drv_rtc.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301
  1. /*
  2. * Copyright (c) 2006-2019, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-07-29 zdzn first version
  9. */
  10. #include "drv_rtc.h"
  11. #ifdef BSP_USING_RTC
  12. #define RTC_I2C_BUS_NAME "i2c0"
  13. #define RTC_ADDR 0x68
  14. static struct rt_device rtc_device;
  15. static struct rt_i2c_bus_device *i2c_bus = RT_NULL;
  16. rt_uint8_t buf[]=
  17. {
  18. 0x00, 0x00, 0x43, 0x15, 0x05, 0x01, 0x03, 0x19
  19. };
  20. rt_uint8_t i2c_write_read_rs(char* cmds, rt_uint32_t cmds_len, char* buf, rt_uint32_t buf_len)
  21. {
  22. rt_uint32_t remaining = cmds_len;
  23. rt_uint32_t i = 0;
  24. rt_uint8_t reason = BCM283X_I2C_REASON_OK;
  25. /* Clear FIFO */
  26. BCM283X_BSC_C(BCM283X_BSC0_BASE) |= (BSC_C_CLEAR_1 & BSC_C_CLEAR_1);
  27. /* Clear Status */
  28. BCM283X_BSC_S(BCM283X_BSC0_BASE) = BSC_S_CLKT | BSC_S_ERR | BSC_S_DONE;
  29. /* Set Data Length */
  30. BCM283X_BSC_DLEN(BCM283X_BSC0_BASE) = cmds_len;
  31. /* pre populate FIFO with max buffer */
  32. while (remaining && (i < BSC_FIFO_SIZE))
  33. {
  34. BCM283X_BSC_FIFO(BCM283X_BSC0_BASE) = cmds[i];
  35. i++;
  36. remaining--;
  37. }
  38. /* Enable device and start transfer */
  39. BCM283X_BSC_C(BCM283X_BSC0_BASE) |= BSC_C_I2CEN | BSC_C_ST;
  40. /* poll for transfer has started (way to do repeated start, from BCM2835 datasheet) */
  41. while (!(BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_TA))
  42. {
  43. /* Linux may cause us to miss entire transfer stage */
  44. if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_DONE)
  45. break;
  46. }
  47. remaining = buf_len;
  48. i = 0;
  49. /* Send a repeated start with read bit set in address */
  50. BCM283X_BSC_DLEN(BCM283X_BSC0_BASE) = buf_len;
  51. BCM283X_BSC_C(BCM283X_BSC0_BASE) = BSC_C_I2CEN | BSC_C_ST | BSC_C_READ;
  52. /* Wait for write to complete and first byte back. */
  53. // DELAYMICROS(i2c_byte_wait_us * (cmds_len + 1));
  54. /* wait for transfer to complete */
  55. while (!(BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_DONE))
  56. {
  57. /* we must empty the FIFO as it is populated and not use any delay */
  58. while (remaining && (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_RXD))
  59. {
  60. /* Read from FIFO, no barrier */
  61. buf[i] = BCM283X_BSC_FIFO(BCM283X_BSC0_BASE);
  62. i++;
  63. remaining--;
  64. }
  65. }
  66. /* transfer has finished - grab any remaining stuff in FIFO */
  67. while (remaining && (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_RXD))
  68. {
  69. /* Read from FIFO */
  70. buf[i] = BCM283X_BSC_FIFO(BCM283X_BSC0_BASE);
  71. i++;
  72. remaining--;
  73. }
  74. /* Received a NACK */
  75. if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_ERR)
  76. {
  77. reason = BCM283X_I2C_REASON_ERROR_NACK;
  78. }
  79. /* Received Clock Stretch Timeout */
