| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 |
- /****************************************************************************
- *
- * Copyright Raph Levien 2022
- * Copyright Nicolas Silva 2022
- * Copyright NXP 2022
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- *****************************************************************************/
- #include <math.h>
- #include "vg_lite_flat.h"
- /*
- * Stop IAR compiler from warning about implicit conversions from float to
- * double
- */
- #if (defined(__ICCARM__))
- #pragma diag_suppress = Pa205
- #endif
- #ifndef VG_CURVE_FLATTENING_TOLERANCE
- #define VG_CURVE_FLATTENING_TOLERANCE 0.25
- #endif /* defined(VG_CURVE_FLATTENING_TOLERANCE) */
- #define FABSF(x) ((vg_lite_float_t) fabs(x))
- #define SQRTF(x) ((vg_lite_float_t) sqrt(x))
- #define CEILF(x) ((vg_lite_float_t) ceil(x))
- #define VG_LITE_ERROR_HANDLER(func) \
- if ((error = func) != VG_LITE_SUCCESS) \
- goto ErrorHandler
- /* Point flatten type for flattened line segments. */
- #define vgcFLATTEN_NO 0
- #define vgcFLATTEN_START 1
- #define vgcFLATTEN_MIDDLE 2
- #define vgcFLATTEN_END 3
- /*
- * Algorithm originally created by Raph Levien:
- * https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
- */
- #define FHYPOTF(x, y) ((vg_lite_float_t) hypotf(x, y))
- #define FPOWF(x, y) ((vg_lite_float_t) powf(x, y))
- /*
- * Contains the fields that are used to represent the quadratic Bezier curve
- * as a 'y = x^2' parabola.
- */
- typedef struct parabola_approx {
- vg_lite_float_t x0;
- vg_lite_float_t x2;
- vg_lite_float_t scale;
- vg_lite_float_t cross;
- } parabola_approx_t;
- /*
- * Keeps the quadratic Bezier's control points. This makes life easier when
- * passing quadratics as parameters, so we don't have to give 6 floats every
- * time.
- */
- typedef struct quad_bezier {
- vg_lite_float_t X0;
- vg_lite_float_t Y0;
- vg_lite_float_t X1;
- vg_lite_float_t Y1;
- vg_lite_float_t X2;
- vg_lite_float_t Y2;
- } quad_bezier_t;
- /*
- * Parameters which are used by the flattening algorithm.
- */
- typedef struct quad_bezier_flatten_params {
- vg_lite_float_t a0;
- vg_lite_float_t a2;
- int num_points;
- vg_lite_float_t u0;
- vg_lite_float_t u2;
- } quad_bezier_flatten_params_t;
- /*
- * Keeps the cubic Bezier's control points.
- */
- typedef struct cubic_bezier {
- vg_lite_float_t X0;
- vg_lite_float_t Y0;
- vg_lite_float_t X1;
- vg_lite_float_t Y1;
- vg_lite_float_t X2;
- vg_lite_float_t Y2;
- vg_lite_float_t X3;
- vg_lite_float_t Y3;
- } cubic_bezier_t;
- vg_lite_error_t _add_point_to_point_list(
- vg_lite_stroke_conversion_t * stroke_conversion,
- vg_lite_float_t X,
- vg_lite_float_t Y,
- uint8_t flatten_flag);
- vg_lite_error_t _add_point_to_point_list_wdelta(
- vg_lite_stroke_conversion_t * stroke_conversion,
- vg_lite_float_t X,
- vg_lite_float_t Y,
- vg_lite_float_t DX,
- vg_lite_float_t DY,
- uint8_t flatten_flag);
- /*
- * Evaluates the Bernstein polynomial that represents the curve, at 't'.
- * 't' should be a value between 0.0 and 1.0 (though it can be any float, but
- * the relevant values are between 0 and 1).
- * 'x' and 'y' will contain the coordinates of the evaluated point.
