sensor.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * Copyright (c) 2006-2021, RT-Thread Development Team
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. *
  6. * Change Logs:
  7. * Date Author Notes
  8. * 2019-01-31 flybreak first version
  9. * 2020-02-22 luhuadong support custom commands
  10. */
  11. #include "sensor.h"
  12. #define DBG_TAG "sensor"
  13. #define DBG_LVL DBG_INFO
  14. #include <rtdbg.h>
  15. #include <string.h>
  16. static char *const sensor_name_str[] =
  17. {
  18. "none",
  19. "acce_", /* Accelerometer */
  20. "gyro_", /* Gyroscope */
  21. "mag_", /* Magnetometer */
  22. "temp_", /* Temperature */
  23. "humi_", /* Relative Humidity */
  24. "baro_", /* Barometer */
  25. "li_", /* Ambient light */
  26. "pr_", /* Proximity */
  27. "hr_", /* Heart Rate */
  28. "tvoc_", /* TVOC Level */
  29. "noi_", /* Noise Loudness */
  30. "step_", /* Step sensor */
  31. "forc_", /* Force sensor */
  32. "dust_", /* Dust sensor */
  33. "eco2_", /* eCO2 sensor */
  34. "gnss_", /* GPS/GNSS sensor */
  35. "tof_" /* TOF sensor */
  36. };
  37. /* Sensor interrupt correlation function */
  38. /*
  39. * Sensor interrupt handler function
  40. */
  41. void rt_sensor_cb(rt_sensor_t sen)
  42. {
  43. if (sen->parent.rx_indicate == RT_NULL)
  44. {
  45. return;
  46. }
  47. if (sen->irq_handle != RT_NULL)
  48. {
  49. sen->irq_handle(sen);
  50. }
  51. /* The buffer is not empty. Read the data in the buffer first */
  52. if (sen->data_len > 0)
  53. {
  54. sen->parent.rx_indicate(&sen->parent, sen->data_len / sizeof(struct rt_sensor_data));
  55. }
  56. else if (sen->config.mode == RT_SENSOR_MODE_INT)
  57. {
  58. /* The interrupt mode only produces one data at a time */
  59. sen->parent.rx_indicate(&sen->parent, 1);
  60. }
  61. else if (sen->config.mode == RT_SENSOR_MODE_FIFO)
  62. {
  63. sen->parent.rx_indicate(&sen->parent, sen->info.fifo_max);
  64. }
  65. }
  66. /* ISR for sensor interrupt */
  67. static void irq_callback(void *args)
  68. {
  69. rt_sensor_t sensor = (rt_sensor_t)args;
  70. rt_uint8_t i;
  71. if (sensor->module)
  72. {
  73. /* Invoke a callback for all sensors in the module */
  74. for (i = 0; i < sensor->module->sen_num; i++)
  75. {
  76. rt_sensor_cb(sensor->module->sen[i]);
  77. }
  78. }
  79. else
  80. {
  81. rt_sensor_cb(sensor);
  82. }
  83. }
  84. /* Sensor interrupt initialization function */
  85. static rt_err_t rt_sensor_irq_init(rt_sensor_t sensor)
  86. {
  87. if (sensor->config.irq_pin.pin == RT_PIN_NONE)
  88. {
  89. return -RT_EINVAL;
  90. }
  91. rt_pin_mode(sensor->config.irq_pin.pin, sensor->config.irq_pin.mode);
  92. if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLDOWN)
  93. {
  94. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING, irq_callback, (void *)sensor);
  95. }
  96. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT_PULLUP)
  97. {
  98. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_FALLING, irq_callback, (void *)sensor);
  99. }
  100. else if (sensor->config.irq_pin.mode == PIN_MODE_INPUT)
  101. {
  102. rt_pin_attach_irq(sensor->config.irq_pin.pin, PIN_IRQ_MODE_RISING_FALLING, irq_callback, (void *)sensor);
  103. }
  104. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_TRUE);
  105. LOG_I("interrupt init success");
  106. return 0;
  107. }
  108. /* RT-Thread Device Interface */
  109. static rt_err_t rt_sensor_open(rt_device_t dev, rt_uint16_t oflag)
  110. {
  111. rt_sensor_t sensor = (rt_sensor_t)dev;
  112. RT_ASSERT(dev != RT_NULL);
  113. rt_err_t res = RT_EOK;
  114. if (sensor->module)
  115. {
  116. /* take the module mutex */
  117. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  118. }
  119. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf == RT_NULL)
  120. {
  121. /* Allocate memory for the sensor buffer */
  122. sensor->data_buf = rt_malloc(sizeof(struct rt_sensor_data) * sensor->info.fifo_max);
  123. if (sensor->data_buf == RT_NULL)
  124. {
  125. res = -RT_ENOMEM;
  126. goto __exit;
  127. }
  128. }
  129. if (oflag & RT_DEVICE_FLAG_RDONLY && dev->flag & RT_DEVICE_FLAG_RDONLY)
  130. {
  131. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  132. {
  133. /* If polling mode is supported, configure it to polling mode */
  134. sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_POLLING);
  135. }
  136. sensor->config.mode = RT_SENSOR_MODE_POLLING;
  137. }
  138. else if (oflag & RT_DEVICE_FLAG_INT_RX && dev->flag & RT_DEVICE_FLAG_INT_RX)
