1
0

slab.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. /*
  2. * File : slab.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2008 - 2009, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2008-07-12 Bernard the first version
  13. * 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca
  14. * 2010-10-23 yi.qiu add module memory allocator
  15. */
  16. /*
  17. * KERN_SLABALLOC.C - Kernel SLAB memory allocator
  18. *
  19. * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
  20. *
  21. * This code is derived from software contributed to The DragonFly Project
  22. * by Matthew Dillon <dillon@backplane.com>
  23. *
  24. * Redistribution and use in source and binary forms, with or without
  25. * modification, are permitted provided that the following conditions
  26. * are met:
  27. *
  28. * 1. Redistributions of source code must retain the above copyright
  29. * notice, this list of conditions and the following disclaimer.
  30. * 2. Redistributions in binary form must reproduce the above copyright
  31. * notice, this list of conditions and the following disclaimer in
  32. * the documentation and/or other materials provided with the
  33. * distribution.
  34. * 3. Neither the name of The DragonFly Project nor the names of its
  35. * contributors may be used to endorse or promote products derived
  36. * from this software without specific, prior written permission.
  37. *
  38. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  39. * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  40. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  41. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  42. * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  43. * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
  44. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  45. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
  46. * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  47. * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  48. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  49. * SUCH DAMAGE.
  50. *
  51. */
  52. #include <rthw.h>
  53. #include <rtthread.h>
  54. #include "kservice.h"
  55. /* #define RT_SLAB_DEBUG */
  56. #define RT_MEM_STATS
  57. #if defined (RT_USING_HEAP) && defined (RT_USING_SLAB)
  58. /* some statistical variable */
  59. #ifdef RT_MEM_STATS
  60. static rt_size_t used_mem, max_mem;
  61. #endif
  62. #ifdef RT_USING_HOOK
  63. static void (*rt_malloc_hook)(void *ptr, rt_size_t size);
  64. static void (*rt_free_hook)(void *ptr);
  65. /**
  66. * @addtogroup Hook
  67. */
  68. /*@{*/
  69. /**
  70. * This function will set a hook function, which will be invoked when a memory
  71. * block is allocated from heap memory.
  72. *
  73. * @param hook the hook function
  74. */
  75. void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size))
  76. {
  77. rt_malloc_hook = hook;
  78. }
  79. /**
  80. * This function will set a hook function, which will be invoked when a memory
  81. * block is released to heap memory.
  82. *
  83. * @param hook the hook function
  84. */
  85. void rt_free_sethook(void (*hook)(void *ptr))
  86. {
  87. rt_free_hook = hook;
  88. }
  89. /*@}*/
  90. #endif
  91. /*
  92. * slab allocator implementation
  93. *
  94. * A slab allocator reserves a ZONE for each chunk size, then lays the
  95. * chunks out in an array within the zone. Allocation and deallocation
  96. * is nearly instantanious, and fragmentation/overhead losses are limited
  97. * to a fixed worst-case amount.
  98. *
  99. * The downside of this slab implementation is in the chunk size
  100. * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
  101. * In a kernel implementation all this memory will be physical so
  102. * the zone size is adjusted downward on machines with less physical
  103. * memory. The upside is that overhead is bounded... this is the *worst*
  104. * case overhead.
  105. *
  106. * Slab management is done on a per-cpu basis and no locking or mutexes
  107. * are required, only a critical section. When one cpu frees memory
  108. * belonging to another cpu's slab manager an asynchronous IPI message
  109. * will be queued to execute the operation. In addition, both the
  110. * high level slab allocator and the low level zone allocator optimize
  111. * M_ZERO requests, and the slab allocator does not have to pre initialize
  112. * the linked list of chunks.
  113. *
  114. * XXX Balancing is needed between cpus. Balance will be handled through
  115. * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
  116. *
  117. * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
  118. * the new zone should be restricted to M_USE_RESERVE requests only.