- */
- static void quad_bezier_eval(
- const quad_bezier_t *q,
- vg_lite_float_t t,
- vg_lite_float_t *x,
- vg_lite_float_t *y
- )
- {
- const vg_lite_float_t omt = 1.0 - t;
- *x = q->X0 * omt * omt + 2.0 * q->X1 * t * omt + q->X2 * t * t;
- *y = q->Y0 * omt * omt + 2.0 * q->Y1 * t * omt + q->Y2 * t * t;
- }
- /*
- * Approximates the integral which uses the arclength and curvature of the
- * parabola.
- */
- static vg_lite_float_t approx_integral(vg_lite_float_t x)
- {
- const vg_lite_float_t D = 0.67;
- return x / (1.0 - D + FPOWF(FPOWF(D, 4) + 0.25 * x * x, 0.25));
- }
- /*
- * Approximates the inverse of the previous integral.
- */
- static vg_lite_float_t approx_inverse_integral(vg_lite_float_t x)
- {
- const vg_lite_float_t B = 0.39;
- return x * (1.0 - B + SQRTF(B * B + 0.25 * x * x));
- }
- /*
- * Represents a quadratic Bezier curve as a parabola.
- */
- static parabola_approx_t map_to_parabola(const quad_bezier_t *q)
- {
- const vg_lite_float_t ddx = 2 * q->X1 - q->X0 - q->X2;
- const vg_lite_float_t ddy = 2 * q->Y1 - q->Y0 - q->Y2;
- const vg_lite_float_t u0 = (q->X1 - q->X0) * ddx + (q->Y1 - q->Y0) * ddy;
- const vg_lite_float_t u2 = (q->X2 - q->X1) * ddx + (q->Y2 - q->Y1) * ddy;
- const vg_lite_float_t cross = (q->X2 - q->X0) * ddy - (q->Y2 - q->Y0) * ddx;
- const vg_lite_float_t x0 = u0 / cross;
- const vg_lite_float_t x2 = u2 / cross;
- const vg_lite_float_t scale = FABSF(cross) / (FHYPOTF(ddx, ddy) * FABSF(x2 - x0));
- return (parabola_approx_t) {
- .x0 = x0,
- .x2 = x2,
- .scale = scale,
- .cross = cross
- };
- }
- /*
- * Tolerance influences the number of lines generated. The lower the tolerance,
- * the more lines it generates, thus the flattening will have a higher quality,
- * but it will also consume more memory. The bigger the tolerance, the less lines
- * will be generated, so the quality will be worse, but the memory consumption
- * will be better.
- *
- * A good default value could be 0.25.
- */
- static quad_bezier_flatten_params_t quad_bezier_flatten_params_init(
- const quad_bezier_t *q,
- vg_lite_float_t tolerance
- )
- {
- const parabola_approx_t params = map_to_parabola(q);
- const vg_lite_float_t a0 = approx_integral(params.x0);
- const vg_lite_float_t a2 = approx_integral(params.x2);
- const vg_lite_float_t count = 0.5 * FABSF(a2 - a0) * SQRTF(params.scale / tolerance);
- const int num_points = (int)CEILF(count);
- const vg_lite_float_t u0 = approx_inverse_integral(a0);
- const vg_lite_float_t u2 = approx_inverse_integral(a2);
- return (quad_bezier_flatten_params_t) {
- .a0 = a0,
- .a2 = a2,
- .num_points = num_points,
- .u0 = u0,
- .u2 = u2
- };
- }
- /*
- * Puts into (x, y) the coordinate to which a line should be drawn given the step.
