1
0

block_dev.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. /*
  2. * File : block_dev.c
  3. * This file is part of RT-Thread RTOS
  4. * COPYRIGHT (C) 2006, RT-Thread Development Team
  5. *
  6. * The license and distribution terms for this file may be
  7. * found in the file LICENSE in this distribution or at
  8. * http://www.rt-thread.org/license/LICENSE
  9. *
  10. * Change Logs:
  11. * Date Author Notes
  12. * 2011-07-25 weety first version
  13. */
  14. #include <rtthread.h>
  15. #include <dfs_fs.h>
  16. #include "list.h"
  17. #include "mmcsd_core.h"
  18. #include "mmcsd_cmd.h"
  19. static rt_list_t blk_devices;
  20. struct mmcsd_blk_device
  21. {
  22. struct rt_mmcsd_card *card;
  23. rt_list_t list;
  24. struct rt_device dev;
  25. struct dfs_partition part;
  26. struct rt_device_blk_geometry geometry;
  27. };
  28. #ifndef RT_MMCSD_MAX_PARTITION
  29. #define RT_MMCSD_MAX_PARTITION 16
  30. #endif
  31. static rt_int32_t mmcsd_num_wr_blocks(struct rt_mmcsd_card *card)
  32. {
  33. rt_int32_t err;
  34. rt_uint32_t blocks;
  35. struct rt_mmcsd_req req;
  36. struct rt_mmcsd_cmd cmd;
  37. struct rt_mmcsd_data data;
  38. rt_uint32_t timeout_us;
  39. rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
  40. cmd.cmd_code = APP_CMD;
  41. cmd.arg = card->rca << 16;
  42. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
  43. err = mmcsd_send_cmd(card->host, &cmd, 0);
  44. if (err)
  45. return -RT_ERROR;
  46. if (!controller_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
  47. return -RT_ERROR;
  48. rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
  49. cmd.cmd_code = SD_APP_SEND_NUM_WR_BLKS;
  50. cmd.arg = 0;
  51. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
  52. rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
  53. data.timeout_ns = card->tacc_ns * 100;
  54. data.timeout_clks = card->tacc_clks * 100;
  55. timeout_us = data.timeout_ns / 1000;
  56. timeout_us += data.timeout_clks * 1000 /
  57. (card->host->io_cfg.clock / 1000);
  58. if (timeout_us > 100000)
  59. {
  60. data.timeout_ns = 100000000;
  61. data.timeout_clks = 0;
  62. }
  63. data.blksize = 4;
  64. data.blks = 1;
  65. data.flags = DATA_DIR_READ;
  66. data.buf = &blocks;
  67. rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
  68. req.cmd = &cmd;
  69. req.data = &data;
  70. mmcsd_send_request(card->host, &req);
  71. if (cmd.err || data.err)
  72. return -RT_ERROR;
  73. return blocks;
  74. }
  75. static rt_err_t rt_mmcsd_req_blk(struct rt_mmcsd_card *card, rt_uint32_t sector, void *buf, rt_size_t blks, rt_uint8_t dir)
  76. {
  77. void *aligned_buf;
  78. struct rt_mmcsd_cmd cmd, stop;
  79. struct rt_mmcsd_data data;
  80. struct rt_mmcsd_req req;
  81. struct rt_mmcsd_host *host = card->host;
  82. rt_uint32_t r_cmd, w_cmd;
  83. mmcsd_host_lock(host);
  84. rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
  85. rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
  86. rt_memset(&stop, 0, sizeof(struct rt_mmcsd_cmd));
  87. rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
  88. req.cmd = &cmd;
  89. req.data = &data;