  139. {
  140. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  141. {
  142. /* If interrupt mode is supported, configure it to interrupt mode */
  143. sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_INT);
  144. }
  145. /* Initialization sensor interrupt */
  146. rt_sensor_irq_init(sensor);
  147. sensor->config.mode = RT_SENSOR_MODE_INT;
  148. }
  149. else if (oflag & RT_DEVICE_FLAG_FIFO_RX && dev->flag & RT_DEVICE_FLAG_FIFO_RX)
  150. {
  151. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  152. {
  153. /* If fifo mode is supported, configure it to fifo mode */
  154. sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_MODE, (void *)RT_SENSOR_MODE_FIFO);
  155. }
  156. /* Initialization sensor interrupt */
  157. rt_sensor_irq_init(sensor);
  158. sensor->config.mode = RT_SENSOR_MODE_FIFO;
  159. }
  160. else
  161. {
  162. res = -RT_EINVAL;
  163. goto __exit;
  164. }
  165. /* Configure power mode to normal mode */
  166. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  167. {
  168. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_NORMAL) == RT_EOK)
  169. {
  170. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  171. }
  172. }
  173. else
  174. {
  175. sensor->config.power = RT_SENSOR_POWER_NORMAL;
  176. }
  177. __exit:
  178. if (sensor->module)
  179. {
  180. /* release the module mutex */
  181. rt_mutex_release(sensor->module->lock);
  182. }
  183. return res;
  184. }
  185. static rt_err_t rt_sensor_close(rt_device_t dev)
  186. {
  187. rt_sensor_t sensor = (rt_sensor_t)dev;
  188. int i;
  189. RT_ASSERT(dev != RT_NULL);
  190. if (sensor->module)
  191. {
  192. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  193. }
  194. /* Configure power mode to power down mode */
  195. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  196. {
  197. if (sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, (void *)RT_SENSOR_POWER_DOWN) == RT_EOK)
  198. {
  199. sensor->config.power = RT_SENSOR_POWER_DOWN;
  200. }
  201. }
  202. else
  203. {
  204. sensor->config.power = RT_SENSOR_POWER_DOWN;
  205. }
  206. if (sensor->module != RT_NULL && sensor->info.fifo_max > 0 && sensor->data_buf != RT_NULL)
  207. {
  208. for (i = 0; i < sensor->module->sen_num; i ++)
  209. {
  210. if (sensor->module->sen[i]->parent.ref_count > 0)
  211. goto __exit;
  212. }
  213. /* Free memory for the sensor buffer */
  214. for (i = 0; i < sensor->module->sen_num; i ++)
  215. {
  216. if (sensor->module->sen[i]->data_buf != RT_NULL)
  217. {
  218. rt_free(sensor->module->sen[i]->data_buf);
  219. sensor->module->sen[i]->data_buf = RT_NULL;
  220. }
  221. }
  222. }
  223. /* Sensor disable interrupt */
  224. if (sensor->config.irq_pin.pin != RT_PIN_NONE)
  225. {
  226. rt_pin_irq_enable(sensor->config.irq_pin.pin, RT_FALSE);
  227. }
  228. __exit:
  229. if (sensor->module)
  230. {
  231. rt_mutex_release(sensor->module->lock);
  232. }
  233. return RT_EOK;
  234. }
  235. static rt_size_t rt_sensor_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t len)
  236. {
  237. rt_sensor_t sensor = (rt_sensor_t)dev;
  238. rt_size_t result = 0;
  239. RT_ASSERT(dev != RT_NULL);
  240. if (buf == NULL || len == 0)
  241. {
  242. return 0;
  243. }
  244. if (sensor->module)
  245. {
  246. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  247. }
  248. /* The buffer is not empty. Read the data in the buffer first */
  249. if (sensor->data_len > 0)
  250. {
  251. if (len > sensor->data_len / sizeof(struct rt_sensor_data))
  252. {
  253. len = sensor->data_len / sizeof(struct rt_sensor_data);
  254. }
  255. rt_memcpy(buf, sensor->data_buf, len * sizeof(struct rt_sensor_data));
  256. /* Clear the buffer */
  257. sensor->data_len = 0;
  258. result = len;
  259. }
  260. else if ((sensor->ops != RT_NULL) && (sensor->ops->fetch_data != RT_NULL))
  261. {
  262. /* If the buffer is empty read the data */
  263. result = sensor->ops->fetch_data(sensor, buf, len);
  264. }
  265. if (sensor->module)
  266. {
  267. rt_mutex_release(sensor->module->lock);
  268. }
  269. return result;
  270. }
  271. static rt_err_t rt_sensor_control(rt_device_t dev, int cmd, void *args)
  272. {
  273. rt_sensor_t sensor = (rt_sensor_t)dev;
  274. rt_err_t result = RT_EOK;
  275. RT_ASSERT(dev != RT_NULL);
  276. if (sensor->module)
  277. {
  278. rt_mutex_take(sensor->module->lock, RT_WAITING_FOREVER);
  279. }
  280. switch (cmd)