  119. *
  120. * Alloc Size Chunking Number of zones
  121. * 0-127 8 16
  122. * 128-255 16 8
  123. * 256-511 32 8
  124. * 512-1023 64 8
  125. * 1024-2047 128 8
  126. * 2048-4095 256 8
  127. * 4096-8191 512 8
  128. * 8192-16383 1024 8
  129. * 16384-32767 2048 8
  130. * (if RT_MM_PAGE_SIZE is 4K the maximum zone allocation is 16383)
  131. *
  132. * Allocations >= zone_limit go directly to kmem.
  133. *
  134. * API REQUIREMENTS AND SIDE EFFECTS
  135. *
  136. * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
  137. * have remained compatible with the following API requirements:
  138. *
  139. * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
  140. * + all power-of-2 sized allocations are power-of-2 aligned (twe)
  141. * + malloc(0) is allowed and returns non-RT_NULL (ahc driver)
  142. * + ability to allocate arbitrarily large chunks of memory
  143. */
  144. /*
  145. * Chunk structure for free elements
  146. */
  147. typedef struct slab_chunk
  148. {
  149. struct slab_chunk *c_next;
  150. } slab_chunk;
  151. /*
  152. * The IN-BAND zone header is placed at the beginning of each zone.
  153. */
  154. typedef struct slab_zone {
  155. rt_int32_t z_magic; /* magic number for sanity check */
  156. rt_int32_t z_nfree; /* total free chunks / ualloc space in zone */
  157. rt_int32_t z_nmax; /* maximum free chunks */
  158. struct slab_zone *z_next; /* zoneary[] link if z_nfree non-zero */
  159. rt_uint8_t *z_baseptr; /* pointer to start of chunk array */
  160. rt_int32_t z_uindex; /* current initial allocation index */
  161. rt_int32_t z_chunksize; /* chunk size for validation */
  162. rt_int32_t z_zoneindex; /* zone index */
  163. slab_chunk *z_freechunk; /* free chunk list */
  164. } slab_zone;
  165. #define ZALLOC_SLAB_MAGIC 0x51ab51ab
  166. #define ZALLOC_ZONE_LIMIT (16 * 1024) /* max slab-managed alloc */
  167. #define ZALLOC_MIN_ZONE_SIZE (32 * 1024) /* minimum zone size */
  168. #define ZALLOC_MAX_ZONE_SIZE (128 * 1024) /* maximum zone size */
  169. #define NZONES 72 /* number of zones */
  170. #define ZONE_RELEASE_THRESH 2 /* threshold number of zones */
  171. static slab_zone *zone_array[NZONES]; /* linked list of zones NFree > 0 */
  172. static slab_zone *zone_free; /* whole zones that have become free */
  173. static int zone_free_cnt;
  174. static int zone_size;
  175. static int zone_limit;
  176. static int zone_page_cnt;
  177. /*
  178. * Misc constants. Note that allocations that are exact multiples of
  179. * RT_MM_PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
  180. */
  181. #define MIN_CHUNK_SIZE 8 /* in bytes */
  182. #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
  183. /*
  184. * Array of descriptors that describe the contents of each page
  185. */
  186. #define PAGE_TYPE_FREE 0x00
  187. #define PAGE_TYPE_SMALL 0x01
  188. #define PAGE_TYPE_LARGE 0x02
  189. struct memusage {
  190. rt_uint32_t type:2 ; /* page type */
  191. rt_uint32_t size:30; /* pages allocated or offset from zone */
  192. };
  193. static struct memusage *memusage = RT_NULL;
  194. #define btokup(addr) (&memusage[((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS])
  195. static rt_uint32_t heap_start, heap_end;
  196. /* page allocator */