- * This should be used in a loop to flatten a curve, like this:
- * ```
- * params = quad_bezier_flatten_params_init(&q, tolerance);
- * for (int i = 1; i < params.num_points; ++i) {
- * vg_lite_float_t x, y;
- * quad_bezier_flatten_at(&q, ¶ms, i, &x, &y);
- * draw_line_to(x, y);
- * }
- * ```
- */
- static void quad_bezier_flatten_at(
- const quad_bezier_t *q,
- const quad_bezier_flatten_params_t *params,
- int step,
- vg_lite_float_t *x,
- vg_lite_float_t *y
- )
- {
- const vg_lite_float_t a0 = params->a0, a2 = params->a2, u0 = params->u0, u2 = params->u2;
- const int num_points = params->num_points;
- const vg_lite_float_t u = approx_inverse_integral(a0 + ((a2 - a0) * step) / num_points);
- const vg_lite_float_t t = (u - u0) / (u2 - u0);
- quad_bezier_eval(q, t, x, y);
- }
- vg_lite_error_t
- _flatten_quad_bezier(
- vg_lite_stroke_conversion_t *stroke_conversion,
- vg_lite_float_t X0,
- vg_lite_float_t Y0,
- vg_lite_float_t X1,
- vg_lite_float_t Y1,
- vg_lite_float_t X2,
- vg_lite_float_t Y2
- )
- {
- vg_lite_error_t error = VG_LITE_SUCCESS;
- vg_lite_path_point_ptr point0, point1;
- vg_lite_float_t x, y;
- const vg_lite_float_t tolerance = VG_CURVE_FLATTENING_TOLERANCE;
- const quad_bezier_t q = {
- .X0 = X0,
- .Y0 = Y0,
- .X1 = X1,
- .Y1 = Y1,
- .X2 = X2,
- .Y2 = Y2
- };
- const quad_bezier_flatten_params_t params = quad_bezier_flatten_params_init(&q, tolerance);
- if(!stroke_conversion)
- return VG_LITE_INVALID_ARGUMENT;
- /* Add extra P0 for incoming tangent. */
- point0 = stroke_conversion->path_last_point;
- /* First add P1 to calculate incoming tangent, which is saved in P0. */
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X1, Y1, vgcFLATTEN_START));
- point1 = stroke_conversion->path_last_point;
- /* Change the point1's coordinates back to P0. */
- point1->x = X0;
- point1->y = Y0;
- point0->length = 0.0f;
- for (int i = 1; i < params.num_points; ++i) {
- quad_bezier_flatten_at(&q, ¶ms, i, &x, &y);
- _add_point_to_point_list(stroke_conversion, x, y, vgcFLATTEN_MIDDLE);
- }
- /* Add point 2 separately to avoid cumulative errors. */
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X2, Y2, vgcFLATTEN_END));
- /* Add extra P2 for outgoing tangent. */
- /* First change P2(point0)'s coordinates to P1. */
- point0 = stroke_conversion->path_last_point;
- point0->x = X1;
- point0->y = Y1;
- /* Add P2 to calculate outgoing tangent. */
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X2, Y2, vgcFLATTEN_NO));
- point1 = stroke_conversion->path_last_point;
- /* Change point0's coordinates back to P2. */
- point0->x = X2;
- point0->y = Y2;
- point0->length = 0.0f;
- ErrorHandler:
- return error;
- }
- /*
- * Like eval_quad_bezier, computes the coordinates of the point which resides at
- * `t` for the cubic.