  80. else if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_CLKT)
  81. {
  82. reason = BCM283X_I2C_REASON_ERROR_CLKT;
  83. }
  84. /* Not all data is sent */
  85. else if (remaining)
  86. {
  87. reason = BCM283X_I2C_REASON_ERROR_DATA;
  88. }
  89. BCM283X_BSC_C(BCM283X_BSC0_BASE) = (BSC_S_DONE &BSC_S_DONE);
  90. return reason;
  91. }
  92. rt_uint8_t i2c_write(rt_uint8_t* buf, rt_uint32_t len)
  93. {
  94. rt_uint32_t remaining = len;
  95. rt_uint32_t i = 0;
  96. rt_uint8_t reason = BCM283X_I2C_REASON_OK;
  97. /* Clear FIFO */
  98. BCM283X_BSC_C(BCM283X_BSC0_BASE) |= BSC_C_CLEAR_1 & BSC_C_CLEAR_1;
  99. /* Clear Status */
  100. BCM283X_BSC_S(BCM283X_BSC0_BASE) = BSC_S_CLKT | BSC_S_ERR | BSC_S_DONE;
  101. /* Set Data Length */
  102. BCM283X_BSC_DLEN(BCM283X_BSC0_BASE) = len;
  103. /* pre populate FIFO with max buffer */
  104. while (remaining && (i < BSC_FIFO_SIZE))
  105. {
  106. BCM283X_BSC_FIFO(BCM283X_BSC0_BASE) = buf[i];
  107. i++;
  108. remaining--;
  109. }
  110. /* Enable device and start transfer */
  111. BCM283X_BSC_C(BCM283X_BSC0_BASE) = BSC_C_I2CEN | BSC_C_ST;
  112. /* Transfer is over when BCM2835_BSC_S_DONE */
  113. while (!(BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_DONE))
  114. {
  115. while (remaining && (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_TXD))
  116. {
  117. /* Write to FIFO */
  118. BCM283X_BSC_FIFO(BCM283X_BSC0_BASE) = buf[i];
  119. i++;
  120. remaining--;
  121. }
  122. }
  123. /* Received a NACK */
  124. if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_ERR)
  125. {
  126. reason = BCM283X_I2C_REASON_ERROR_NACK;
  127. }
  128. /* Received Clock Stretch Timeout */
  129. else if (BCM283X_BSC_S(BCM283X_BSC0_BASE) & BSC_S_CLKT)
  130. {
  131. reason = BCM283X_I2C_REASON_ERROR_CLKT;
  132. }
  133. /* Not all data is sent */
  134. else if (remaining)
  135. {
  136. reason = BCM283X_I2C_REASON_ERROR_DATA;
  137. }
  138. BCM283X_BSC_C(BCM283X_BSC0_BASE) = BSC_S_DONE & BSC_S_DONE;
  139. return reason;
  140. }
  141. static time_t raspi_get_timestamp(void)
  142. {
  143. struct tm tm_new = {0};
  144. buf[0] = 0;
  145. i2c_write_read_rs((char*)buf, 1, (char*)buf, 7);
  146. tm_new.tm_year = ((buf[6] / 16) + 0x30) * 10 + (buf[6] % 16) + 0x30;
  147. tm_new.tm_mon = ((buf[5] & 0x1F) / 16 + 0x30) + (buf[5] & 0x1F) % 16+ 0x30;
  148. tm_new.tm_mday = ((buf[4] & 0x3F) / 16 + 0x30) + (buf[4] & 0x3F) % 16+ 0x30;
  149. tm_new.tm_hour = ((buf[2] & 0x3F) / 16 + 0x30) + (buf[2] & 0x3F) % 16+ 0x30;
  150. tm_new.tm_min = ((buf[1] & 0x7F) / 16 + 0x30) + (buf[1] & 0x7F) % 16+ 0x30;
  151. tm_new.tm_sec = ((buf[0] & 0x7F) / 16 + 0x30) + (buf[0] & 0x7F) % 16+ 0x30;
  152. return mktime(&tm_new);
  153. }
  154. static int raspi_set_timestamp(time_t timestamp)
  155. {
  156. struct tm *tblock;
  157. tblock = localtime(&timestamp);
  158. buf[0] = 0;
  159. buf[1] = tblock->tm_sec;