  197. struct rt_page_head
  198. {
  199. struct rt_page_head *next; /* next valid page */
  200. rt_size_t page; /* number of page */
  201. /* dummy */
  202. char dummy[RT_MM_PAGE_SIZE - (sizeof(struct rt_page_head*) + sizeof (rt_size_t))];
  203. };
  204. static struct rt_page_head *rt_page_list;
  205. static struct rt_semaphore heap_sem;
  206. void *rt_page_alloc(rt_size_t npages)
  207. {
  208. struct rt_page_head *b, *n;
  209. struct rt_page_head **prev;
  210. if(npages == 0) return RT_NULL;
  211. /* lock heap */
  212. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  213. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  214. {
  215. if (b->page > npages)
  216. {
  217. /* splite pages */
  218. n = b + npages;
  219. n->next = b->next;
  220. n->page = b->page - npages;
  221. *prev = n;
  222. break;
  223. }
  224. if (b->page == npages)
  225. {
  226. /* this node fit, remove this node */
  227. *prev = b->next;
  228. break;
  229. }
  230. }
  231. /* unlock heap */
  232. rt_sem_release(&heap_sem);
  233. return b;
  234. }
  235. void rt_page_free(void *addr, rt_size_t npages)
  236. {
  237. struct rt_page_head *b, *n;
  238. struct rt_page_head **prev;
  239. RT_ASSERT(addr != RT_NULL);
  240. RT_ASSERT((rt_uint32_t)addr % RT_MM_PAGE_SIZE == 0);
  241. RT_ASSERT(npages != 0);
  242. n = (struct rt_page_head *)addr;
  243. /* lock heap */
  244. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  245. for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next))
  246. {
  247. RT_ASSERT(b->page > 0);
  248. RT_ASSERT(b > n || b + b->page <= n);
  249. if (b + b->page == n)
  250. {
  251. if (b + (b->page += npages) == b->next)
  252. {
  253. b->page += b->next->page;
  254. b->next = b->next->next;
  255. }
  256. goto _return;
  257. }
  258. if (b == n + npages)
  259. {
  260. n->page = b->page + npages;
  261. n->next = b->next;
  262. *prev = n;
  263. goto _return;
  264. }
  265. if (b > n + npages) break;
  266. }
  267. n->page = npages;
  268. n->next = b;
  269. *prev = n;
  270. _return:
  271. /* unlock heap */
  272. rt_sem_release(&heap_sem);
  273. }
  274. /*
  275. * Initialize the page allocator
  276. */
  277. static void rt_page_init(void* addr, rt_size_t npages)
  278. {
  279. RT_ASSERT(addr != RT_NULL);
  280. RT_ASSERT(npages != 0);
  281. rt_page_list = RT_NULL;
  282. rt_page_free(addr, npages);
  283. }
  284. /**
  285. * @ingroup SystemInit
  286. *
  287. * This function will init system heap
  288. *
  289. * @param begin_addr the beginning address of system page
  290. * @param end_addr the end address of system page
  291. *
  292. */
  293. void rt_system_heap_init(void *begin_addr, void* end_addr)
  294. {
  295. rt_uint32_t limsize, npages;
  296. /* align begin and end addr to page */
  297. heap_start = RT_ALIGN((rt_uint32_t)begin_addr, RT_MM_PAGE_SIZE);
  298. heap_end = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_MM_PAGE_SIZE);
  299. if(heap_start >= heap_end) {
  300. rt_kprintf("rt_system_heap_init, wrong address[0x%x - 0x%x]\n",
  301. (rt_uint32_t)begin_addr, (rt_uint32_t)end_addr);
  302. return;
  303. }
  304. limsize = heap_end - heap_start;
  305. npages = limsize / RT_MM_PAGE_SIZE;
  306. /* initialize heap semaphore */