  90. cmd.arg = sector;
  91. if (!(card->card_type & CARD_TYPE_SDHC))
  92. {
  93. cmd.arg <<= 9;
  94. }
  95. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
  96. data.blksize = SECTOR_SIZE;
  97. data.blks = blks;
  98. if (blks > 1)
  99. {
  100. if (!controller_is_spi(card->host) || !dir)
  101. {
  102. req.stop = &stop;
  103. stop.cmd_code = STOP_TRANSMISSION;
  104. stop.arg = 0;
  105. stop.flags = RESP_SPI_R1B | RESP_R1B | CMD_AC;
  106. }
  107. r_cmd = READ_MULTIPLE_BLOCK;
  108. w_cmd = WRITE_MULTIPLE_BLOCK;
  109. }
  110. else
  111. {
  112. req.stop = NULL;
  113. r_cmd = READ_SINGLE_BLOCK;
  114. w_cmd = WRITE_BLOCK;
  115. }
  116. if (!dir)
  117. {
  118. cmd.cmd_code = r_cmd;
  119. data.flags |= DATA_DIR_READ;
  120. }
  121. else
  122. {
  123. cmd.cmd_code = w_cmd;
  124. data.flags |= DATA_DIR_WRITE;
  125. }
  126. mmcsd_set_data_timeout(&data, card);
  127. if (((rt_uint32_t)buf & (32 - 1)) != 0) /* the buf address is not aligned to 32 */
  128. {
  129. aligned_buf = rt_malloc_align(data.blks * data.blksize, 32);
  130. if (aligned_buf == RT_NULL)
  131. {
  132. rt_kprintf("allocate memory failed\n");
  133. return -RT_ENOMEM;
  134. }
  135. if (dir)//write
  136. rt_memcpy(aligned_buf, buf, data.blks*data.blksize);
  137. data.buf = aligned_buf;
  138. }
  139. else
  140. data.buf = buf;
  141. mmcsd_send_request(host, &req);
  142. if (!controller_is_spi(card->host) && dir != 0)
  143. {
  144. do
  145. {
  146. rt_int32_t err;
  147. cmd.cmd_code = SEND_STATUS;
  148. cmd.arg = card->rca << 16;
  149. cmd.flags = RESP_R1 | CMD_AC;
  150. err = mmcsd_send_cmd(card->host, &cmd, 5);
  151. if (err)
  152. {
  153. rt_kprintf("error %d requesting status\n", err);
  154. break;
  155. }
  156. /*
  157. * Some cards mishandle the status bits,
  158. * so make sure to check both the busy
  159. * indication and the card state.
  160. */
  161. } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
  162. (R1_CURRENT_STATE(cmd.resp[0]) == 7));
  163. }
  164. mmcsd_host_unlock(host);
  165. if (cmd.err || data.err || stop.err)
  166. {
  167. rt_kprintf("mmcsd request blocks error\n");
  168. rt_kprintf("%d,%d,%d, 0x%08x,0x%08x\n", cmd.err, data.err, stop.err, data.flags, sector);
  169. if (((rt_uint32_t)buf & (32 - 1)) != 0)
  170. rt_free_align(aligned_buf);
  171. return -RT_ERROR;
  172. }
  173. if (((rt_uint32_t)buf & (32 - 1)) != 0)
  174. {
  175. if (!dir)//read
  176. rt_memcpy(buf, data.buf, data.blks*data.blksize);
  177. rt_free_align(aligned_buf);
  178. }
  179. return RT_EOK;
  180. }
  181. static rt_err_t rt_mmcsd_init(rt_device_t dev)
  182. {
  183. return RT_EOK;
  184. }
  185. static rt_err_t rt_mmcsd_open(rt_device_t dev, rt_uint16_t oflag)
  186. {
  187. return RT_EOK;
  188. }
  189. static rt_err_t rt_mmcsd_close(rt_device_t dev)
  190. {
  191. return RT_EOK;
  192. }
  193. static rt_err_t rt_mmcsd_control(rt_device_t dev, rt_uint8_t cmd, void *args)
  194. {
  195. struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
  196. switch (cmd)
  197. {
  198. case RT_DEVICE_CTRL_BLK_GETGEOME:
  199. rt_memcpy(args, &blk_dev->geometry, sizeof(struct rt_device_blk_geometry));
  200. break;
  201. default:
  202. break;
  203. }
  204. return RT_EOK;
  205. }
  206. static rt_size_t rt_mmcsd_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
  207. {
  208. rt_err_t err;
  209. struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
  210. struct dfs_partition *part = &blk_dev->part;
  211. if ( dev == RT_NULL )
  212. {
  213. rt_set_errno(-DFS_STATUS_EINVAL);
  214. return 0;
  215. }
  216. rt_sem_take(part->lock, RT_WAITING_FOREVER);
  217. err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, buffer, size, 0);
  218. rt_sem_release(part->lock);
  219. /* the length of reading must align to SECTOR SIZE */
  220. if (err)
  221. {
  222. rt_set_errno(-DFS_STATUS_EIO);
  223. return 0;
  224. }
  225. return size;
  226. }
  227. static rt_size_t rt_mmcsd_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
  228. {
  229. rt_err_t err;
  230. struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
  231. struct dfs_partition *part = &blk_dev->part;
  232. if (dev == RT_NULL)
  233. {
  234. rt_set_errno(-DFS_STATUS_EINVAL);
  235. return 0;
  236. }
  237. rt_sem_take(part->lock, RT_WAITING_FOREVER);
  238. err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, (void *)buffer, size, 1);
  239. rt_sem_release(part->lock);
  240. /* the length of reading must align to SECTOR SIZE */
  241. if (err)
  242. {
  243. rt_set_errno(-DFS_STATUS_EIO);
  244. return 0;
  245. }
  246. return size;
  247. }
  248. static rt_int32_t mmcsd_set_blksize(struct rt_mmcsd_card *card)
  249. {
  250. struct rt_mmcsd_cmd cmd;
  251. int err;
  252. /* Block-addressed cards ignore MMC_SET_BLOCKLEN. */
  253. if (card->card_type & CARD_TYPE_SDHC)
  254. return 0;
  255. mmcsd_host_lock(card->host);
  256. cmd.cmd_code = SET_BLOCKLEN;
  257. cmd.arg = 512;
  258. cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
  259. err = mmcsd_send_cmd(card->host, &cmd, 5);
  260. mmcsd_host_unlock(card->host);
  261. if (err)
  262. {
  263. rt_kprintf("MMCSD: unable to set block size to %d: %d\n", cmd.arg, err);
  264. return -RT_ERROR;
  265. }
  266. return 0;
  267. }
  268. rt_int32_t rt_mmcsd_blk_probe(struct rt_mmcsd_card *card)
  269. {
  270. rt_int32_t err = 0;
  271. rt_uint8_t i, status;
  272. rt_uint8_t *sector;
  273. char dname[4];
  274. char sname[8];
  275. struct mmcsd_blk_device *blk_dev = RT_NULL;
  276. err = mmcsd_set_blksize(card);
  277. if(err)
  278. {
  279. return err;
  280. }
  281. /* get the first sector to read partition table */
  282. sector = (rt_uint8_t *)rt_malloc_align(SECTOR_SIZE, 32);
  283. if (sector == RT_NULL)
  284. {
  285. rt_kprintf("allocate partition sector buffer failed\n");
  286. return -RT_ENOMEM;
  287. }
  288. status = rt_mmcsd_req_blk(card, 0, sector, 1, 0);
  289. if (status == RT_EOK)
  290. {
  291. for(i=0; i < RT_MMCSD_MAX_PARTITION; i++)
  292. {
  293. blk_dev = rt_malloc(sizeof(struct mmcsd_blk_device));
  294. if (!blk_dev)
  295. {
  296. rt_kprintf("mmcsd:malloc mem failde\n");
  297. break;
  298. }
  299. rt_memset((void *)blk_dev, 0, sizeof(struct mmcsd_blk_device));