  281. {
  282. case RT_SENSOR_CTRL_GET_ID:
  283. if (args)
  284. {
  285. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  286. {
  287. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_GET_ID, args);
  288. }
  289. }
  290. break;
  291. case RT_SENSOR_CTRL_GET_INFO:
  292. if (args)
  293. {
  294. rt_memcpy(args, &sensor->info, sizeof(struct rt_sensor_info));
  295. }
  296. break;
  297. case RT_SENSOR_CTRL_SET_RANGE:
  298. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  299. {
  300. /* Configuration measurement range */
  301. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_RANGE, args);
  302. if (result == RT_EOK)
  303. {
  304. sensor->config.range = (rt_int32_t)args;
  305. LOG_D("set range %d", sensor->config.range);
  306. }
  307. }
  308. break;
  309. case RT_SENSOR_CTRL_SET_ODR:
  310. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  311. {
  312. /* Configuration data output rate */
  313. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_ODR, args);
  314. if (result == RT_EOK)
  315. {
  316. sensor->config.odr = (rt_uint32_t)args & 0xFFFF;
  317. LOG_D("set odr %d", sensor->config.odr);
  318. }
  319. }
  320. break;
  321. case RT_SENSOR_CTRL_SET_POWER:
  322. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  323. {
  324. /* Configuration sensor power mode */
  325. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SET_POWER, args);
  326. if (result == RT_EOK)
  327. {
  328. sensor->config.power = (rt_uint32_t)args & 0xFF;
  329. LOG_D("set power mode code:", sensor->config.power);
  330. }
  331. }
  332. break;
  333. case RT_SENSOR_CTRL_SELF_TEST:
  334. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  335. {
  336. /* Device self-test */
  337. result = sensor->ops->control(sensor, RT_SENSOR_CTRL_SELF_TEST, args);
  338. }
  339. break;
  340. default:
  341. if (cmd > RT_SENSOR_CTRL_USER_CMD_START)
  342. {
  343. if ((sensor->ops != RT_NULL) && (sensor->ops->control != RT_NULL))
  344. {
  345. /* Custom commands */
  346. result = sensor->ops->control(sensor, cmd, args);
  347. }
  348. }
  349. else
  350. {
  351. result = -RT_ERROR;
  352. }
  353. break;
  354. }
  355. if (sensor->module)
  356. {
  357. rt_mutex_release(sensor->module->lock);
  358. }
  359. return result;
  360. }
  361. #ifdef RT_USING_DEVICE_OPS
  362. const static struct rt_device_ops rt_sensor_ops =
  363. {
  364. RT_NULL,
  365. rt_sensor_open,
  366. rt_sensor_close,
  367. rt_sensor_read,
  368. RT_NULL,
  369. rt_sensor_control
  370. };
  371. #endif
  372. /*
  373. * sensor register
  374. */
  375. int rt_hw_sensor_register(rt_sensor_t sensor,
  376. const char *name,
  377. rt_uint32_t flag,
  378. void *data)
  379. {
  380. rt_int8_t result;
  381. rt_device_t device;
  382. RT_ASSERT(sensor != RT_NULL);
  383. char *sensor_name = RT_NULL, *device_name = RT_NULL;
  384. /* Add a type name for the sensor device */
  385. sensor_name = sensor_name_str[sensor->info.type];
  386. device_name = (char *)rt_calloc(1, rt_strlen(sensor_name) + 1 + rt_strlen(name));
  387. if (device_name == RT_NULL)
  388. {
  389. LOG_E("device_name calloc failed!");
  390. return -RT_ERROR;
  391. }
  392. rt_memcpy(device_name, sensor_name, rt_strlen(sensor_name) + 1);
  393. strcat(device_name, name);
  394. if (sensor->module != RT_NULL && sensor->module->lock == RT_NULL)
  395. {
  396. /* Create a mutex lock for the module */
  397. sensor->module->lock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
  398. if (sensor->module->lock == RT_NULL)
  399. {
  400. rt_free(device_name);
  401. return -RT_ERROR;
  402. }
  403. }
  404. device = &sensor->parent;
  405. #ifdef RT_USING_DEVICE_OPS
  406. device->ops = &rt_sensor_ops;
  407. #else
  408. device->init = RT_NULL;
  409. device->open = rt_sensor_open;
  410. device->close = rt_sensor_close;
  411. device->read = rt_sensor_read;
  412. device->write = RT_NULL;
  413. device->control = rt_sensor_control;
  414. #endif
  415. device->type = RT_Device_Class_Sensor;
  416. device->rx_indicate = RT_NULL;
  417. device->tx_complete = RT_NULL;
  418. device->user_data = data;
  419. result = rt_device_register(device, device_name, flag | RT_DEVICE_FLAG_STANDALONE);
  420. if (result != RT_EOK)
  421. {
  422. rt_free(device_name);
  423. LOG_E("rt_sensor register err code: %d", result);
  424. return result;
  425. }
  426. rt_free(device_name);
  427. LOG_I("rt_sensor init success");
  428. return RT_EOK;
  429. }