  307. rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO);
  308. #ifdef RT_SLAB_DEBUG
  309. rt_kprintf("heap[0x%x - 0x%x], size 0x%x, 0x%x pages\n", heap_start, heap_end,
  310. limsize, npages);
  311. #endif
  312. /* init pages */
  313. rt_page_init((void*)heap_start, npages);
  314. /* calculate zone size */
  315. zone_size = ZALLOC_MIN_ZONE_SIZE;
  316. while (zone_size < ZALLOC_MAX_ZONE_SIZE && (zone_size << 1) < (limsize/1024))
  317. zone_size <<= 1;
  318. zone_limit = zone_size / 4;
  319. if (zone_limit > ZALLOC_ZONE_LIMIT) zone_limit = ZALLOC_ZONE_LIMIT;
  320. zone_page_cnt = zone_size / RT_MM_PAGE_SIZE;
  321. #ifdef RT_SLAB_DEBUG
  322. rt_kprintf("zone size 0x%x, zone page count 0x%x\n", zone_size, zone_page_cnt);
  323. #endif
  324. /* allocate memusage array */
  325. limsize = npages * sizeof(struct memusage);
  326. limsize = RT_ALIGN(limsize, RT_MM_PAGE_SIZE);
  327. memusage = rt_page_alloc(limsize/RT_MM_PAGE_SIZE);
  328. #ifdef RT_SLAB_DEBUG
  329. rt_kprintf("memusage 0x%x, size 0x%x\n", (rt_uint32_t)memusage, limsize);
  330. #endif
  331. }
  332. /*
  333. * Calculate the zone index for the allocation request size and set the
  334. * allocation request size to that particular zone's chunk size.
  335. */
  336. rt_inline int zoneindex(rt_uint32_t *bytes)
  337. {
  338. rt_uint32_t n = (rt_uint32_t)*bytes; /* unsigned for shift opt */
  339. if (n < 128)
  340. {
  341. *bytes = n = (n + 7) & ~7;
  342. return(n / 8 - 1); /* 8 byte chunks, 16 zones */
  343. }
  344. if (n < 256)
  345. {
  346. *bytes = n = (n + 15) & ~15;
  347. return(n / 16 + 7);
  348. }
  349. if (n < 8192)
  350. {
  351. if (n < 512)
  352. {
  353. *bytes = n = (n + 31) & ~31;
  354. return(n / 32 + 15);
  355. }
  356. if (n < 1024)
  357. {
  358. *bytes = n = (n + 63) & ~63;
  359. return(n / 64 + 23);
  360. }
  361. if (n < 2048)
  362. {
  363. *bytes = n = (n + 127) & ~127;
  364. return(n / 128 + 31);
  365. }
  366. if (n < 4096)
  367. {
  368. *bytes = n = (n + 255) & ~255;
  369. return(n / 256 + 39);
  370. }
  371. *bytes = n = (n + 511) & ~511;
  372. return(n / 512 + 47);
  373. }
  374. if (n < 16384)
  375. {
  376. *bytes = n = (n + 1023) & ~1023;
  377. return(n / 1024 + 55);
  378. }
  379. rt_kprintf("Unexpected byte count %d", n);
  380. return 0;
  381. }
  382. /**
  383. * @addtogroup MM
  384. */
  385. /*@{*/
  386. /*
  387. * This function will allocate the numbers page with specified size
  388. * in page memory.
  389. *
  390. * @param size the size of memory to be allocated.
  391. * @note this function is used for RT-Thread Application Module
  392. */
  393. void *rt_malloc_page(rt_size_t npages)
  394. {
  395. void* chunk;
  396. chunk = rt_page_alloc(npages);
  397. if (chunk == RT_NULL) return RT_NULL;
  398. /* update memory usage */
  399. #ifdef RT_MEM_STATS
  400. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  401. used_mem += npages * RT_MM_PAGE_SIZE;
  402. if (used_mem > max_mem) max_mem = used_mem;
  403. rt_sem_release(&heap_sem);
  404. #endif
  405. return chunk;
  406. }
  407. /*
  408. * This function will release the previously allocated memory page
  409. * by rt_malloc_page.
  410. *
  411. * @param page_ptr the page address to be released.