- */
- static void cubic_bezier_eval(
- const cubic_bezier_t *c,
- vg_lite_float_t t,
- vg_lite_float_t *x,
- vg_lite_float_t *y
- )
- {
- const vg_lite_float_t omt = 1.0 - t;
- const vg_lite_float_t omt2 = omt * omt;
- const vg_lite_float_t omt3 = omt * omt2;
- const vg_lite_float_t t2 = t * t;
- const vg_lite_float_t t3 = t * t2;
- *x = omt3 * c->X0 + 3.0 * t * omt2 * c->X1 + 3.0 * t2 * omt * c->X2 + t3 * c->X3;
- *y = omt3 * c->Y0 + 3.0 * t * omt2 * c->Y1 + 3.0 * t2 * omt * c->Y2 + t3 * c->Y3;
- }
- static quad_bezier_t cubic_bezier_derivative(const cubic_bezier_t *c)
- {
- const vg_lite_float_t x0 = 3.0 * (c->X1 - c->X0);
- const vg_lite_float_t y0 = 3.0 * (c->Y1 - c->Y0);
- const vg_lite_float_t x1 = 3.0 * (c->X2 - c->X1);
- const vg_lite_float_t y1 = 3.0 * (c->Y2 - c->Y1);
- const vg_lite_float_t x2 = 3.0 * (c->X3 - c->X2);
- const vg_lite_float_t y2 = 3.0 * (c->Y3 - c->Y2);
- return (quad_bezier_t) {
- .X0 = x0,
- .Y0 = y0,
- .X1 = x1,
- .Y1 = y1,
- .X2 = x2,
- .Y2 = y2
- };
- }
- /*
- * Returns the cubic bezier that is between t0 and t1 of c.
- */
- static cubic_bezier_t cubic_bezier_split_at(
- const cubic_bezier_t *c,
- vg_lite_float_t t0,
- vg_lite_float_t t1
- )
- {
- vg_lite_float_t p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y, d1x, d1y, d2x, d2y;
- vg_lite_float_t scale;
- quad_bezier_t derivative;
- cubic_bezier_eval(c, t0, &p0x, &p0y);
- cubic_bezier_eval(c, t1, &p3x, &p3y);
- derivative = cubic_bezier_derivative(c);
- scale = (t1 - t0) * (1.0 / 3.0);
- quad_bezier_eval(&derivative, t0, &d1x, &d1y);
- quad_bezier_eval(&derivative, t1, &d2x, &d2y);
- p1x = p0x + scale * d1x;
- p1y = p0y + scale * d1y;
- p2x = p3x - scale * d2x;
- p2y = p3y - scale * d2y;
- return (cubic_bezier_t) {
- .X0 = p0x,
- .Y0 = p0y,
- .X1 = p1x,
- .Y1 = p1y,
- .X2 = p2x,
- .Y2 = p2y,
- .X3 = p3x,
- .Y3 = p3y
- };
- }
- /*
- * This function returns the number of quadratic Bezier curves that are needed to
- * represent the given cubic, respecting the tolerance.
- *
- * As with the flattening of quadratics, the lower the tolerance, the better the
- * quality. The higher the tolerance, the worse the quality, but better performance
- * or memory consumption.
- *
- * The algorithm comes from:
- * https://web.archive.org/web/20210108052742/http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
- *
- * Implementation adapted from:
- * https://github.com/linebender/kurbo/blob/master/src/cubicbez.rs
- * and:
- * https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1000&context=facpub#section.10.6
- */
- static int cubic_bezier_get_flatten_count(
- const cubic_bezier_t *c,
- vg_lite_float_t tolerance
- )
- {
- const vg_lite_float_t x = c->X0 - 3.0 * c->X1 + 3.0 * c->X2 - c->X3;
- const vg_lite_float_t y = c->Y0 - 3.0 * c->Y1 + 3.0 * c->Y2 - c->Y3;
- const vg_lite_float_t err = x * x + y * y;
- vg_lite_float_t result;
- result = FPOWF(err / (432.0 * tolerance * tolerance), 1.0 / 6.0);
- result = CEILF(result);
- return result > 1.0 ? (int)result : 1;
- }
- vg_lite_error_t
- _flatten_cubic_bezier(
- vg_lite_stroke_conversion_t * stroke_conversion,
