  363. res = -RT_ERROR;
  364. break;
  365. }
  366. #if defined(SOC_SERIES_STM32MP1)
  367. hcrc->Instance = CRC2;
  368. #else
  369. hcrc->Instance = CRC;
  370. #endif
  371. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32MP1)
  372. hcrc->Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE;
  373. hcrc->Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE;
  374. hcrc->Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_BYTE;
  375. hcrc->Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_ENABLE;
  376. hcrc->InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
  377. #else
  378. if (HAL_CRC_Init(hcrc) != HAL_OK)
  379. {
  380. res = -RT_ERROR;
  381. }
  382. #endif /* defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) */
  383. ctx->contex = hcrc;
  384. ((struct hwcrypto_crc *)ctx)->ops = &crc_ops;
  385. break;
  386. }
  387. #endif /* BSP_USING_CRC */
  388. #if defined(BSP_USING_HASH)
  389. case HWCRYPTO_TYPE_MD5:
  390. case HWCRYPTO_TYPE_SHA1:
  391. case HWCRYPTO_TYPE_SHA2:
  392. {
  393. HASH_HandleTypeDef *hash = rt_calloc(1, sizeof(HASH_HandleTypeDef));
  394. if (RT_NULL == hash)
  395. {
  396. res = -RT_ERROR;
  397. break;
  398. }
  399. #if defined(SOC_SERIES_STM32MP1)
  400. /* enable dma for hash */
  401. __HAL_RCC_DMA2_CLK_ENABLE();
  402. HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 2, 0);
  403. HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn);
  404. hash->Init.DataType = HASH_DATATYPE_8B;
  405. if (HAL_HASH_Init(hash) != HAL_OK)
  406. {
  407. res = -RT_ERROR;
  408. }
  409. #endif
  410. ctx->contex = hash;
  411. ((struct hwcrypto_hash *)ctx)->ops = &hash_ops;
  412. break;
  413. }
  414. #endif /* BSP_USING_HASH */
  415. #if defined(BSP_USING_CRYP)
  416. case HWCRYPTO_TYPE_AES:
  417. case HWCRYPTO_TYPE_DES:
  418. case HWCRYPTO_TYPE_3DES:
  419. case HWCRYPTO_TYPE_RC4:
  420. case HWCRYPTO_TYPE_GCM:
  421. {
  422. CRYP_HandleTypeDef *cryp = rt_calloc(1, sizeof(CRYP_HandleTypeDef));
  423. if (RT_NULL == cryp)
  424. {
  425. res = -RT_ERROR;
  426. break;
  427. }
  428. #if defined(SOC_SERIES_STM32MP1)
  429. cryp->Instance = CRYP2;
  430. /* enable dma for cryp */
  431. __HAL_RCC_DMA2_CLK_ENABLE();
  432. HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 2, 0);
  433. HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn);
  434. HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 2, 0);
  435. HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
  436. if (HAL_CRYP_Init(cryp) != HAL_OK)
  437. {
  438. res = -RT_ERROR;
  439. }
  440. #endif
  441. ctx->contex = cryp;
  442. ((struct hwcrypto_symmetric *)ctx)->ops = &cryp_ops;
  443. break;
  444. }
  445. #endif /* BSP_USING_CRYP */
  446. default:
  447. res = -RT_ERROR;
  448. break;
  449. }
  450. return res;
  451. }
  452. static void _crypto_destroy(struct rt_hwcrypto_ctx *ctx)
  453. {
  454. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  455. {
  456. #if defined(BSP_USING_RNG)
  457. case HWCRYPTO_TYPE_RNG:
  458. break;
  459. #endif /* BSP_USING_RNG */
  460. #if defined(BSP_USING_CRC)
  461. case HWCRYPTO_TYPE_CRC:
  462. __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
  463. HAL_CRC_DeInit((CRC_HandleTypeDef *)(ctx->contex));
  464. break;
  465. #endif /* BSP_USING_CRC */
  466. #if defined(BSP_USING_HASH)
  467. case HWCRYPTO_TYPE_MD5:
  468. case HWCRYPTO_TYPE_SHA1:
  469. case HWCRYPTO_TYPE_SHA2:
  470. __HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex));
  471. HAL_HASH_DeInit((HASH_HandleTypeDef *)(ctx->contex));
  472. break;
  473. #endif /* BSP_USING_HASH */
  474. #if defined(BSP_USING_CRYP)
  475. case HWCRYPTO_TYPE_AES:
  476. case HWCRYPTO_TYPE_DES:
  477. case HWCRYPTO_TYPE_3DES:
  478. case HWCRYPTO_TYPE_RC4:
  479. case HWCRYPTO_TYPE_GCM:
  480. HAL_CRYP_DeInit((CRYP_HandleTypeDef *)(ctx->contex));
  481. break;
  482. #endif /* BSP_USING_CRYP */
  483. default:
  484. break;
  485. }
  486. rt_free(ctx->contex);
  487. }
  488. static rt_err_t _crypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
  489. {
  490. rt_err_t res = RT_EOK;
  491. switch (src->type & HWCRYPTO_MAIN_TYPE_MASK)
  492. {
  493. #if defined(BSP_USING_RNG)
  494. case HWCRYPTO_TYPE_RNG:
  495. if (des->contex && src->contex)
  496. {
  497. rt_memcpy(des->contex, src->contex, sizeof(RNG_HandleTypeDef));
  498. }
  499. break;
  500. #endif /* BSP_USING_RNG */
  501. #if defined(BSP_USING_CRC)
  502. case HWCRYPTO_TYPE_CRC:
  503. if (des->contex && src->contex)
  504. {
  505. rt_memcpy(des->contex, src->contex, sizeof(CRC_HandleTypeDef));
  506. }
  507. break;
  508. #endif /* BSP_USING_CRC */
  509. #if defined(BSP_USING_HASH)
  510. case HWCRYPTO_TYPE_MD5:
  511. case HWCRYPTO_TYPE_SHA1:
  512. case HWCRYPTO_TYPE_SHA2:
  513. if (des->contex && src->contex)
  514. {
  515. rt_memcpy(des->contex, src->contex, sizeof(HASH_HandleTypeDef));
  516. }
  517. break;
  518. #endif /* BSP_USING_HASH */
  519. #if defined(BSP_USING_CRYP)
  520. case HWCRYPTO_TYPE_AES:
  521. case HWCRYPTO_TYPE_DES:
  522. case HWCRYPTO_TYPE_3DES:
  523. case HWCRYPTO_TYPE_RC4:
  524. case HWCRYPTO_TYPE_GCM:
  525. if (des->contex && src->contex)
  526. {
  527. rt_memcpy(des->contex, src->contex, sizeof(CRYP_HandleTypeDef));
  528. }
  529. break;
  530. #endif /* BSP_USING_CRYP */
  531. default:
  532. res = -RT_ERROR;
  533. break;
  534. }
  535. return res;
  536. }
  537. static void _crypto_reset(struct rt_hwcrypto_ctx *ctx)
  538. {
  539. switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
  540. {
  541. #if defined(BSP_USING_RNG)
  542. case HWCRYPTO_TYPE_RNG:
  543. break;
  544. #endif /* BSP_USING_RNG */
  545. #if defined(BSP_USING_CRC)
  546. case HWCRYPTO_TYPE_CRC:
  547. __HAL_CRC_DR_RESET((CRC_HandleTypeDef *)ctx-> contex);
  548. break;
  549. #endif /* BSP_USING_CRC */
  550. #if defined(BSP_USING_HASH)
  551. case HWCRYPTO_TYPE_MD5:
  552. case HWCRYPTO_TYPE_SHA1:
  553. case HWCRYPTO_TYPE_SHA2:
  554. __HAL_HASH_RESET_HANDLE_STATE((HASH_HandleTypeDef *)(ctx->contex));
  555. break;
  556. #endif /* BSP_USING_HASH*/
  557. #if defined(BSP_USING_CRYP)
  558. case HWCRYPTO_TYPE_AES:
  559. case HWCRYPTO_TYPE_DES:
  560. case HWCRYPTO_TYPE_3DES:
  561. case HWCRYPTO_TYPE_RC4:
  562. case HWCRYPTO_TYPE_GCM:
  563. break;
  564. #endif /* BSP_USING_CRYP */
  565. default:
  566. break;
  567. }
  568. }
  569. #if defined(HASH2_IN_DMA_INSTANCE)
  570. void HASH2_DMA_IN_IRQHandler(void)
  571. {
  572. extern DMA_HandleTypeDef hdma_hash_in;
  573. /* enter interrupt */
  574. rt_interrupt_enter();
  575. HAL_DMA_IRQHandler(&hdma_hash_in);
  576. /* leave interrupt */
  577. rt_interrupt_leave();
  578. }
  579. #endif
  580. #if defined(CRYP2_IN_DMA_INSTANCE)
  581. void CRYP2_DMA_IN_IRQHandler(void)
  582. {
  583. extern DMA_HandleTypeDef hdma_cryp_in;
  584. /* enter interrupt */
  585. rt_interrupt_enter();
  586. HAL_DMA_IRQHandler(&hdma_cryp_in);
  587. /* leave interrupt */
  588. rt_interrupt_leave();
  589. }
  590. #endif
  591. #if defined (CRYP2_OUT_DMA_INSTANCE)
  592. void CRYP2_DMA_OUT_IRQHandler(void)
  593. {
  594. extern DMA_HandleTypeDef hdma_cryp_out;
  595. /* enter interrupt */
  596. rt_interrupt_enter();
  597. HAL_DMA_IRQHandler(&hdma_cryp_out);
  598. /* leave interrupt */
  599. rt_interrupt_leave();
  600. }
  601. #endif
  602. static const struct rt_hwcrypto_ops _ops =
  603. {
  604. .create = _crypto_create,
  605. .destroy = _crypto_destroy,
  606. .copy = _crypto_clone,
  607. .reset = _crypto_reset,
  608. };
  609. int stm32_hw_crypto_device_init(void)
  610. {
  611. static struct stm32_hwcrypto_device _crypto_dev;
  612. rt_uint32_t cpuid[3] = {0};
  613. _crypto_dev.dev.ops = &_ops;
  614. #if defined(BSP_USING_UDID)
  615. #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
  616. cpuid[0] = HAL_GetUIDw0();
  617. cpuid[1] = HAL_GetUIDw1();
  618. #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
  619. cpuid[0] = HAL_GetREVID();
  620. cpuid[1] = HAL_GetDEVID();
  621. #endif
  622. #endif /* BSP_USING_UDID */
  623. _crypto_dev.dev.id = 0;
  624. rt_memcpy(&_crypto_dev.dev.id, cpuid, 8);
  625. _crypto_dev.dev.user_data = &_crypto_dev;
  626. if (rt_hwcrypto_register(&_crypto_dev.dev, RT_HWCRYPTO_DEFAULT_NAME) != RT_EOK)
  627. {
  628. return -1;
  629. }
  630. rt_mutex_init(&_crypto_dev.mutex, RT_HWCRYPTO_DEFAULT_NAME, RT_IPC_FLAG_PRIO);
  631. return 0;
  632. }
  633. INIT_DEVICE_EXPORT(stm32_hw_crypto_device_init);