  412. * @param npages the number of page shall be released.
  413. *
  414. * @note this function is used for RT-Thread Application Module
  415. */
  416. void rt_free_page(void *page_ptr, rt_size_t npages)
  417. {
  418. rt_page_free(page_ptr, npages);
  419. /* update memory usage */
  420. #ifdef RT_MEM_STATS
  421. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  422. used_mem -= npages * RT_MM_PAGE_SIZE;
  423. rt_sem_release(&heap_sem);
  424. #endif
  425. }
  426. /**
  427. * This function will allocate a block from system heap memory.
  428. * - If the nbytes is less than zero,
  429. * or
  430. * - If there is no nbytes sized memory valid in system,
  431. * the RT_NULL is returned.
  432. *
  433. * @param size the size of memory to be allocated
  434. *
  435. * @return the allocated memory
  436. *
  437. */
  438. void *rt_malloc(rt_size_t size)
  439. {
  440. slab_zone *z;
  441. rt_int32_t zi;
  442. slab_chunk *chunk;
  443. rt_base_t interrupt_level;
  444. struct memusage *kup;
  445. /* zero size, return RT_NULL */
  446. if (size == 0) return RT_NULL;
  447. #ifdef RT_USING_MODULE
  448. if(rt_module_self() != RT_NULL) return rt_module_malloc(size);
  449. #endif
  450. /*
  451. * Handle large allocations directly. There should not be very many of
  452. * these so performance is not a big issue.
  453. */
  454. if (size >= zone_limit)
  455. {
  456. size = RT_ALIGN(size, RT_MM_PAGE_SIZE);
  457. chunk = rt_page_alloc(size >> RT_MM_PAGE_BITS);
  458. if (chunk == RT_NULL) return RT_NULL;
  459. /* set kup */
  460. kup = btokup(chunk);
  461. kup->type = PAGE_TYPE_LARGE;
  462. kup->size = size >> RT_MM_PAGE_BITS;
  463. #ifdef RT_SLAB_DEBUG
  464. rt_kprintf("malloc a large memory 0x%x, page cnt %d, kup %d\n",
  465. size,
  466. size >> RT_MM_PAGE_BITS,
  467. ((rt_uint32_t)chunk - heap_start) >> RT_MM_PAGE_BITS);
  468. #endif
  469. /* lock heap */
  470. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  471. #ifdef RT_MEM_STATS
  472. used_mem += size;
  473. if (used_mem > max_mem) max_mem = used_mem;
  474. #endif
  475. goto done;
  476. }
  477. /* lock heap */
  478. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  479. /*
  480. * Attempt to allocate out of an existing zone. First try the free list,
  481. * then allocate out of unallocated space. If we find a good zone move
  482. * it to the head of the list so later allocations find it quickly
  483. * (we might have thousands of zones in the list).
  484. *
  485. * Note: zoneindex() will panic of size is too large.
  486. */
  487. zi = zoneindex(&size);
  488. RT_ASSERT(zi < NZONES);
  489. #ifdef RT_SLAB_DEBUG
  490. rt_kprintf("try to malloc 0x%x on zone: %d\n", size, zi);
  491. #endif
  492. if ((z = zone_array[zi]) != RT_NULL)
  493. {
  494. RT_ASSERT(z->z_nfree > 0);
  495. /* Remove us from the zone_array[] when we become empty */
  496. if (--z->z_nfree == 0)
  497. {
  498. zone_array[zi] = z->z_next;
  499. z->z_next = RT_NULL;
  500. }
  501. /*
  502. * No chunks are available but nfree said we had some memory, so
  503. * it must be available in the never-before-used-memory area
  504. * governed by uindex. The consequences are very serious if our zone
  505. * got corrupted so we use an explicit rt_kprintf rather then a KASSERT.