  300. /* get the first partition */
  301. status = dfs_filesystem_get_partition(&blk_dev->part, sector, i);
  302. if (status == RT_EOK)
  303. {
  304. rt_snprintf(dname, 4, "sd%d", i);
  305. rt_snprintf(sname, 8, "sem_sd%d", i);
  306. blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
  307. /* register mmcsd device */
  308. blk_dev->dev.type = RT_Device_Class_Block;
  309. blk_dev->dev.init = rt_mmcsd_init;
  310. blk_dev->dev.open = rt_mmcsd_open;
  311. blk_dev->dev.close = rt_mmcsd_close;
  312. blk_dev->dev.read = rt_mmcsd_read;
  313. blk_dev->dev.write = rt_mmcsd_write;
  314. blk_dev->dev.control = rt_mmcsd_control;
  315. blk_dev->dev.user_data = blk_dev;
  316. blk_dev->card = card;
  317. blk_dev->geometry.bytes_per_sector = 1<<9;
  318. blk_dev->geometry.block_size = card->card_blksize;
  319. blk_dev->geometry.sector_count = blk_dev->part.size;
  320. rt_device_register(&blk_dev->dev, dname,
  321. RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
  322. list_insert_after(&blk_devices, &blk_dev->list);
  323. }
  324. else
  325. {
  326. if(i == 0)
  327. {
  328. /* there is no partition table */
  329. blk_dev->part.offset = 0;
  330. blk_dev->part.size = 0;
  331. blk_dev->part.lock = rt_sem_create("sem_sd0", 1, RT_IPC_FLAG_FIFO);
  332. /* register mmcsd device */
  333. blk_dev->dev.type = RT_Device_Class_Block;
  334. blk_dev->dev.init = rt_mmcsd_init;
  335. blk_dev->dev.open = rt_mmcsd_open;
  336. blk_dev->dev.close = rt_mmcsd_close;
  337. blk_dev->dev.read = rt_mmcsd_read;
  338. blk_dev->dev.write = rt_mmcsd_write;
  339. blk_dev->dev.control = rt_mmcsd_control;
  340. blk_dev->dev.user_data = blk_dev;
  341. blk_dev->card = card;
  342. blk_dev->geometry.bytes_per_sector = 1<<9;
  343. blk_dev->geometry.block_size = card->card_blksize;
  344. if (card->card_type | CARD_TYPE_SDHC)
  345. {
  346. blk_dev->geometry.sector_count = (card->csd.c_size + 1) * 1024;
  347. }
  348. else
  349. {
  350. blk_dev->geometry.sector_count =
  351. card->card_capacity * 1024 / 512;
  352. }
  353. rt_device_register(&blk_dev->dev, "sd0",
  354. RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
  355. list_insert_after(&blk_devices, &blk_dev->list);
  356. break;
  357. }
  358. else
  359. {
  360. rt_free(blk_dev);
  361. blk_dev = RT_NULL;
  362. break;
  363. }
  364. }
  365. }
  366. }
  367. else
  368. {
  369. rt_kprintf("read mmcsd first sector failed\n");
  370. err = -RT_ERROR;
  371. }
  372. /* release sector buffer */
  373. rt_free_align(sector);
  374. return err;
  375. }
  376. void rt_mmcsd_blk_remove(struct rt_mmcsd_card *card)
  377. {
  378. rt_list_t *l;
  379. struct mmcsd_blk_device *blk_dev;
  380. for (l = (&blk_devices)->next; l != &blk_devices; l = l->next)
  381. {
  382. blk_dev = (struct mmcsd_blk_device *)list_entry(l, struct mmcsd_blk_device, list);
  383. if (blk_dev->card == card)
  384. {
  385. rt_device_unregister(&blk_dev->dev);
  386. list_remove(&blk_dev->list);
  387. rt_free(blk_dev);
  388. }
  389. }
  390. }
  391. void rt_mmcsd_blk_init(void)
  392. {
  393. list_init(&blk_devices);
  394. }