  160. buf[2] = tblock->tm_min;
  161. buf[3] = tblock->tm_hour;
  162. buf[4] = tblock->tm_wday;
  163. buf[5] = tblock->tm_mday;
  164. buf[6] = tblock->tm_mon;
  165. buf[7] = tblock->tm_year;
  166. i2c_write(buf, 8);
  167. return RT_EOK;
  168. }
  169. static rt_err_t raspi_rtc_init(rt_device_t dev)
  170. {
  171. i2c_bus = (struct rt_i2c_bus_device *)rt_device_find(RTC_I2C_BUS_NAME);
  172. raspi_set_timestamp(0);
  173. return RT_EOK;
  174. }
  175. static rt_err_t raspi_rtc_open(rt_device_t dev, rt_uint16_t oflag)
  176. {
  177. GPIO_FSEL(BCM_GPIO_PIN_0, BCM283X_GPIO_FSEL_ALT0); /* SDA */
  178. GPIO_FSEL(BCM_GPIO_PIN_1, BCM283X_GPIO_FSEL_ALT0); /* SCL */
  179. return RT_EOK;
  180. }
  181. static rt_err_t raspi_rtc_close(rt_device_t dev)
  182. {
  183. GPIO_FSEL(BCM_GPIO_PIN_0, BCM283X_GPIO_FSEL_INPT); /* SDA */
  184. GPIO_FSEL(BCM_GPIO_PIN_1, BCM283X_GPIO_FSEL_INPT); /* SCL */
  185. return RT_EOK;
  186. }
  187. static rt_err_t raspi_rtc_control(rt_device_t dev, int cmd, void *args)
  188. {
  189. RT_ASSERT(dev != RT_NULL);
  190. switch (cmd)
  191. {
  192. case RT_DEVICE_CTRL_RTC_GET_TIME:
  193. *(rt_uint32_t *)args = raspi_get_timestamp();
  194. break;
  195. case RT_DEVICE_CTRL_RTC_SET_TIME:
  196. raspi_set_timestamp(*(time_t *)args);
  197. break;
  198. default:
  199. return RT_EINVAL;
  200. }
  201. return RT_EOK;
  202. }
  203. static rt_size_t raspi_rtc_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  204. {
  205. raspi_rtc_control(dev, RT_DEVICE_CTRL_RTC_GET_TIME, buffer);
  206. return size;
  207. }
  208. static rt_size_t raspi_rtc_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  209. {
  210. raspi_rtc_control(dev, RT_DEVICE_CTRL_RTC_SET_TIME, (void *)buffer);
  211. return size;
  212. }
  213. #ifdef RT_USING_DEVICE_OPS
  214. const static struct rt_device_ops raspi_rtc_ops =
  215. {
  216. .init = raspi_rtc_init,
  217. .open = raspi_rtc_open,
  218. .close = raspi_rtc_close,
  219. .read = raspi_rtc_read,
  220. .write = raspi_rtc_write,
  221. .control = raspi_rtc_control
  222. };
  223. #endif
  224. int rt_hw_rtc_init(void)
  225. {
  226. rt_err_t ret = RT_EOK;
  227. rtc_device.type = RT_Device_Class_RTC;
  228. rtc_device.rx_indicate = RT_NULL;
  229. rtc_device.tx_complete = RT_NULL;
  230. #ifdef RT_USING_DEVICE_OPS
  231. rtc_device.ops = &raspi_rtc_ops;
  232. #else
  233. rtc_device.init = raspi_rtc_init;
  234. rtc_device.open = raspi_rtc_open;
  235. rtc_device.close = raspi_rtc_close;
  236. rtc_device.read = raspi_rtc_read;
  237. rtc_device.write = raspi_rtc_write;
  238. rtc_device.control = raspi_rtc_control;
  239. #endif
  240. rtc_device.user_data = RT_NULL;
  241. /* register a rtc device */
  242. ret = rt_device_register(&rtc_device, "rtc", RT_DEVICE_FLAG_RDWR);
  243. return ret;
  244. }
  245. INIT_DEVICE_EXPORT(rt_hw_rtc_init);
  246. #endif /* BSP_USING_RTC */