  506. */
  507. if (z->z_uindex + 1 != z->z_nmax)
  508. {
  509. z->z_uindex = z->z_uindex + 1;
  510. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  511. }
  512. else
  513. {
  514. /* find on free chunk list */
  515. chunk = z->z_freechunk;
  516. /* remove this chunk from list */
  517. z->z_freechunk = z->z_freechunk->c_next;
  518. }
  519. #ifdef RT_MEM_STATS
  520. used_mem += z->z_chunksize;
  521. if (used_mem > max_mem) max_mem = used_mem;
  522. #endif
  523. goto done;
  524. }
  525. /*
  526. * If all zones are exhausted we need to allocate a new zone for this
  527. * index.
  528. *
  529. * At least one subsystem, the tty code (see CROUND) expects power-of-2
  530. * allocations to be power-of-2 aligned. We maintain compatibility by
  531. * adjusting the base offset below.
  532. */
  533. {
  534. rt_int32_t off;
  535. if ((z = zone_free) != RT_NULL)
  536. {
  537. /* remove zone from free zone list */
  538. zone_free = z->z_next;
  539. --zone_free_cnt;
  540. }
  541. else
  542. {
  543. /* unlock heap, since page allocator will think about lock */
  544. rt_sem_release(&heap_sem);
  545. /* allocate a zone from page */
  546. z = rt_page_alloc(zone_size / RT_MM_PAGE_SIZE);
  547. if (z == RT_NULL) goto fail;
  548. /* lock heap */
  549. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  550. #ifdef RT_SLAB_DEBUG
  551. rt_kprintf("alloc a new zone: 0x%x\n", (rt_uint32_t)z);
  552. #endif
  553. /* set message usage */
  554. for (off = 0, kup = btokup(z); off < zone_page_cnt; off ++)
  555. {
  556. kup->type = PAGE_TYPE_SMALL;
  557. kup->size = off;
  558. kup ++;
  559. }
  560. }
  561. /* clear to zero */
  562. rt_memset(z, 0, sizeof(slab_zone));
  563. /* offset of slab zone struct in zone */
  564. off = sizeof(slab_zone);
  565. /*
  566. * Guarentee power-of-2 alignment for power-of-2-sized chunks.
  567. * Otherwise just 8-byte align the data.
  568. */
  569. if ((size | (size - 1)) + 1 == (size << 1))
  570. off = (off + size - 1) & ~(size - 1);
  571. else
  572. off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
  573. z->z_magic = ZALLOC_SLAB_MAGIC;
  574. z->z_zoneindex = zi;
  575. z->z_nmax = (zone_size - off) / size;
  576. z->z_nfree = z->z_nmax - 1;
  577. z->z_baseptr = (rt_uint8_t*)z + off;
  578. z->z_uindex = 0;
  579. z->z_chunksize = size;
  580. chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size);
  581. /* link to zone array */
  582. z->z_next = zone_array[zi];
  583. zone_array[zi] = z;
  584. #ifdef RT_MEM_STATS
  585. used_mem += z->z_chunksize;
  586. if (used_mem > max_mem) max_mem = used_mem;
  587. #endif
  588. }
  589. done:
  590. rt_sem_release(&heap_sem);
  591. #ifdef RT_USING_HOOK
  592. if (rt_malloc_hook != RT_NULL) rt_malloc_hook((char*)chunk, size);
  593. #endif
  594. return chunk;
  595. fail:
  596. rt_sem_release(&heap_sem);
  597. return RT_NULL;
  598. }
  599. /**
  600. * This function will change the size of previously allocated memory block.
  601. *
  602. * @param ptr the previously allocated memory block
  603. * @param size the new size of memory block
  604. *
  605. * @return the allocated memory
  606. */
  607. void *rt_realloc(void *ptr, rt_size_t size)
  608. {
  609. void *nptr;
  610. slab_zone *z;
  611. struct memusage *kup;
  612. if (ptr == RT_NULL) return rt_malloc(size);
  613. if (size == 0)
  614. {
  615. rt_free(ptr);
  616. return RT_NULL;
  617. }
  618. #ifdef RT_USING_MODULE
  619. if(rt_module_self() != RT_NULL) return rt_module_realloc(ptr, size);
  620. #endif
  621. /*
  622. * Get the original allocation's zone. If the new request winds up
  623. * using the same chunk size we do not have to do anything.