- vg_lite_float_t X0,
- vg_lite_float_t Y0,
- vg_lite_float_t X1,
- vg_lite_float_t Y1,
- vg_lite_float_t X2,
- vg_lite_float_t Y2,
- vg_lite_float_t X3,
- vg_lite_float_t Y3
- )
- {
- vg_lite_error_t error = VG_LITE_SUCCESS;
- vg_lite_path_point_ptr point0, point1;
- const cubic_bezier_t c = {
- .X0 = X0,
- .Y0 = Y0,
- .X1 = X1,
- .Y1 = Y1,
- .X2 = X2,
- .Y2 = Y2,
- .X3 = X3,
- .Y3 = Y3
- };
- const vg_lite_float_t tolerance = VG_CURVE_FLATTENING_TOLERANCE;
- int num_curves = cubic_bezier_get_flatten_count(&c, tolerance);
- vg_lite_float_t fnum_curves = (vg_lite_float_t)num_curves;
- vg_lite_float_t fi, t0, t1, p1x, p1y, p2x, p2y, x, y;
- cubic_bezier_t subsegment;
- quad_bezier_t current_curve;
- quad_bezier_flatten_params_t params;
- if(!stroke_conversion)
- return VG_LITE_INVALID_ARGUMENT;
- /* Add extra P0 for incoming tangent. */
- point0 = stroke_conversion->path_last_point;
- /* First add P1/P2/P3 to calculate incoming tangent, which is saved in P0. */
- if (X0 != X1 || Y0 != Y1)
- {
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X1, Y1, vgcFLATTEN_START));
- }
- else if (X0 != X2 || Y0 != Y2)
- {
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X2, Y2, vgcFLATTEN_START));
- }
- else
- {
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X3, Y3, vgcFLATTEN_START));
- }
- point1 = stroke_conversion->path_last_point;
- /* Change the point1's coordinates back to P0. */
- point1->x = X0;
- point1->y = Y0;
- point0->length = 0.0f;
- for (int i = 0; i < num_curves; ++i) {
- fi = (vg_lite_float_t)i;
- t0 = fi / fnum_curves;
- t1 = (fi + 1.0) / fnum_curves;
- subsegment = cubic_bezier_split_at(&c, t0, t1);
- p1x = 3.0 * subsegment.X1 - subsegment.X0;
- p1y = 3.0 * subsegment.Y1 - subsegment.Y0;
- p2x = 3.0 * subsegment.X2 - subsegment.X3;
- p2y = 3.0 * subsegment.Y2 - subsegment.Y3;
- current_curve = (quad_bezier_t) {
- .X0 = subsegment.X0,
- .Y0 = subsegment.Y0,
- .X1 = (p1x + p2x) / 4.0,
- .Y1 = (p1y + p2y) / 4.0,
- .X2 = subsegment.X3,
- .Y2 = subsegment.Y3
- };
- params = quad_bezier_flatten_params_init(¤t_curve, tolerance);
- for (int j = 0; j < params.num_points; ++j) {
- quad_bezier_flatten_at(¤t_curve, ¶ms, j, &x, &y);
- _add_point_to_point_list(stroke_conversion, x, y, vgcFLATTEN_MIDDLE);
- }
- }
- /* Add point 3 separately to avoid cumulative errors. */
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X3, Y3, vgcFLATTEN_END));
- /* Add extra P3 for outgoing tangent. */
- /* First change P3(point0)'s coordinates to P0/P1/P2. */
- point0 = stroke_conversion->path_last_point;
- if (X3 != X2 || Y3 != Y2)
- {
- point0->x = X2;
- point0->y = Y2;
- }
- else if (X3 != X1 || Y3 != Y1)
- {
- point0->x = X1;
- point0->y = Y1;
- }
- else
- {
- point0->x = X0;
- point0->y = Y0;
- }
- /* Add P3 to calculate outgoing tangent. */
- VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X3, Y3, vgcFLATTEN_NO));
- point1 = stroke_conversion->path_last_point;
- /* Change point0's coordinates back to P3. */
- point0->x = X3;
- point0->y = Y3;
- point0->length = 0.0f;
- ErrorHandler:
- return error;
- }
|