  624. */
  625. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  626. if (kup->type == PAGE_TYPE_LARGE)
  627. {
  628. rt_size_t osize;
  629. osize = kup->size << RT_MM_PAGE_BITS;
  630. if ((nptr = rt_malloc(size)) == RT_NULL) return RT_NULL;
  631. rt_memcpy(nptr, ptr, size > osize? osize : size);
  632. rt_free(ptr);
  633. return nptr;
  634. }
  635. else if (kup->type == PAGE_TYPE_SMALL)
  636. {
  637. z = (slab_zone*)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE);
  638. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  639. zoneindex(&size);
  640. if (z->z_chunksize == size) return(ptr); /* same chunk */
  641. /*
  642. * Allocate memory for the new request size. Note that zoneindex has
  643. * already adjusted the request size to the appropriate chunk size, which
  644. * should optimize our bcopy(). Then copy and return the new pointer.
  645. */
  646. if ((nptr = rt_malloc(size)) == RT_NULL) return RT_NULL;
  647. rt_memcpy(nptr, ptr, size > z->z_chunksize? z->z_chunksize : size);
  648. rt_free(ptr);
  649. return nptr;
  650. }
  651. return RT_NULL;
  652. }
  653. /**
  654. * This function will contiguously allocate enough space for count objects
  655. * that are size bytes of memory each and returns a pointer to the allocated
  656. * memory.
  657. *
  658. * The allocated memory is filled with bytes of value zero.
  659. *
  660. * @param count number of objects to allocate
  661. * @param size size of the objects to allocate
  662. *
  663. * @return pointer to allocated memory / NULL pointer if there is an error
  664. */
  665. void *rt_calloc(rt_size_t count, rt_size_t size)
  666. {
  667. void *p;
  668. /* allocate 'count' objects of size 'size' */
  669. p = rt_malloc(count * size);
  670. /* zero the memory */
  671. if (p) rt_memset(p, 0, count * size);
  672. return p;
  673. }
  674. /**
  675. * This function will release the previously allocated memory block by rt_malloc.
  676. * The released memory block is taken back to system heap.
  677. *
  678. * @param ptr the address of memory which will be released
  679. */
  680. void rt_free(void *ptr)
  681. {
  682. slab_zone *z;
  683. slab_chunk *chunk;
  684. struct memusage *kup;
  685. /* free a RT_NULL pointer */
  686. if (ptr == RT_NULL) return ;
  687. #ifdef RT_USING_HOOK
  688. if (rt_free_hook != RT_NULL) rt_free_hook(ptr);
  689. #endif
  690. #ifdef RT_USING_MODULE
  691. if(rt_module_self() != RT_NULL)
  692. {
  693. rt_module_free(rt_module_self(), ptr);
  694. return;
  695. }
  696. #endif
  697. /* get memory usage */
  698. #ifdef RT_SLAB_DEBUG
  699. {
  700. rt_uint32 addr = ((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  701. rt_kprintf("free a memory 0x%x and align to 0x%x, kup index %d\n",
  702. (rt_uint32_t)ptr,
  703. (rt_uint32_t)addr,
  704. ((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS);
  705. }
  706. #endif
  707. kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK);
  708. /* release large allocation */
  709. if (kup->type == PAGE_TYPE_LARGE)
  710. {
  711. rt_uint32_t size;
  712. /* lock heap */
  713. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  714. /* clear page counter */
  715. size = kup->size;
  716. kup->size = 0;
  717. #ifdef RT_MEM_STATS
  718. used_mem -= size;
  719. #endif
  720. rt_sem_release(&heap_sem);
  721. #ifdef RT_SLAB_DEBUG
  722. rt_kprintf("free large memory block 0x%x, page count %d\n", (rt_uint32_t)ptr, size);
  723. #endif
  724. /* free this page */
  725. rt_page_free(ptr, size);
  726. return;
  727. }
  728. /* lock heap */
  729. rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
  730. /* zone case. get out zone. */
  731. z = (slab_zone*)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE);
  732. RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
  733. chunk = (slab_chunk*)ptr;
  734. chunk->c_next = z->z_freechunk;
  735. z->z_freechunk = chunk;
  736. #ifdef RT_MEM_STATS
  737. used_mem -= z->z_chunksize;
  738. #endif
  739. /*
  740. * Bump the number of free chunks. If it becomes non-zero the zone
  741. * must be added back onto the appropriate list.
  742. */
  743. if (z->z_nfree++ == 0)
  744. {
  745. z->z_next = zone_array[z->z_zoneindex];
  746. zone_array[z->z_zoneindex] = z;
  747. }
  748. /*
  749. * If the zone becomes totally free, and there are other zones we
  750. * can allocate from, move this zone to the FreeZones list. Since
  751. * this code can be called from an IPI callback, do *NOT* try to mess
  752. * with kernel_map here. Hysteresis will be performed at malloc() time.
  753. */
  754. if (z->z_nfree == z->z_nmax &&
  755. (z->z_next || zone_array[z->z_zoneindex] != z))
  756. {
  757. slab_zone **pz;
  758. #ifdef RT_SLAB_DEBUG
  759. rt_kprintf("free zone 0x%x\n", (rt_uint32_t)z, z->z_zoneindex);
  760. #endif
  761. /* remove zone from zone array list */
  762. for (pz = &zone_array[z->z_zoneindex]; z != *pz; pz = &(*pz)->z_next) ;
  763. *pz = z->z_next;
  764. /* reset zone */
  765. z->z_magic = -1;
  766. /* insert to free zone list */
  767. z->z_next = zone_free;
  768. zone_free = z;
  769. ++zone_free_cnt;
  770. /* release zone to page allocator */
  771. if (zone_free_cnt > ZONE_RELEASE_THRESH)
  772. {
  773. register rt_base_t i;
  774. z = zone_free;
  775. zone_free = z->z_next;
  776. --zone_free_cnt;
  777. /* set message usage */
  778. for (i = 0, kup = btokup(z); i < zone_page_cnt; i ++)
  779. {
  780. kup->type = PAGE_TYPE_FREE;
  781. kup->size = 0;
  782. kup ++;
  783. }
  784. /* unlock heap */
  785. rt_sem_release(&heap_sem);
  786. /* release pages */
  787. rt_page_free(z, zone_size);
  788. return;
  789. }
  790. }
  791. /* unlock heap */
  792. rt_sem_release(&heap_sem);
  793. }
  794. #ifdef RT_MEM_STATS
  795. void rt_memory_info(rt_uint32_t *total,
  796. rt_uint32_t *used,
  797. rt_uint32_t *max_used)
  798. {
  799. if (total != RT_NULL) *total = heap_end - heap_start;
  800. if (used != RT_NULL) *used = used_mem;
  801. if (max_used != RT_NULL) *max_used = max_mem;
  802. }
  803. #ifdef RT_USING_FINSH
  804. #include <finsh.h>
  805. void list_mem()
  806. {
  807. rt_kprintf("total memory: %d\n", heap_end - heap_start);
  808. rt_kprintf("used memory : %d\n", used_mem);
  809. rt_kprintf("maximum allocated memory: %d\n", max_mem);
  810. }
  811. FINSH_FUNCTION_EXPORT(list_mem, list memory usage information)
  812. #endif
  813. #endif
  814. /*@}*/
  815. #endif